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Abstract. Evaluating the performance of a continuous activity recog-
nition system can be a challenging problem. To-date there is no widely
accepted standard for dealing with this, and in general methods and mea-
sures are adapted from related fields such as speech and vision. Much of
the problem stems from the often imprecise and ambiguous nature of the
real-world events that an activity recognition system has to deal with. A
recognised event might have variable duration, or be shifted in time from
the corresponding real-world event. Equally it might be broken up into
smaller pieces, or joined together to form larger events. Most evaluation
attempts tend to smooth over these issues, using “fuzzy” boundaries, or
some other parameter based error decision, so as to make possible the
use of standard performance measures (such as insertions and deletions.)
However, we argue that reducing the various facets of a activity system
into limited error categories - that were originally intended for different
problem domains - can be overly restrictive. In this paper we attempt to
identify and characterise the errors typical to continuous activity recog-
nition, and develop a method for quantifying them in an unambiguous
manner.
By way of an initial investigation, we apply the method to an example
taken from previous work, and discuss the advantages that this provides
over two of the most commonly used methods.

1 Introduction

As research interest into recognition of user activities - and more generally user
context - continues to grow, so too does the demand for standard methods of
evaluating and comparing performance of the different approaches. There are
two main criteria involved in the development of such methods. One is in es-
tablishing open datasets to be used as a benchmark, of which to-date work is
only just beginning.3 The second criteria, and the one which is the focus of this

3 For example, see the dedicated workshop on this topic at Pervasive ’04 [8].



paper, is the issue of appropriate performance measures. While working on differ-
ent recognition problems [23,12,16] and looking at related publications (such as
[18,11,21,2]) we have found that existing evaluation measures, mostly taken from
related fields such as automatic speech recognition (ASR), information retrieval
(IR), and vision related fields such as optical character recognition (OCR), often
fail to adequately reflect the specific problems of the activity recognition task,
in particular with the non segmented, continuous case.

The performance evaluation of a continuous activity recognition system can
be viewed as a problem of how to measure the similarity of two time series;
the similarity of a prediction sequence to its corresponding ground truth. In the
topic of activity recognition, these time series are made up of discrete events,
each representing a particular activity which the system is designed to recognise.
As such events are based on real world activities, or concern changes to a user’s
environment, it is often the case that they are of variable duration and have
ambiguous start and stop times. This can lead to events being detected some
time before or after they actually occur. It can also lead to single events being
fragmented into multiple smaller events of the same class; or, alternatively, the
merging of several real events into a single detected event.

Dealing with such traits poses a problem for satisfactory performance evalu-
ation. Using existing methods of evaluation, designers have the choice of making
a direct timewise (frame-by-frame) comparison of the ground and prediction se-
quences, thereby loosing information on the nature of events; or of performing a
comparison of the events, at the expense of loosing information on the timing.
In the later case, the definitions of the event errors - insertion, deletion, etc. -
is further complicated by how to treat events which are fragmented or merged.
Often the designer is forced to make a decision as to whether fragmented or
merged events are undesirable or not, whether to ignore them or to count them
as full inserted or deleted events.

1.1 Paper Contributions and Organisation

Our repeated encounters with such cases prompted us to investigate the problem
of finding suitable evaluation measures in continuous activity recognition. In
this paper we propose an alternative strategy for evaluation which combines the
strengths of several existing methods without throwing away critical information
that might be judged important by application developers wishing to use such
activity recognition systems.

The paper is divided into four main parts. In section 2 we motivate the work
by highlighting the problems of existing measures when used on a typical activity
recognition example, as obtained from an earlier published work. In section 3 we
provide a detailed analysis of these problems. Section 4 introduces our proposed
categorisation and error scoring methods to combat these problems. Finally, in
closing, we apply our methods to the original motivational examples, and use
them to fuel the discussion on how they might be used in practice.



2 Motivation

As a motivation for this work, consider Figure 1. Plot (a) is an example of output
from a multi-class, continuous activity recognition task which was carried out on
a mock assembly scenario in the wood workshop of our lab [23]. The plot shows
hand-labelled ground truth for five activities which we attempted to recognise
in this experiment: use of a grinder, file, screwdriver, vice and drawer. The time
where no relevant activity was performed is recorded as NULL. Plotted above
the ground truth are the recognition system’s predictions. This data is output
on a timewise frame-by-frame basis, with each frame being one second in length.

For most of the non-NULL activities, these prediction sequences seem to
visually correlate well with the ground truth. There are few insertions and only
one completely deleted activity. Contrast this result with the middle(b) and
bottom(c) plots of Figure 1. A casual visual assessment might report, due to the
abundance of insertions in (b) and the heavily fragmented output of (c), that
this data is much poorer than that of (a).

2.1 Frame based analysis

When evaluating such data quantitatively, a standard practise is to make a
frame by frame comparison of the ground truth with the predictions. Counts of
correct and incorrect matches can then be tallied for each class and entered into
a confusion matrix [6]. From here a number of standard performance measures
can be calculated, the most common of these being accuracy (the overall correct
rate).

However, when this analysis is performed on the examples, as shown in the
tables to the right of Figure 1, a somewhat unsatisfying result is obtained: they
all have identical accuracy. This result seems contrary to what observation tells
us. Furthermore, the confusion matrices for examples (a) and (b), simplified to
the summation of positive classes vs. NULL, are very similar and tell us nothing
about, for example, the prevalence of insertion errors in (b).

These results are not wrong - the numbers of frame errors in all three exam-
ples are in fact equal. What the visual analysis shows, and the frame analysis
does not show, is that every positive frame forms part of an event - a contiguous
sequence of same class frames. When judged from an event perspective, then the
distribution of frame errors becomes more important. Many of the false posi-
tives in (a), for example, are joined to otherwise correctly classified sequences;
however, in (b) they tend to form part of event insertions - an arguably more
serious misclassification.

2.2 Event analysis

Researchers in the fields of optical character recognition (OCR) [5,13] and au-
tomatic speech recognition (ASR) both commonly employ counts of insertion
(Ie), deletion (De) and substitution (Se) event errors to measure performance.
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Fig. 1. Examples (a− c) from multi-class continuous activity problem. The tables give
performance information using standard methods: Frame errors using binary confusion
matrices of positive (P) vs. NULL (N) frames, where rows denote the ground truth
and columns the output predictions. Positive substitutions are entered in brackets
alongside True Positives (TP) in these matrices. Accuracy is calculated as: accf =
TP+TN−subst.

Tf
, with the total frames in each example being Tf = 107. Event errors

are given as insertion (Ie), deletion (De) and substitution (Se) counts. The event error
rate is erre = Ie+De+Se

Te
, with total number of positive events, Te = 11



These give indicators of the discrete event performance of a system, and seem a
natural choice for evaluating a discrete sequence of activity events.

When these scores are calculated for each of the examples (see the lower
tables of Figure 1), the differences between examples (a) and (b) become much
clearer. Example (a) shows a relatively low insertion count in comparison with
the very high number of insertions in example (b). However, if we look at example
(c) - again a very different output from (a) - we are once again disappointed: the
deletion, substitution and insertion counts of (c) are identical to those of (a).

There are two main problems underlying these results, neither of which are
highlighted by any of the commonly used evaluation methods. The first problem
is that many of the events are fragmented: several smaller segments, although
correctly classified, only sparsely cover parts of the ground truth. Some of these
segments are separated by small fragments of NULL (frame deletions); while
others, such as the ‘filing’ event, are fragmented by insertions of another class
(frame substitutions).

The second problem is that events can be merged together, (i.e.) two or
more events of the same class can be recognised as a single large event. In the
examples given here, this happens on only two occasions (the ‘drawer’ events of
(a) and (c)). In each case, this error only affects two closely occurring events.
For purposes of evaluation, the fact that these two separate events have been
merged is simply ignored. They are both treated as correct. Alternatively, it
might be decided that such a merging, reducing two or more events to one, is
also a deletion of all merged events except the first.

In both of these cases, fragmenting and merging, it is clear that there are
several ways one might choose to score the results, and here lies the problem:
there is no standard definition for such errors. The existing designations of De, Ie

and Se, were developed for fields such as OCR which enjoy well-defined, discrete
events. In continuous activity recognition, as highlighted by these examples, this
is not always the case.

3 Problem specification

In order to develop more appropriate evaluation metrics, the problems illustrated
in the previous section should first be formulated in a more systematic way. This
section begins with a definition of the performance evaluation task. From this
definition we discuss specific characteristics of performance which are common
to continuous context recognition.

3.1 Definition of performance evaluation

In the most general classification problem we have n classes (c1, c2, · · · cn) with-
out a designated class for NULL. The ground truth consists of a number of m

distinct events (e1, e2, · · · em), each mapping to one of the n classes. We assume
the system to be time discrete with the smallest considered time unit being



a frame. In most cases, a frame would correspond to the length of the sensor
sampling window.

An ideal classifier would be one where every ground truth event, ei, has a
start time, stop time and label matching an event in the prediction sequence.
Correspondingly, all constituent frames would also match.

Unfortunately such perfect alignment is rare. A typical recognition system
deletes, inserts, and substitutes data. In addition even for correctly correlated
data the start and stop frames might be shifted in the recognised sequence. The
problem of evaluating such imperfect classification is equivalent to that of finding
an appropriate similarity metric for the comparison of two time series. As we see
it, this problem can be tackled on three levels:

1. Frame by frame. For each pair of corresponding time frames f (from the
ground truth) and f̄ (from the recognition system output) we perform a
simple comparison of the class labels.

2. Event-based. Determine how many of the m ground truth events (e1, e2, · · · em)
are accurately reflected in the m̄ events ē1, ē2 · · · ēm̄ produced by the recogni-
tion system. The difficulty of event based evaluation stems from the fact that
neither the number of events nor their start and end points are necessarily
identical in the ground truth and the recogniser output.

3. Hybrid frame and event based. A frame by frame comparison which takes
into account the events to which individual frames are a part. Thus frame
errors that merely cause the start and end points of events to be shifted
are treated differently from frame errors that contribute to the deletion and
insertion of events. This type of evaluation only makes sense if some prior
event analysis has been carried out.

3.2 General considerations

Given two time series there can be no such thing as an optimal measure of
similarity which holds for all applications. As a consequence there is no optimal,
problem independent performance evaluation. Different application domains are
subject to different performance criteria. In speech recognition, for example, it is
more important that the system recognises what words have been spoken, and in
which order, rather than how long it took to utter them. Consequently, methods
which emphasise correct ordering of symbols over their specific duration are used
to evaluate these systems. An input to a real-time system, on the other hand,
would need to be extremely time sensitive. As such an evaluation metric which
emphasises timing errors and delays, i.e. based on a direct timewise comparison,
would be more appropriate.

For every domain, a specific metric must be chosen that characterises and
highlights the type of error(s) most critical to that domain. This means that
evaluation methods that are successful in one domain need not necessarily be
so in another. Applying methods to a different domain only makes sense if both
domains have the same type of dominant error types and similar relevance is
assigned to equivalent errors.



3.3 Evaluation requirements of continuous activity recognition

The study of activity recognition encompasses a wide range of problems, includ-
ing standard modes of locomotion (walking, standing, running, etc.)[18,15,11,21],
tracking of specific procedures (e.g. assembly tasks [17]), and the detection of
changes in environmental conditions[2,15]. While each of these problems have
their own characteristic and relevant error types, there are a number of things
that most continuous activity recognition tasks have in common:

Large variability in event length In many activity recognition tasks, event
length can vary by an order of magnitude or more. A wood workshop as-
sembly example includes such activities as sawing which can take minutes,
as well as taking or putting away tools which take just a few seconds. Simi-
larly, when recognising modes of locomotion, there can be instances of long
uninterrupted walks, as well as instances of a user making only a few steps.
A direct frame by frame evaluation can be misleading in such cases.

Fragmented events Long lasting events are often interrupted by the occur-
rence of short events. Thus a long sawing sequence might include one or two
interruptions or an instance of the user changing the saw. A long walk might
include a few short stops. Since the recognition system must be able to spot
such situations, it is also prone to false fragmentation. As an example, a
slight irregularity in the sawing motion might be falsely interpreted as an
interruption, or a short instance of an entirely different activity. In addition
to inserting a new event, fragmentation also breaks up one long event in the
ground truth, producing several events in the recogniser output.

Event merging Trying to avoid false fragmentation can lead to a system that
tends to overlook genuinely fragmented outputs. Thus two events of the
same class separated by a short event of another class might be merged into
a single long event of the first class. This in a sense is a ’double deletion’
since it deletes the short event in the middle, and causes the two events of
the outer class to become one.

Lack of well defined NULL class Many activity recognition tasks aim to
spot a small set of interesting activities/situations while regarding the rest
as instances of a ’garbage’ or NULL class. This NULL class has the same
function as the pauses in speech, or spaces in character recognition. The
problem is that many activity recognition tasks have a NULL class which
is complex and difficult to model. In the assembly task, for example, any
motion made between the specific tool activities falls into this class. This in-
cludes everything from scratching one’s head to unpacking a chocolate bar.
As a consequence the NULL class model tends to be ’greedy’, so that any
unusual segment in an event (e.g. strange motion while sawing) tends to
create a NULL event, thus contributing to the fragmentation problem.

Fuzzy event boundaries When collecting large, real life data sets it is often
impossible to perfectly time ground truth labels by hand. The definition of
start and stop times of an event are often arbitrary and by nature imprecise.
This is particularly so for domains such as activity recognition, where even
the event is often difficult to define - e.g. at which point does a walking



event end and a running event begin? This leads to timing errors in the
recognition, even if the system can be said to work perfectly. Similarly, in
tasks where interesting events are separated by a greedy NULL, the lack of
a well defined NULL model will inevitably result in some incursion into the
boundaries of the correct events.

The importance of these different issues is dependent on the specific applica-
tion for which the system is being evaluated. However, we believe that for most
activity recognition tasks, one or more of these issues is important, and that
they should be taken into account when evaluating these systems.

4 Error characterisation and representation

Following from the above observations we now present a characterisation of the
critical error types in continuous activity recognition. Specifically we propose an
approach which (1) includes event mergers and fragmentation as errors in their
own right; and (2) provides information about event timing errors. This section
presents both the definition of the proposed errors, and a precise method on
how to score them. We then show how this information can be tabulated for
presentation of a system’s results. Additionally we show how the methods can
be tailored for dealing with activity recognition systems that treat NULL as a
special case.

Our evaluation method is based on partitioning the signal stream into what
we call segments. As an example, Figure 3 shows a three class recognition prob-
lem broken up into 14 segments (denoted by the vertical dotted lines). A segment
is a variable-duration, contiguous sequence of frames, during which neither pre-
diction nor the ground truth label changes. That is, each boundary of a segment
is defined by either the boundary of a ground truth, or of a prediction event.

From the point of view of performance evaluation such a segment definition
has two advantages. The first is that there are no ambiguities in comparison:
each segment can either have the prediction and the ground truth fully agree, or
fully disagree. The second advantage is that from an analysis of these segments,
an exhaustive definition of the event and timing errors appropriate to activity
recognition can be derived. This strategy has three main steps:

1. Create the segment sequence and note each segment as matching or non
matching. A match being when both the ground truth segment and its cor-
responding prediction segment have the same class label.

2. Use segment match information to score events and event timing errors. Pre-
diction and ground truth events are scored separately. The left flowchart of
Figure 2 shows the algorithm to do this for ground truth events, with possi-
ble outputs of fragmenting F , deletion D, underfill U , correct, and no label
(a single matching segment event to which none of the other designations
apply). Prediction events are scored using the same algorithm, but with the
alternate outputs of: merge (M), insertion(I) and overfill (O).



3. Score the segment errors. The flowchart to the right of Figure 2 shows how
this is done. Each (non matching) segment is assigned an error pair based
on the ground and prediction events to which it forms part.

The example of Figure 3 shows three analyses of a 3-class (A,B,C) recognition
example: one for counting event errors, one for counting event timing errors, and
the third for counting segment errors. In each of the analyses, the same example
prediction sequence is shown (with I,M or O assigned for each incorrect event
or segment) against a possible ground truth (with D,F or U assigned to each
incorrect event or segment). These error categories, and how to score them, are
described in greater detail in the following sections.

Fig. 2. (Left) flowchart of algorithm for assigning error labels to each ground truth
event, and to each prediction event: for processing ground truth events, use F ,D and U ,
for fragmenting, deletion and underfill; for processing prediction events, use bracketed
labels (M), (I) and (O), referring to merge, insertion and overfill errors respectively;
correct or no label can be assigned to both. #segments refers to the number of segments
that make up an event, #match refers to the number of matching segments in that
event, with a match defined as a segment where ground truth and prediction agree.
(Right, boxed) flowchart of algorithm for assigning error pair labels to a segment based
on its constituent event error designations.

4.1 Event analysis

There are four types of event error, each falling into one of two divisions de-
pending on whether they are part of the ground truth or prediction sequence. A
positive error in the prediction sequence, can be defined as either:



Fig. 3. Some possible error combinations for three class (A, B,C) example: upper dia-
gram shows event errors, middle diagram shows event timing errors, and lower diagram
shows segment error pairs. The dotted vertical lines show how the sequence is broken
up into segments s1..14. Event error labelling is shown in boldface (C,I,D,M,F), and
is distinct from the segment labelling in that it applies to an entire event rather than
just one segment.

Insertion - a prediction event that contains no matching segment(s), or

Merge - a prediction event that contains more then one matching segment.

A negative error, the failure to detect all or part of an event in the ground truth,
is defined as either:

Deletion - a ground truth event that contains no matching segment(s), or

Fragmentation - a ground truth event that contains more than one match.

Correct is only assigned to where both prediction and the corresponding ground
truth events are free from all the above categories. The example of Figure 3
shows 3 such correct event scores (s1, s3 and s14). There are some cases where a
single-segment, matched event is not assigned any designation (for example, see
the merged ground events s5 and s8 in Figure 3). On an event analysis, these
cannot be said to be correct - but neither can they be called errors. Instead, we
treat these cases only as segment level matches.

Positive and negative errors are related: an insertion in the prediction se-
quence, for example, can result in the deletion or fragmentation of an event in
the ground truth. This relationship is not always one-to-one however: a fragmen-
tation might be caused by more than one insertion, possible of different classes.
For this reason, the two scorings - positive and negative - are kept separate at
event level.



Event timing Often an event might be judged correct (or merged, or frag-
mented) but fail to align completely with its boundaries. The prediction event
might spill over the ground truth boundaries; or it might fall short of them. For
these cases, we introduce two event timing error categories which can be applied
to an event in addition to a correct, merge4, or fragmenting score:

Underfill - ground truth event not completely covered by prediction.
Overfill - prediction event which spills over its ground truth boundary.

The algorithm for assigning both event errors and event timing errors is
shown to the left of Figure 2.

Event error and timing error representation Counts of the four types of
event error - insertion, deletion, merge and fragmentation - can be summed up
for each class and presented in a simple table, one entry for each error type and
each class. Similarly, counts of the timing event errors - overfill and underfill -
can also be summed up and presented, in a separate table, alongside the specific
time lengths (or number of frames) associated with them.

4.2 Segment analysis

One aspect of performance which event based scoring does not capture is the
absolute time duration (in terms of frames or seconds) for each type of error.
Additionally, subtle information such as the cause-effect relationship between
prediction and ground truth errors is not captured. It can be shown that the
following pairings are possible:

1. An event is deleted by insertions, merging, or overfilling of another class
2. An event is underfilled by either an overfill or an insertion of another class
3. An event is fragmented by insertion(s) of another class.

Rarely do event level comparisons allow a one-to-one relation between the predic-
tion and ground truth. One deletion, for example, might be the result of a com-
bination of an overfill plus several different insertions. Segments do allow such a
relation. By definition, every segment forms part of exactly one prediction event
and one ground truth event. The specific combination of event and timing errors
for each ground truth and prediction can therefore be used to define the segment
error type, as detailed in Figure2(right). In total, there are six possible error
types for non-matching segments based on the event combinations: insertion-
deletion(ID), overfill-deletion(OD), merge-deletion(MD), insertion-underfill(IU),
overfill-underfill(OU) and insertion-fragmentation(IF).

These pairings are codified and presented in Table 1, which we name the
Segment Error Table (SET). Prediction errors (insertion, overfill and merge)
form the rows, while ground truth errors (deletion, underfill and fragmentation)
make up the columns of this table.

4 Segment s4 of Figure 3 shows one such example of this.



Table 1. Possible segment error designations: rows represent prediction segment errors,
columns ground truth errors; ID=insertion-deletion, OD=overfill-deletion, MD=merge-
deletion, IU=insertion-underfill, OU=overfill-underfill and IF=insertion-fragmentation

Deletion Underfill Fragmentation
Insertion ID IU IF
Overfill OD OU
Merge MD

Analysis of segments provides an unambiguous assessment of errors. In the
simplest analysis, segment counts of the six different error types, ID, IU , IF ,
OD, OU , and MD are made and filled into the table. Additional information on
the absolute time length, or frame counts, of these segments can also be included.
Such a combined segment and frame count SET provides a representation of
error that combines the temporal resolution of frame by frame evaluation with
the descriptive power of event level evaluation.

NULL as a special case We can expand the table thus described to handle
NULL as separate from the other classes - a separation required for most activity
recognition tasks. This is achieved by the addition of rows and columns denoting
the six error combinations with respect to NULL, as shown to the left of Table
25. The SET to the top left corner of the expanded table now only contains
information regarding substitution errors between non-NULL positive classes.
The top right section of the table then gives a breakdown of false positive errors,
while the bottom section gives information about false negative errors.

Table 2. Segment Error Table with NULL(N) as special case: full table (left) and
reduced version (right)

D U F DN UN FN
I ID IU IF IDN IUN IFN
O OD OU ODN OUN
M MD MDN

IN IN D IN U IN F

ON ON D ON U

MN MN D

D U F N
I ID IU IF I

O OD OU O

M MD M

N D U F

In many continuous recognition scenarios we are not interested in whether
a ground segment labelled NULL has been completely deleted, fragmented or
underfilled; likewise we are not interested whether a positive class deletion was
caused by an insertion or an overfilling of NULL. In such situations, the error
designations can be combined to produce a reduced table, as shown to the right
of Table 2. For convenience, we drop the ’N ’ suffix and the dual error designation

5 Similarly, such an expansion can also be carried out for every class in a system,
leading to an enhanced SET with greater detail on the relations between different
classes (i.e. similar to the confusion matrix).



from the errors involving NULL, referring to them directly as I, O, M , D, U and
F . The remaining substitution errors retain the dual OU , IU , etc. designators.

5 Discussion

5.1 Application of method to worked example

We now apply the described error characterisations to our examples from Section
2, and give examples of how the event, timing and SET representations might
look.

Event and timing results Treating NULL again as a special case, we present
counts of the non-null class insertions, deletions, merge and fragmentation for
the examples of Figure 1. Comparing the insertion and deletion counts of the
earlier event analysis of Section 2 with those of 3, we can draw much the same
conclusions. Notably however, the new method allows us to see clearly the addi-
tional merge and fragmentation errors which prevail in example (c) . The poorer
timing performance of (a), with many overfilled events in comparison with the
other examples, is also now evident.

The information regarding class substitution errors, however, has been lost
in this representation - they are dissolved into pairs, such as insertion/deletion.
The lack of a one-to-one relationship between prediction and ground truth errors
makes such a joint ’substitution event’ measure difficult to define at the event
level. Therefore we defer to the segment analysis to provide this information.

Table 3. Event errors (for Positive, non-NULL classes only), I’=Insertion,
D’=Deletion, M=Merge and F=Fragmentation; and event timing errors, Overfill and
Underfill. Number of timing event errors are given together with the corresponding
frame counts

a)

#events

I’ 4
D’ 2
M 1
F 0

#timing(#frames)

Overfill 8 (18)

Underfill 4 (6) b)

#events

I’ 12
D’ 2
M 0
F 1

#timing(#frames)

Overfill 1 (1)

Underfill 3 (11) c)

#events

I’ 4
D’ 2
M 1
F 3

#timing(#frames)

Overfill 4 (6)

Underfill 4 (12)

Segment (and frame-by-frame) results The segment and frame errors for
the examples are presented in Table 4. The major difference which becomes
apparent is the higher proportion of segments forming part of timing errors
(Underfilling by NULL, U and Overfill onto NULL, O) in (a), versus the higher
proportion forming event errors in (b) and (c) . Note that examples (b), and
in particular (c), contain fragmenting errors whereas (a) does not. Of merger



errors, there are only two instances - in (a) and (c) - each of which involves only
a single merge of two ’drawer’ events.

Again, the information provided by the new method is clearly more detailed
than that of the basic frame-by-frame analysis.

Table 4. SETs for positive classes (P) vs. NULL for the examples in Figure 1, with
counts of segment errors and corresponding number of frames

a)

#segments (#frames)

D U F N

I 1(1) 5(7)

O 8(18)

M 1(2)

N 1(11) 4(6) b)

#segments (#frames)

D U F N

I 2(3) 1(2) 9(25)

O 1(1)

M

N 1(2) 3(11) 1(1) c)

#segments (#frames)

D U F N

I 1(1) 3(11) 2(3)

O 4(6)

M 1(4)

N 1(1) 4(12) 1(7)

5.2 Significance and Limitations

As shown above our scheme has three advantages over standard performance
evaluation methods used in activity recognition:

1. It introduces the notion of segments as the largest continuous time slices in
which no ambiguities occur in scoring the correctness of the predictions

2. Based on this notion it leads to an unambiguous, objective characterization
of event level error.

3. It makes explicit different sources of error (timing, fragmentation merges)
which are ignored in conventional evaluation methods, although they are
wide spread in activity recognition systems.

The main limitation of the method concerns events with a large time shift be-
tween ground truth and the prediction. A prediction that is shifted by so much,
that it has no overlap with the corresponding ground truth will be scored as an
insertion and the corresponding ground truth event as a deletion.

The above advantages and limitations clearly follow from the algorithm de-
scribed in this paper. As the algorithm is fully deterministic and an exact
method rather then a heuristic, there is no further need of an empirical val-
idation. There can also be little doubts concerning the benefits of having an
objective,unambiguous method for scoring events. Even if it were to turn out
that in most cases the scores produced by our method are very similar to what
people have arrived at to date, having a consistent, objective scoring method is
an undisputed methodological advantage.

What certainly does require further investigation are the benefits of the ad-
ditional error information. They are obviously dependent on the application in
which the recognition system is to be used. For a safety critical system, such as
an accident avoidance system in an industrial setting, timing may be regarded
as critical, and the minimization of overfill and underfill of recognized activities



would clearly be desirable. On the other hand, for a system interested only in
which activities are carried out, such errors would be less critical. Imagine, for
example, a system monitoring the sequence of events as a mechanic repairs part
of an aircraft engine. What is important then is that the number of insertions
and deletions is kept low - that the system does not miss out any activities, and
that it gets the sequence correct. If further information on the count of specific
activities is required (how many bolts have been removed from the engine), then
errors such as fragmenting and merge errors must also be kept to a minimum.

For a conclusive proof of the value of the information provided by our method
an elaborate empirical study is needed. Such a study would need to consider a
wide range of applications and preferably look at previously published activity
recognition experiments and re-score their results using the above method.

For a meaningful study access to data from different groups would be required
and the associated effort would beyond the scope of this paper. This is clearly
a limitation and means that no authoritative statement can be made about the
value of the additional error information. Nonetheless such benefits are very
plausible. Considering the undisputed benefit of an objective scoring method we
believe that this paper consist a valuable contribution to the community.

5.3 Work in related fields

Some of the problem domains closest to continuous activity recognition are per-
haps line detection in 2D Graphics [22] and video analysis [7,10]. Consider the
case of a 2D line: the ground truth indicates a single line, but the recognition sys-
tem might return a sequence of shorter lines. Further, these might overlap with
the ground line, or be slightly offset from it. Different approaches have been sug-
gested to tackle this problem of fragmentation. One suggestion is to redefine the
error measures to incorporate fragmented events as some lower weighted correct
event[22].

Some decision function based on a measure of closeness might also be used;
perhaps utilising fuzzy error margins (as suggested at TRECVID ’03[20]). How-
ever this approach, as with weighting, requires the introduction of further param-
eters which only serve to further complicate the evaluation process. In addition,
all of these approaches aim to “cover up” the problem rather than finding a way
of presenting it as a result in itself.

In extreme cases, particularly in the vision domain, the problem of finding a
suitable measure is sidestepped altogether in favour of showing typical example
images (as commented by Hooveret al. [9] and by Müller [19]). This is an ap-
proach which has - out of necessity for lack of a standard measure - been used
by researchers publishing in the activity domain. The trouble is that although
valid for establishing the feasibility of a method with a small number of samples,
it does not scale up well to comparative studies with large databases.

Time series matching methods More generally, the performance evaluation
problem can be viewed as the matching of two time series - the prediction output



with a trusted ground truth. Time-series similarity methods are used in an ex-
tremely wide variety of domains - astronomy, finance, chemistry, robotics, etc.,
to mention only a few. Even more vast is the number of performance measures
that are introduced for every specific application (Keogh & Kassetty[14] give an
extensive overview). Some of the more common similarity measures are generally
based on dynamic time warping (DTW)[3], or methods using longest common
subsequences (LCS)[1]. Another useful method, as introduced by Perng et al.[4]
utilises ‘landmarks’ in the data, applying several different transformations (shift-
ing, time warping, etc.) to approximate a more human perception of similarity.
Though useful in measuring similarity, these methods do not provide a clear
means of measuring phenomena such as event fragmenting and merging.

Rather than selecting some measure of “similarity”, or parametrized bound-
ary decision to fit existing error designations, we aim to characterise and present
the errors as they are - in a quantifiable way which corresponds closely to that
of the human observer.

6 Conclusion

In this paper we present a non-ambiguous scoring of event errors in a continuous
activity recognition system. Observing the lack of a one-to-one relationship be-
tween events in the ground truth and those in the prediction sequence, we target
errors in these two sequences separately: specifically, we define positive errors as
insertion (I) and merge (M) events by the prediction sequence; and negative
errors as deleted (D) and fragmented (D) events in the ground truth. Comple-
mentary to these, we introduce timing event categories which score whether a
prediction event overfills its ground truth, or a ground event is underfilled by its
prediction.

We introduce a timewise method of comparison based on the idea of segments
- a segment being a contiguous section of time where neither ground truth nor
prediction changes. This allows the representation of an unambiguous one-to-one
relation between ground and prediction segments, which we have shown to pro-
duce a maximum of six possible error combinations, each assigned depending on
the nature of the events to which each segment forms part: ID, IU, IF, OD, OU,
and MD. These error pairings can be represented in the so-called Segment Error
Table (SET), with scoring on the number of segments, and their corresponding
time durations (or number of frames).

The paper has presented a detailed description of the evaluation algorithm
and demonstrated how the above mentioned properties follow from this algo-
rithm. As the algorithm is deterministic and exact, no empirical study is needed
to prove those properties. With respect to the usefulness of the additional in-
formation provided by our method only a simple illustrative example and a
plausibility argument were given. As a consequence the main motivation behind
this paper is to make the community aware of the existence and the proper-
ties of the method. We hope that this will lead to other groups adopting this
method and/or to a wider discussion about appropriate evaluation standards. In



the end we would like to see the emergence and adoption of a generally accepted,
objective and informative evaluation method based on our ideas.
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