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ABSTRACT
We contribute by quantifying the effect of network latency and
battery consumption on mobile app performance and retention, i.e.,
user’s decisions to continue or stop using apps. We perform our
analysis by fusing two large-scale crowdsensed datasets collected
by piggybacking on information captured by mobile apps. We find
that app performance has an impact in its retention rate. Our re-
sults demonstrate that high energy consumption and high latency
decrease the likelihood of retaining an app. Conversely, we show
that reducing latency or energy consumption does not guarantee
higher likelihood of retention as long as they are within reasonable
standards of performance. However, we also demonstrate that what
is considered reasonable depends on what users have been accus-
tomed to, with device and network characteristics, and app category
playing a role. As our second contribution, we develop a model
for predicting retention based on performance metrics. We demon-
strate the benefits of our model through empirical benchmarks
which show that our model not only predicts retention accurately,
but generalizes well across application categories, locations and
other factors moderating the effect of performance.

CCS CONCEPTS
• General and reference→ Cross-computing tools and tech-
niques; • Networks → Network performance evaluation; • Com-
puting methodologies→ Modeling and simulation.
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1 INTRODUCTION
Nowadays there is an app for almost everything with Apple App-
Store, Google Play and other major marketplaces offering millions
of apps to users [48]. While the total number of apps on the mar-
ketplaces is high, a large fraction of them vanish without ever
attracting a significant user base, and the majority of the rest strug-
gle to maintain their user base over time. Specifically, studies on
mobile app usage suggest that over a quarter of installed apps are
only used once [25], and even apps used for more than a day are
unlikely to stay relevant longer than a fortnight [46].

While low retention of apps is well known [9, 10], surprisingly
little is known about the conditions that drive users to abandon apps.
Indeed, existing research has mostly focused on identifying factors
that result in poor user perceptions without quantifying their effect
on user behaviour. For example, performance related characteristics
and technical problems have been shown to be a leading factor for
abandoning apps [15], a major source of frustration, and a common
complaint in app reviews [27, 28]. However, the point at which they
result in users abandoning apps is currently not known. Improving
our understanding of the relationship between user behaviour and
these factors would be of significant academic and commercial
interest as, among others, it would deepen our understanding of
mobile interactions and how they are influenced by context [4, 7,
14, 36], provide marketers information about which factors most
contributed to the success or failure of an app [12, 23], and allow
developers to better understand how to improve their app [3, 40].

Traditionally, mobile app performance has been analyzed by
capturing performance metrics either on the network level or using
active monitoring on the user’s mobile device [1, 5, 24]. Unfortu-
nately both approaches are limited in their capability to capture
and quantify performance and its effect on mobile app usage. Net-
work level measurements only capture performance factors related
to networking, ignoring other factors such as energy completely.
Additionally, relating network measurements to specific applica-
tions is difficult [1]. Active client monitoring captures richer set
of performance factors and allows relating them with specific ap-
plications, but suffers from limited generality due to performance
being sensitive to the current context of the user. For example,
ambient temperature and mobility affect an app’s energy use [37]
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while latency is influenced by mobility, network operator, com-
munication technology and available network infrastructure [20].
Characterizing performance would thus require collecting a large
number of samples to ensure all relevant contexts are captured –
something that would take prohibitively long or require battery
heavy sampling when performed on individual device [20, 22].

In this paper, we contribute by quantifying the relationship be-
tween mobile application performance and retention, i.e., whether
users are willing to continue using an app. We perform our analysis
by fusing two large-scale datasets of crowdsensed measurements
collected by piggybacking on information collected by mobile apps.
Crowdsensing allows reaching a larger pool of users and usage
contexts by taking advantage of existing application distribution
channels, such as mobile app marketplaces. By piggybacking on
mobile app data, the overhead of data collection is minimized and
separate instrumentation of the devices is avoided, unlike in intru-
sive client-side monitoring. The first dataset we consider consists
of detailed information about network latency [47] and the sec-
ond contains information about energy consumption and mobile
app usage [32]. To analyze the combined effect of these perfor-
mance factors, we build on statistical survey analysis methods (hot
deck multiple imputation [2, 41]) to fuse the datasets together. Our
analysis focuses on energy consumption and latency as they have
been shown to be key components in shaping user’s perceptions of
apps [23, 27]. Indeed, energy drain is known to be a major source of
frustration and cognitive burden as users are forced to actively take
countermeasures to prolong their battery lifetime [6, 38, 39]. Impor-
tance of energy is also reflected by the high popularity of energy
saving apps on mobile marketplaces [32]. Latency, in turn, affects
user engagement and results in shorter interactions and higher
degree of frustration [11, 18]. While importance of these perfor-
mance parameters has been established beyond doubt, their effect
on continued mobile application usage is currently not understood.

Our analysis reveals that both high energy consumption and
high degree of latency decrease the likelihood of retaining an app.
Conversely, we show that decreasing latency or battery consump-
tion does not guarantee higher likelihood of retention - as long
as they are within reasonable standards of performance. However,
what is considered reasonable depends on what the users have been
accustomed to, with the app category, device characteristics, and
network characteristics having an influence. For example, we find
the level of expected latency to be lower in Finland than in USA,
thanks to faster network infrastructure and consequently differing
user expectations. To provide further insights into app retention
and abandonment, as our second contribution, we develop a model
that predicts the extent that performance affects retention. We demon-
strate the benefits of our model through empirical benchmarks
which show that our model not only predicts retention accuracy,
but generalizes well across application categories, locations and
other factors moderating the effect of performance.
Summary of Contributions:

• We demonstrate that latency and energy, two key performance
metrics for mobile apps, have a significant adverse effect on mo-
bile app retention and abandonment and that this effect is stable
across most application categories. However, we also conversely
demonstrate that improving latency and energy drain does not

Table 1: Summary statistics of application usage and net-
work connectivity datasets.

Dataset Samples Users Apps Time
NetRadar [47] 875,907 - - Jan 1 - Dec 31, 2016
Carat [32] 19,608,938 25,402 48,770 Jul 1 - Dec 31, 2016

Combined 1,000,058 (Latency)
2,819,748 (Energy) 1,241 243 Jul 1 - Dec 31, 2016

guarantee improvements in retention as long as the performance
metrics are within reasonable levels.

• We derive critical points for popular applications and applica-
tion categories, demonstrating that the point where performance
has a significant effect varies depending on the level of perfor-
mance people are accustomed to, as well as the functionality and
category of the application.

• We further explain our findings through a model that predicts the
extent that performance affects retention. Our model achieves
an overall error of 1.4 percentage points (measured using Mean
Absolute Error MAE) of retention across all data.

2 DATASETS AND PREPARATION
We quantify the effect of performance-related variables on long-
term application usage by analyzing two large-scale crowdsensed
datasets. Our first dataset, NetRadar [47], contains information
about network performance at different locations, whereas the sec-
ond dataset, Carat [32], contains information about mobile appli-
cation usage and energy drain of applications.1 To analyze overall
impact of performance, we fuse the two datasets using coarse-
grained location and timezone information. While instrumenting a
single application to monitor both energy and latency is technically
feasible, in practice the functionalities for sampling network or en-
ergy differ significantly, which would make attracting sufficiently
large user base difficult. Indeed, network profilers are typically used
sporadically instead of continuous data collection. Continually col-
lecting network performance measures, on the other hand, would
significantly increase energy overhead from sampling and thus be
contrary to the original purpose of energy-awareness apps.

After combining the datasets, we select those countries with
highest amounts of data for our analysis. In the intersection of the
two datasets, 91% of data is from Finland and USA, and 93% of the
USA data is from Eastern USA. This is mainly due to demographics
of the user populations of the mobile apps which were used to
collect measurements. As a result, we focus our analysis in Finland
and USA (EST - Eastern Standard Time). In the remainder of the
paper we use EST-USA to refer to the measurements collected from
USA that are included in our analysis. The datasets considered in
our study are summarized in Table 1.

2.1 Network Latency
Latency directly influences the response time of applications and
consequently has a major impact on the observed performance.
Several application categories, such as on-line gaming and web
conferencing [49], require low latency while for many others it can

1The datasets are available through separate license agreements. More information
can be found at http://carat.cs.helsinki.fi and http://www.netradar.com/.
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cause frustration even if it is not critical for running the app [11, 18].
For these reasons, we consider latency as a performance - related
parameter in our experiments. As source of latency data we con-
sider data collected through NetRadar, a mobile app designed for
end-users to help diagnose network conditions [47]. The data con-
sidered in our analysis consists of samples collected during cellular
network connectivity and contain timestamp, average RTT latency
calculated during a 5 second window interval, mobile network in-
formation in the form of mobile country code (MCC) and mobile
network code (MNC), and GPS location. We restrict our analysis
on cellular network connectivity as Wi-Fi has higher bandwidth
than cellular technologies and as its performance has less variation
overall [16, 17]. Another reason to limit on cellular networks is
that this guarantees our analysis to capture a broad range of usage
contexts and higher spectrum of mobility patterns.

Figure 1a compares the latency distributions of Finland and
EST-USA in the NetRadar dataset. The two locations have distinct
latency distributions with Finland having lower expected latency
than EST-USA (median 36ms vs. 66ms). The overall variation within
Finland is several orders of magnitude smaller with the majority of
values being within 45ms. For EST-USA, latency is mostly in the
range between 40 to 100ms, but we can observe smaller peaks at
around 140ms and even at 200ms. While the values of the distri-
butions differ, the shape of the two distributions is similar with
both being long-tailed and skewed towards lower values. To put
the values into context, most latencies for Finland are below 70ms
which is within LTE network range. For EST-USA, the majority of
values is within LTE range, but we can also observe values over
100ms which are likely to correspond to 3G connectivity - or even
2G at the end of the tail. This would suggest there are differences
in network infrastructure, or mobile subscriptions, within the two
locations. These differences in latency distributions, and charac-
teristics of the underlying network infrastructure motivate us to
consider the two locations separately in our analysis.

2.2 Energy Consumption
Our second performance factor, energy, has been shown to be an
active source of frustration and a cognitive burden as users actively
seek to prolong their battery lifetime [6, 38, 39]. As source of en-
ergy consumption measurements we consider Carat [32], a popular
mobile energy-awareness application. Carat samples the device
whenever battery level changes. Each sample contains current bat-
tery level, timestamp, list of running applications and additional
attributes, such as device uptime and battery state.

As unit of analysis we consider energy rates which correspond to
the relative change in battery in a given time interval. Formally, let
∆b denote change in battery between successive samples, and let
∆t denote the difference in timestamps. Energy rate is then defined
as the mean change in battery over the interval, i.e., e = ∆b/∆t .
We only consider samples where rate is positive (negative rate
indicates charging), battery state is not charging (AC or USB), and
device uptime has increased from last sample (device has not been
turned off in between). We restrict our analysis to samples collected
from Android devices as information about running applications
cannot be accessed on other platforms and because the sampling
granularity on Android devices is better than on iOS devices.
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Figure 1: Comparison of latency and energy rate distribu-
tions between Finland and Eastern USA.
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Figure 2: App category use profile differs between locations.

To study energy consumption of application a, we take all rates
ea containing a in the list of currently running apps and calculate
the mean rate ea for the application. Since energy consumption fluc-
tuates due to environmental variables (e.g., Wi-Fi and strength of
cellular signal) and specific system settings (e.g., screen brightness
or use of location tracking), and other currently running applica-
tions, we represent energy consumption using the 95% standard
error of the mean (SEM) confidence interval [32] given by

ea,ranдe = ea ± h · σa√
na
, (1)

where h = 1.96 is the confidence interval coefficient, σa is the
standard deviation, and na is the number of samples containing a.

Figure 1b compares energy consumption distributions of Finland
and EST-USA. Compared to latency, the distributions are closer to
each other (mean rate 0.0056 for Finland cf. 0.0051 for EST-USA)
and have similar variance, with 44% and 45% of apps exceeding
the average in Finland and EST-USA, respectively. To put these
values into context, the means correspond to around 5 battery life
while most apps are in the range of 5-9 hours. Note that Carat flags
applications with very heavy energy drain as hogs and recommends
the user to remove them [32]. For this reason applications with
very low expected battery life are rare in the dataset.

While the two locations have similar energy consumption distri-
butions, they differ in terms of application usage patterns. This is
illustrated in Figure 2, which shows the usage frequency of each
category for both locations. EST-USA has higher overall applica-
tion usage, and the two locations differ in terms of the relative
importance of application categories. In our analysis, we separately
consider the moderating effect of application category. Motivated
by these differences in application category use, we analyze also
energy separately across the two locations.
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2.3 Retention Rate
The main focus of our work is on analyzing and quantifying how
performance related factors affect long-term user behavior. As mea-
sure of user behavior we consider n day retention rate, which is
the fraction of users continuing to use an app n days since first
use. Retention is widely used to measure the success of apps as
higher retention corresponds to higher adoption and level of en-
gagement [46]. As source of retention information we use the list
of running applications collected by Carat. The list of applications
contains all applications running on the device, including those
related with the operating system and those pre-installed by the
manufacturer. To ensure our analysis focuses on actual usage, we
filter the applications by (i) removing all apps for which no category
information is found on Google Play; and (ii) removing pre-loaded
applications that have not been seen on the foreground, such as
Google Exchange Services (com.google.android.exchange).

To estimate retention, let dua denote the number of days between
first and last use of an application a by user u in the Carat data. To
ensure retention is not influenced by the data collection period, we
only consider cases where we have measurements for 7 days before
first use, and 7 days after last use. Similarly, to ensure the estimated
retention patterns are sufficiently robust, we only consider users
that have at least 14 days of data, and apps that have at least 10
users that have used them for more than a day. The n day retention
rate of a, denoted ran , is then given by the fraction of users whose
retention time dua is higher than n, i.e.,

ran =
#Ua,n
#Ua

· 100 (2)

whereUa is the set of users to use a, andUa,n ⊆ Ua is the subset of
users for whom dua ≥ n. Note that retention rate is cumulative so a
user with da = 3 days also contributes to day 1 and 2 retention.

Table 2 compares the average retention over the first 7 days
across the two locations for the 5 most popular applications. From
the table we can observe the two locations to have distinct retention
patterns with Finland having higher mean retention than EST-USA,
but also much higher variation. To highlight differences in usage
across the locations, as part of the table, we have also included
the number of users, number of samples and summary statistics of
the performance variables for the apps. While the number of users
tends to be lower in EST-USA than in Finland, we can observe that
the number of samples to characterize each performance variable is
enough for both locations. In terms of retention behavior, one of the
applications, Dropbox, has lower latency but higher energy drain in
Finland than in EST-USA, which suggests that it is used in differing
situations. These differences in retention and usage patterns further
serve to illustrate the need to consider the measurements separately.

2.4 Combining Datasets
Different performance factors are typically closely linked with each
other. For example, latency results in energy drain, and networking
technology has amajor impact on energy use [26, 37, 47]. To analyze
and quantify the combined effect of performance factors, we thus
need to combine measurements in the two datasets. We perform
the combination using hot deck multiple imputation, a widely used
method for aligning two datasets that overlap only partially [2, 30,
41]. The idea in hot deck imputation is to fill in missing values

(in the combined set) with items that are similar (in the individual
data sets). In our analysis we consider the combined dataset as our
primary source of analysis as this ensures the usage contexts where
performance is captured are comparable across the datasets.
Data Fusion: We combine the datasets using a combination of
timestamp, and coarse grained location information given by Mo-
bile Country Code (MCC), Mobile Network Code (MNC) and reverse
geocoding of the GPS (time zone from the cellular coverage). The
sampling periods of the datasets differ and hence we first need
to align them temporally. We perform the alignment by creating
hourly bins and mapping each sample in NetRadar and Carat to
the closest bin. Next, we match the (MCC, MNC, Time zone) tuples
across the two datasets in each bin and calculate hourly latency
values for a given location as medians of all matching measure-
ments. The measurements in the combined dataset are summarized
in Table 1. In total, the combined dataset comprises 243 applications
and 1,241 users from July to December, 2016. This is translated in
terms of samples to 1, 000, 058 measurements for analyzing latency,
and 2, 819, 748 measurements for analyzing energy. The reason for
differing sample counts for energy and latency is that we perform
the matching separately for each application and category consid-
ered in our analysis. As the energy dataset is originally larger, this
results in a higher total sample count of energy.
Validity:We demonstrate the validity of the combined dataset by
comparing statistical characteristics extracted from the combined
data against those extracted from the individual datasets. First,
we compare mean latency and energy of the individual datasets
to those of the combined set. The mean and standard deviation
values for both latency (Finland, mean = 38.27, SD = 12.31; EST-
USA, mean = 87.45, SD = 61.34; combined, Finland mean = 36.7,
SD = 6.6; EST-USA, mean = 84.4, SD = 53.4) and energy (Finland,
mean = 0.0053, SD = 0.012; EST-USA, mean = 0.0059, SD = 0.016;
combined, Finland mean = 0.0056, SD = 0.003; EST-USA, mean
= 0.0051, SD = 0.0023) are closely aligned, suggesting that the
statistical characteristics of the individual datasets are preserved in
the fusion. Second, we compare the sample distributions between
the combined and individual datasets using Kolmogorov-Smirnov
distribution tests. No statistically significant differences were found
(latency: Finland KS = 0.104; EST-US KS = 0.096, p > 0.05; energy:
Finland KS = 0.04; EST-US KS = 0.05, p > 0.05).
Representativeness:We assess whether the energy distribution
of Eastern USA is representative of USA as a whole by compar-
ing energy distributions of all samples from USA against those
matched to Eastern USA based on timezone information. Again, no
significant differences were found (KS = 0.06, p > 0.05).

2.5 Privacy
We consider only aggregate-level data derived from anonymous
user records. We consider country level granularity due to privacy
reasons and the need for additional application permissions for
collecting finer grained location information of individual users.
For Carat, the privacy protection mechanisms are detailed in [32]
and for NetRadar in [47]. Users of both apps are informed about
the collected data and consent from their devices.
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Table 2:Retention rate variation, energy and latency, and influence of appperformance in retention for top 5 categories (a) and applications (b)
together with statistical analysis results of the importance of performance on retention. Darker colors reflect statistical significance (p ≤ 0.05).

(a) Retention(r) Energy Latency Significance: Energy Significance: Latency
Category Location Mean St.dev. Users Mean St.dev. Samples Median Samples Day 1 Day 7 Day 15 Day 1 Day 7 Day 15
Communication (C) Finland 94.1 2.3 993 0.0049 0.0014 3,184,554 34 1,197,260 0.028 0.005 0.006 0.003 0.685 0.921

EST-USA 78.1 7.5 83 0.0052 0.0010 474,340 79 4,044 0.019 0.026 0.244 0.313 0.001 0.053
Productivity (P) Finland 90.1 3.8 719 0.0049 0.0014 1,726,808 37 622,071 0.654 0.600 0.378 0.033 0.001 0.002

EST-USA 78.1 7.5 63 0.0048 0.0018 328,787 79 1,654 0.263 0.636 0.756 3.0E-04 1.0E-04 0.584
Tools (T) Finland 87.5 4.8 697 0.0059 9.0E-04 1,614,639 36 606,531 3.0E-04 0.001 1.0E-04 2.0E-04 1.0E-05 0.007

EST-USA 76.8 8.1 73 0.0050 0.0015 376,269 89 2,585 0.059 0.005 5.0E-04 0.499 0.029 0.016
Social (S) Finland 88.7 4.3 684 0.0056 0.0016 1,367,938 34 53,2110 0.223 0.284 0.027 0.010 0.246 0.0669

EST-USA 76.4 8 68 0.0051 0.0011 294,461 68 2,779 2.0E-04 4.0E-05 0.003 0.0612 0.022 0.099
Music (M) Finland 79.7 7.2 552 0.0051 0.0020 292,685 35 118,019 0.004 0.050 0.304 0.803 0.288 5.0E-04

EST-USA 64.4 12.3 42 0.0037 0.0011 118,454 101 885 0.027 0.389 0.908 0.244 0.007 0.013
(b) Retention(r) Energy Latency Significance: Energy Significance: Latency
App Location Mean St.dev. Users Mean St.dev. Samples Median Samples Day 1 Day 7 Day 15 Day 1 Day 7 Day 15
Whatsapp (C) Finland 98.3 0.8 815 0.0047 0.0014 980,097 35 405,203 0.028 0.040 0.011 0.007 0.066 0.109

EST-USA 66.5 13.8 25 0.0050 3.0E-04 45,281 79 588 0.315 0.194 0.724 0.460 0.293 0.125
Facebook (C) Finland 98 0.9 617 0.0039 0.0018 1,109,947 32 389,834 0.027 0.107 0.007 0.203 0.638 0.381
messenger EST-USA 95 2.1 55 0.0052 0.0016 239,841 108 2,178 0.050 0.017 0.011 0.186 0.096 0.158
Facebook (S) Finland 96.9 1.5 565 0.0036 0.0021 955,718 37 345,073 0.239 0.431 0.022 0.009 0.001 0.002
app. EST-USA 86.7 5.4 59 0.0060 1.0E-04 225,832 77 1897 0.013 0.004 0.009 0.035 0.050 0.010
Dropbox (P) Finland 94 2.6 428 0.0056 0.0019 606,958 40 204,430 0.665 0.478 0.792 0.039 0.004 1.0E-04

EST-USA 78.1 8.8 24 0.0038 1.0E-04 102,060 79 316 0.377 0.216 0.134 0.105 0.074 0.313
Twitter (N) Finland 92.7 3.2 323 0.0042 0.0017 192,232 37 71,067 0.089 0.040 0.147 0.231 0.065 0.232

EST-USA 67.8 13.8 26 0.0045 0.0012 38,192 70 314 0.471 0.033 0.077 0.030 0.041 0.198

3 QUANTIFYING EFFECT OF PERFORMANCE
ON RETENTION

In this section, we quantify, for the first time, the impact of perfor-
mance related factors on long-term user behavior, as reflected by
retention. We focus on latency and energy as the main performance
related variables and analyze them using the Netradar and Carat
datasets described in the previous section (see Sections 2.1 and 2.2).
We first consider the impact of latency and energy individually,
showing they indeed have a significant influence on retention. We
proceed to quantify the point where the effect of performance be-
comes significant, demonstrating that we can identify a critical
point beyond with performance has a clear effect. We also demon-
strate that the effects of energy and latency are moderated by user
expectations and by application functionality. We end the section
by analyzing the combined effect of latency and energy, showing
them to have a complex relationship where neither variable alone
is capable of explaining retention.

3.1 Performance Influences Retention
We begin our analysis by demonstrating and quantifying the overall
influence of latency and energy as individual performance-related
variables on retention, analyzing their combined effect in Sec. 3.6.
Both latency and energy have been shown to affect user experi-
ence [27], and hence to have an indirect effect on long term user
behavior. However, whether they have a direct effect on retention
has not been previously established. We assess overall effect using
Kruskal-Wallis test and considering the five most popular appli-
cation categories (Communication, Productivity, Tools, Music &
Audio, and Social) and applications (Dropbox, Facebook Messenger,
Whatsapp, Facebook, Twitter). For each day of the retention period
(1 − 15 days), we compare the mean performance of those that stop
using the application and those that retain it.

Table 2 shows results of statistical tests at both category-level and
app-level together with corresponding retention and performance

Table 3: Retention rate difference of hiдh and low groups propor-
tions for app categories and apps: L: Latency, E: Energy; O: Overall,
C: Communications, P: Productivity, T: Tools, S: Social, M: Music, w:
Whatsapp, fm: Facebook Msg., fa: Facebook, d: Dropbox, t: Twitter.

Area, Factor O C P T S M w fm fa d t

Finland, L 63 67 58 26 65 67 10 84 30 57 45
Finland, E 69 63 78 50 67 63 50 43 69 78 51
EST-USA, L 24 32 10 18 25 10 10 10 10 10 31
EST-USA, E 52 10 64 25 11 29 10 10 10 10 10

values. From the results, we can observe that performance indeed
affects retention, but the effect is moderated by application category
and popularity of the app. We can also observe the effects to reflect
differing interaction patterns across application categories. For
example, messaging apps (Facebook messenger andWhatsapp) that
require users to wait for response are not influenced by latency but
energy drain has significant effect on their retention. On the other
hand, productivity apps, which tend to be used for shorter periods
of time, demonstrate significant effect for latency but not for energy.
Comparing effects across number of days, we can observe users to
have different levels of tolerance for poor performance depending
on application category. For example, Music apps show no effect
on latency at day 1, and even at day 7 they only show an effect in
Eastern USA where latency is higher than in Finland. However, at
day 15 latency has a significant effect for both locations. Similarly,
effects of energy are higher for later days for both Facebook and
Twitter, suggesting users are willing to tolerate more performance
issues with them – potentially because other factors, such as user
experience, are more important during the first few days.

3.2 Level of "Critical Point" in Performance
Previous section demonstrated that both latency and energy have
an overall effect on retention. We next analyze the relationship
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between performance related variables and retention in more detail,
showing that we can identify clear points where decrease in perfor-
mance results in lower retention. We refer to these points as critical
points of performance. Conversely, we demonstrate that improving
performance beyond this point has no influence on retention.

We carry out the analysis by splitting users into two performance
groups using a thresholdv on the two performance factor, and com-
pare the retention in the two groups using a test of proportions (i.e.,
a two-tailed z-test). We iterate over different values ofv considering
values between the 10th and 90th percentile identifying the range
of values where retention is significantly different. We omit the
lowest and highest 10 percentiles as these resulted in the smaller
group having insufficient data for assessing statistical significance.
In the following we refer to the two user groups as high and low
depending on which side of v the average performance of users in
the corresponding group is.

Table 3 shows the percentile of latency and energy after which
the test of proportions indicates difference in retention rate between
the low and high groups to be statistically significant (p < 0.05).
We show percentiles instead of exact performance values due to
the fact that the values vary across categories and applications
depending on which samples include the category or application.
From the results we can see clear differences in the points where
performance start to influence retention. Mirroring the results of
previous section, we can see that both the category and applica-
tion moderate the results Besides the category and application,
we can also observe location to heavily moderate the level where
performance starts to influence retention. In Finland, significant
differences start to occur only at higher percentiles, whereas in
Eastern USA significances start to appear earlier. As an example,
latency higher than 60th percentile has significant effect of reten-
tion across all application categories in Finland, whereas in USA
the effect is significant already from 30th percentile onwards. Simi-
larly, energy starts to have an effect at much earlier percentile in
Eastern USA than in Finland. For latency, this difference can be
partially explained by differences in network infrastructure, with
users in Finland having lower latency and less variability than users
in Eastern USA. However, for energy this is not the case with the
distributions being similar across the two locations. Consequently,
this suggests that users at different locations either assign different
importance to energy or have different levels of tolerance.

3.3 Difference in the Effect of Performance
In the previous sectionwe showed there to be a critical point beyond
which performance starts to have a significant effect on retention.
We next analyze the extent at which individual performance factors
start to have a significant effect on retention during app usage.

To perform this analysis, we first calculate the difference in re-
tention percentage between the high and low groups. Figure 3
shows the results. We identify in the figure the percentile where
the changes first become significant and can start to be quantified
(critical point depicted as vertical line). Points where the differ-
ence is negative correspond to cases where retention drops in line
with performance degradation. From the figure we can observe
the strength of significance to vary considerably across locations,
categories, and applications. We also can see that, depending on the

Table 4: Critical Point and ∆P for top 5 categories and apps.

Critical Point, EST-US Critical Point, Fin
Category Energ. Lat. ∆P Energ. Lat. ∆P

Communication 10 27 -17 64 67 -3
Productivity N/A 10 N/A 79 58 21
Tools 24 28 -4 50 23 27
Social 11 16 -5 67 58 93
Music 29 10 19 64 67 -3

App Energ. Lat. ∆P Energ. Lat. ∆P

Whatsapp N/A 10 N/A 74 11 63
Facebook Msg. 10 10 0 84 N/A N/A
Facebook App. 19 10 9 87 30 57
Dropbox 46 10 36 80 57 23
Twitter 70 31 39 N/A 45 N/A

category, the percentile at which performance differences become
significant varies between energy and latency, with one factor typ-
ically having a significant effect much earlier than the other. We
also can observe that for a few cases, the performance factor does
not seem to influence the retention (gray background). Most of
these cases correspond to communications apps, such as Whatsapp
and Facebook messenger, which are commonly used within social
circles and whose usage is moderated by level of social activity [44].
Even if the performance of these apps would be suboptimal, replac-
ing them would require the user’s entire social circle to migrate to
a new service, which is unlikely to happen rapidly.

To further analyze these differences in significance, Figure 4
compares the difference in critical points (CP) between energy and
latency, represented as difference in percentiles ∆P . In the Figure
we consider the collection of all applications across all categories
for both, Finland and Eastern USA. Interestingly, when the effect of
latency is perceived first, the area of ∆P covers a wider percentile
range than in the opposite case. Indeed, when latency is the first
to have an effect, energy becomes significant only at much later
percentages. This relation is explored in Table 4 for all categories
and apps considered in our analysis. We analyze this relation by
calculating a (Kendall) correlation between CPs for both factors.
We observe a positive correlation between CPs for both categories
(0.51, p = 0.04) and apps (0.62, p = 0.05). From the table, we see
indeed greater difference between energy and latency when latency
is perceived first to decrease performance. We can observe that this
relation is three-times as significant for apps than for categories.
Intuitively, energy consumption of a particular application may
take a long time for the user to discover, while network conditions
can change rapidly within seconds and minutes. Therefore bad
latency can be discovered much quicker than high energy con-
sumption. Higher latency may also affect the energy consumption
of the device, which can result in retention decreasing faster. Be-
cause latency is a shorter-term phenomenon than battery life, the
decreased retention is easily attributed to latency instead of both
energy consumption and latency.

3.4 Effects on Highly-Rated Apps
Besides performance, app functionality and user interface design
can influence user satisfaction and ultimately retention. To demon-
strate that effects of performance on retention are robust across
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Figure 3: Average retention difference for hiдh and low groups. (a), (b) Latency, (c), (d) Energy. Categories: O: Overall, C: Communications, P:
Productivity, T: Tools, S: Social, M: Music; Apps: o: overall, w: Whatsapp, fm: Facebook Msg., fa: Facebook App., d: Dropbox, t: Twitter
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Figure 4: Overall average retention difference for hiдh and low
groups combining latency and energy "critical point" thresholds.

other factors, we analyze 10 applications that are not among the top
apps of their categories but have high user satisfaction. As proxy for
user satisfaction, we consider the star rating of the apps on Google
Play store. As these applications have predominantly received high
ratings, users are likely satisfied with the functionalities and user
interface design of the apps. We omit most popular applications to
avoid possible popularity biases influencing the retention of these
apps. For our selection of apps, we also ensured that any negative
ratings would not be caused by differences in functionality between
commercial and free versions of the app, e.g., due to high amount
of advertisement or restricted functionality.

Table 5 shows results together with the applications and their rat-
ings. We applied the same method to calculate the critical point(CP)
and difference (DeltaP ) (see Sec. 3.2). Latency has higher impact
than energy for apps that highly depend on displaying on-line con-
tent, such as Viaplay. Retention of apps used for personalization,
such as Zedge, is more influenced by energy variations. The criti-
cal points behave similarly for apps with similar functionality. For
example, for both eBay and Aliexpress the critical point on latency
is low whereas users are more tolerant to energy. As both applica-
tions focus on online shopping are used only intermittently, the
importance of latency is understandable. However, for utility apps,
such as AVG and Avast, no clear patterns can be identified. Indeed,
Avast is more sensitive to latency whereas AVG is more sensitive
to energy. In summary, our results show that even for applications
with high user ratings, clear critical points can be identified, sug-
gesting that performance indeed has a major influence on their
retention. Our analysis also suggests that the relative importance
of latency and energy is dependent on the functionality of the app.

Table 5: Effect of performance in case study apps. r: retention, CP:
Critical Point ,E: Energy, L: Latency; App: ag: AVG antivirus, aa:
Avast antivirus, ac: Avast cleanup, f: Firefox, ae: Aliexpress, e: Ebay,
v: Viaplay, h: Here WeGo, s: Sports tracker, z: Zedge; Categories:
T: Tools, C: Communication, SH: Shopping, E: Entertainment, MA:
Maps, H: Health, PE: Personalization.

Categ App Google ⋆ r CP,E CP,L ∆P

T ag 4.5 90.2 10 22 -12

T aa 4.5 95.2 33 14 19

T ac 4.5 90 21 12 9

C f 4.4 84.1 37 90 -53

SH ae 4.6 88.2 71 31 40

SH e 4.4 79.2 49 10 39

E v 4.0 84.3 58 17 41

MA h 4.4 71.2 50 28 22

H s 4.5 70.6 56 21 35

PE z 4.6 92 10 73 -63

∆P , graph
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3.5 Other Factors
To further demonstrate the robustness of our findings, we next
demonstrate that the effect of performance is robust across other
factors influencing user perceptions and retention.
Data Freshness: We repeated our analysis for effect of energy
considering a snapshot of Carat data collected between May 2018
and October 2018. We consider the same five categories and appli-
cations as in Sec. 3.1. The mean retention of all categories and apps
decreased compared to 2016 with particularly Tools and Dropbox
witnessing steep decline. The critical point shifted to a higher per-
centile for communication (9 percentiles) and music and audio (5
percentiles), but decreased for the other three categories (percentile
differences: 11 for productivity, 5 for social, 40 for tools). For the in-
dividual apps, the critical point shifted to a lower percentile for four
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apps. The sole exception was Twitter, for which we were unable
to obtain a clear critical point earlier. In the 2018 data, the critical
point is at 66th percentile, which is in line with the other apps. The
results thus suggest that the effect of energy on retention is robust
over time. In fact our results suggest it has increased in importance
since most critical points have shifted to lower percentiles.
Robustness against Energy Saving Mechanisms: To rule out
potential biases resulting from the fact that our application data
was collected using an energy-awareness app, we repeated our anal-
ysis on all applications with energy rates lower than the average
energy rate across all apps. For these apps neither Carat nor energy-
efficiency mechanisms of the operating system trigger warnings,
suggesting the effects of performance are direct result of user per-
ceptions while using the app. The overall effect of energy persists.
However, since their overall energy usage is low compared to other
apps, critical points shift on average to a 17 percentile higher point.

3.6 Combined Effect of Latency and Energy
We next assess the combined effect of energy and latency by per-
forming a cost-benefit analysis that looks at the combined effect
on retention when the importance of individual factors is varied.
To perform the analysis, we define a linear cost function that de-
termines the overall effect of the two performance variables as a
weighted combination of their individual effect. We consider differ-
ent relative weightings to see how the importance of individual fac-
tors affects retention. Formally, let rl and re denote the differences
in retention between the hiдh and low groups (See Section 3.2), and
lw and ew the weights of latency and energy, respectively. Given
energy e and l , we estimate retention for a given performance level,
denoted R(e, l), using

R(e, l) = re · ew + rl · lw
ew + lw

. (3)

Figure 5 shows the results of our analysis as series of heatmaps.
Each heatmap shows the combined effect of latency (y-axis) and
energy (x-axis) on retention for different percentiles (10-90) and
different weights lw and ew . In the figure, lighter colors reflect
retention improvement and darker ones worsened retention. The
scale is in percentage units of retention.

From the figure we can observe the effect of performance factors
to be non-linear with neither variable clearly dominating the other.
When latency is twice as important as energy, the effect on retention
is slightly higher than in the opposite case. However, even in this
case there is a lot of variation and a highly complex relationship
between the two performance variables.

4 MODELING RETENTION
Having quantified the effect of performance on retention, we next
develop a mode for predicting the degree to which performance affects
retention. Themodel is important to estimate how users will respond
to apps during their evolving life span, e.g., different releases with
extra processing and network functionality.
Model specification: In our general model, app retention is in-
fluenced by M factors Fi , |1 <= i <= M . Each factor Fi has a per-
formance threshold ϵi , whose changes affect the overall retention.
Thus, ϵi depicts the starting point to quantify how incremental
poor performance of a factor impacts app retention. By analyzing
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Figure 5: Retention behaviour for performance-related fac-
tor given different weights of latency lw and energy ew .

changes in performance relative to ϵi , it is possible to estimate the
amount of influence that a performance level has on retention. We
estimate retention using a step function as depicted in equation 4,
where x is the performance value for a factor, e.g., 30ms for latency;
and дi (x) is an exponential probability function that approximates
the retention rate of the factor given expected performance.

Ri (x) =
{
0, x ≤ ϵi

дi (x), x > ϵi
(4)

We then quantify the overall impact on retention by aggregating
the influence of each individual factor. The overall impact of app
performance on retention, R, is determined by the factor Fi ∈ M
whose influence on retention is highest, i.e. R = max(Ri ). The
expected retention rate is then calculated from the uninfluenced
retention rate curve r (x) by division as follows r ′(x) = r (x)/R
Experimental Setup:We assess performance of our model by per-
forming a 80/20 split for each country (Baseline). We also perform a
cross-country validation between Finland and EST-USA subsets by
training our model with data from Finland and predicting EST-USA
retention based on expected performance, and vice versa. Following
same approach, we also analyze the effect of mixing data from Fin-
land and EST-USA (Mixed) into a single subset to predict retention.
We then compare the performance of our model when predicting
retention based on combined factors.
Individual factor prediction: The top part of Table 6 shows the
results of the baseline. We can observe that our model indeed is
able to predict retention values with lower error rate, specially
for Finland as it is the country that has most of the data for our
analysis. We then explore Cross-country validation. The Cross-
country sections of Table 6 shows the results for both latency and
energy. From the result, we can observe that the error rate increases
slightly compared to the country baseline. Ourmodel has an average
overall prediction MAE of 2.25, which depicts an overhead of 46%
when compared with the baseline. However, we can observe a small
error window in retention based expected latency for (EST-USA
→ Finland), in this case, the error is reduced in 5%. The slightly
overhead is due to the fact that critical points in which performance
starts to be perceived by users is different in each country. For
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Table 6: MAE for categories (model data → predicted), O: Overall,
C: Communications, M: Music, P: Productivity, S: Social, T: Tools

Retention estimation O C M P S T
(Baseline) Latency
Finland (80%)→ (20%) 0.91 0.54 1.67 0.98 0.83 1.72
EST-USA (80%)→(20%) 1.90 3.33 10.03 2.86 3.15 2.13
(Baseline) Battery
Finland (80%)→ (20%) 0.63 0.30 0.75 0.73 1.12 1.08
EST-USA (80%)→(20%) 1.51 2.49 3.87 1.69 3.70 2.77
(Cross-country) Latency
Finland→ EST-USA 3.58 5.00 31.99 3.76 7.13 2.29
EST-USA→ Finland 1.66 6.49 37.06 3.39 8.15 2.01
(Cross-country) Battery
Finland→ EST-USA 2.29 5.84 4.98 2.21 15.49 4.61
EST-USA→ Finland 1.53 1.30 5.67 2.18 21.29 4.18
(Mixed Finland + EST-USA)
Latency (80%)→(20%) 0.82 0.50 1.10 0.85 0.61 1.49
Battery (80%)→(20%) 0.28 0.27 0.83 0.56 1.11 1.04
(Mixed Finland + EST-USA)
Combined Latency+
Battery (80%)→(20%) 0.29 0.45 0.97 0.35 0.47 0.51

instance, when training our model with latency data from Finland
to predict EST-USA, we can observe that the observed latency in
Finland is between 30 − 45 ms while the ground truth of EST-
USA consists of values around 51 − 147 ms. Clearly, the accuracy
prediction of our model is reduced due to this issue.

On the other hand, when analyzing a specific application cate-
gory, we observe a higher error rate, particularly when trying to
generalize the data from EST-USA to Finland. The errors for cate-
gories are influenced by the number of samples and applications
included in the subset that is used to train the model (see Table 2).
Additionally, the dominant applications of each category can differ
in the two locations. For instance, in the case of the Music category,
most of the collected data for Finland is from the Spotify app, while
in the case of EST-USA, most of the data is from the Pandora Music
app (not available for installation in Finland), which explains the
higher rate of error for the Music category. Similarly, the Tools
category contains significant variation across the locations which
explains worse predictive performance. However, for categories
with similar usage patterns the results are well aligned across the
two countries, like in the case of the Productivity category.

We then proceed to analyze the performance of our model when
mixing the data of Finland and EST-USA to predict retention. The
bottom of Table 6 shows the results. We can observe that our model
improves significantly when mixing data from both countries. In-
deed, we can observe very accurate predictions withmarginal errors
up to 1.49 for all the categories and for both factors.
Combined factor prediction:We analyze the effect on retention
when multiple performance factors are taken into consideration.
Since the accuracy of the prediction clearly is improved when mix-
ing the data of both countries, we perform a 80/20 validation using
both mixed datasets for both energy and latency. In the combined
effect, the value of retention is constrained by the factor that in-
fluences the performance the most. In other words, the factor that
is perceived first by users. Table 6 also shows the results for the
combined prediction. Compared to the results of individual factors

(Baseline, Cross-country and Mixed), we can observe an improve-
ment in overall retention prediction. We can observe a maximum
marginal error of 0.51 for all the categories, which depicts around a
50% reduction in error when compared with our mixed model that
performs the best in the individual factor analysis.

5 DISCUSSION
On data validity: The Carat application used as source of energy
measurements records samples whenever the battery level changes,
and may not be able to record data when the phone is in sleep
mode, depending on the operating system version. Therefore, the
data we see here is biased towards active use, and the resulting
battery life values represent the remaining time for actively us-
ing the device with a given application running 100% of the time.
In the dataset, the most common e (around 0.005) represents an
active battery life of 5 hours. To mitigate these biases, we ensure
selecting the location and apps with the most samples to foster
better characterization of performance factors. Similar considera-
tions apply to the NetRadar dataset used as source of latency data,
which is predominantly collecting data whenever users explicitly
request network performance assessment or periodically at user
configurable intervals (between 1 and 120 minutes).
Data Quantity: Our validation of the retention prediction model
suggests that number of training samples is critical for ensuring
high quality predictions. In the case of Finland, data from several
hundreds of users was obtained while for US only few tens of users
were retained after data fusion. Our data was collected from two
mobile applications that have been in long-term usage worldwide,
suggesting that crowdsensing is indeed essential for capturing suffi-
cient quantity of measurements. However, our results also highlight
the difficulties whenmultiple crowdsensing datasets need to be com-
bined in that their intersection might be small, limiting the power
of statistical analyses carried on it.
Fusion of Large-Scale Passive Data: We combined passive mea-
surements from NetRadar and Carat datasets in our analysis. While
we ensured that statistically the dataset combination is representa-
tive by analyzing and estimating similarity metrics of each dataset
individually, we experienced a high reduction of available samples
in the fused dataset, mainly due to limited coverage of USA in the
NetRadar dataset. However, data fusion is necessary to ensure the
quality of contexts that we study. For example, the location, time,
operators and communication technologies, etc, must be matched
between the records of the two datasets. In other words, there is a
trade-off between data data size and data quality. In addition, the
individual nature of each dataset (NetRadar - infrastructure, Carat -
App usage) also acted as a filter in the combination process, as extra
manipulation was required to match attributes in both datasets,
e.g., reverse geocoding in the GPS of NetRadar to match the time-
zones of Carat data records. We were able to model the combined
relation that energy and latency have on retention by merging the
two datasets. Our methodology also provided insights about the
relationship between performance factors that was initially hidden,
but revealed when the different sources were combined, similar
to recent observations [13] . Specifically, we observe that when
latency starts affecting retention, large variations in energy effi-
ciency are possible before retention is affected further. However,
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when battery life issues cause lower retention, latency can vary
less before retention degrades further.
Energy efficiency models can influence retention: Extending
battery life for smartphones is a primary research topic in academy
and industry. Mobile devices are equipped with awareness mech-
anisms that monitor energy consumption based on applications
usage and resources utilization. Smartphones then can decide based
on this information whether to stop, outsource, or moderate the
execution of tasks to save energy. While these mechanisms indeed
induce gains in energy as the computation of tasks are reduced,
they can foster a collateral damage in the perception that users have
towards apps. For instance, iOS devices implement a low power
mode mechanism that reduces computation of applications in the
background to save energy [43] . This suggests that app perfor-
mance is reduced and augmented dynamically based on application
usage. This can potentially affect retention as the responsiveness of
applications is degraded. By using our model in conjunction with
energy efficiency models, it is possible to equip smartphones with
a smarter mechanism that can save energy without degrading per-
formance to an extent in which it is not tolerable to users anymore.
As shown in Sec. 3.5, both the overall effect and existence of critical
points are robust against effects of these mechanisms.
Influence of performance depends on usage patterns: Appli-
cation usage patterns can be very different. For example, Dropbox
is a productivity application which mostly runs on the background
synchronizing photos. When the user interacts with it, they do so
to find or share a file, using it infrequently and for a short period of
time, which results in smaller influence of performance degradation.
On the other hand, Facebook and Twitter apps provide a continuous
feed of updates enabling users to spend hours reading, watching,
and interacting with content. Not only does this presenting a larger
window of opportunity for performance issues to manifest, but this
highlights how different usage patterns are likely to influence the
importance of different performance factors.

6 RELATEDWORK
Mobile App Quality: Previous research on mobile app quality
has focused on exploring user perception of mobile apps. Common
techniques include usability studies [42], contextual inquiries [19],
sensor data logging [33], interviews [27], and text mining on user
reviews [23]. These studies generally focus on the user’s perception
instead of factors that affect it. Ickin et al. [27] list bugs, performance
issues, and poor match with user needs as factors that influence
quality perceptions while Chen et al. [12] show that app ratings are
key driver for app downloads. While these factors affect app percep-
tions, studies do not explain how these perceptions translate into
changes in behaviour. Our research addresses this gap with existing
studies, focusing specifically on the effect of app performance.
Mobile App Performance: There has also been research looking
at modeling application performance through the steps involved
by the user’s task [40] and the response time perceived by the user.
Most relevant aspects causing bottlenecks in app performance have
been shown to be network communication and processing costs.
There have been research efforts to study network performance
metrics and relate them with user satisfaction [1, 24]. The general

idea is to capture features, such as bitrate, jitter and delay metrics,
and to use machine learning to predict user response times [5, 8,
31]. Approaches for dynamic resource augmentation have been
proposed to alleviate bottlenecks, relying solely on the device’s
resources [45] or remote infrastructure [21]. While performance
has been modeled and improved, the level at which it starts to
influence user perceptions has not been quantified previously.
Effect of Energy: Human interface studies have shown that 80%
of mobile users will take steps to improve their battery life [39].
Past work have termed unnecessarily high energy consumption in
applications as energy bugs [34] and identified their possible causes,
such as the environment or settings of the smartphone [37] and
programming problems [35]. Regardless of the cause, an app that
reduces battery life may end up getting uninstalled by users [3],
and possibly replaced by a different app. Many applications try
to improve energy consumption by controlling processes on the
device, or helping users identify energy hungry applications [32]
and raising the level of energy awareness among users [3].
Effect of Network Quality: Network quality has been studied
mainly through the influence of latency on user experience in desk-
top contexts and within specific application categories, e.g. online
gaming [11, 49], education and video streaming [29, 50]. Studies
on the former have shown that latency reduces session times, and
that users actively seek countermeasures to reduce latency. In ed-
ucation, latency has been a barrier for real-time interaction and
collaboration, e.g., in Second Life. These findings, however, do not
directly translate to mobile apps, since network quality can change
abruptly depending on the technology (WiFi, 3G, LTE) and traffic
conditions. Moreover, network quality also influences battery life,
raising the impact of network quality on users.

7 SUMMARY AND CONCLUSION
The present paper contributed by quantifying the influence of two
performance factors, latency and energy, on app retention. We find
poor performance to increase likelihood of app abandonment. How-
ever, the point at which the effect becomes significant depends on
what the user is accustomed to, with app category, device charac-
teristics and network characteristics having an influence. For exam-
ple, Finland has lower expected latency than USA thanks to faster
network infrastructure, and consequently user expectations differ
between the two countries. Conversely, we find that improving app
performance does not have any positive influence on retention as
long as performance is within reasonable performance standards.
Our results also indicate that latency and energy have a combined
effect on app retention, but in most cases the effect of latency is
perceived before energy. Lastly, we built a model that estimates
retention based on the expected performance of an application.
Performance validation considering cross-country performance
demonstrated good performance across all application categories.
However, this was moderated by application categories with those
categories with limited overlap suffering in performance.
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