
PROGRAMMING THE SMART HOME

Urs Bischoff, Vasughi Sundramoorthy, Gerd Kortuem

Lancaster University, Computing Department, UK

Keywords: Smart home, intelligent environment, pro-
grammable space, software engineering.

Abstract

A smart home is a house that is responsive to its inhabitants
and their actions by being aware of their context. Potential
applications for smart homes address economic and com-
fort aspects of living, or could provide unobtrusive support
for the elderly or disabled to promote independent living.
The basic building blocks of such a smart home is a com-
puting system consisting of distributed sensors and actua-
tors. Programming and maintaining such an infrastructure
is challenging because suitable programming abstractions
are currently missing. In this paper we introduce the no-
tion of programmable space that lets the application devel-
oper perceive the smart home as an integrated runtime envi-
ronment. This approach is implemented in a system called
RuleCaster. Applications are developed in a high-level rule-
based language. Our approach shows a notable simplifica-
tion of application development and maintenance. To verify
the utility of RuleCaster we use a scenario-based evaluation
method.

1 Introduction

Smart homes are an important area of research for build-
ing ambient intelligence and intelligent environments. A
smart home is a domestic environment in which we are sur-
rounded by interconnected technologies that are, more or
less, responsive to our presence and actions [8]. With the
advent of better sensors, tiny low-powered computers and
wireless communication, we are moving closer to realising
this vision of an unobtrusive pervasive computer assistant.
This area is interesting because we tend to spend more time
in our homes than in other environments.
Smart home applications can be divided into two broad
classes [2]. The first class is related to economic and com-
fort aspects of living. For example, window blinds auto-
matically adjust to satisfy the light and temperature require-
ments depending on the location and activities of the in-
habitants. The second class addresses independent living.
Assistive technology for supporting the daily lives of the
elderly is one example.
Regardless of the application the basic building block of
a smart home is a network consisting of a large number
of heterogeneous sensor and actuator nodes. These nodes
are small low-powered computers populated with sensors
and/or actuators that allow the computing system to inter-
act with the surrounding environment. As the technology

makes the creation of these smart environments feasible,
we must also consider the way we program and maintain
the underlying infrastructure.
A problem pointed out in [10] is that our experience in
building integrated environments is limited by the set of
concepts we know at the time of development; we are con-
stantly faced with better technology becoming available.
Unlike a mobile phone it is not possible to replace the smart
home every few months. As emphasised by Rodden and
Benford [16], living and work environments are also sub-
ject to continuous transformation; they are modified by the
people who inhabit them in a variety of ways, for a variety
of purposes and with different frequencies. This observa-
tion also has an effect on the requirements of a computing
infrastructure and its applications. As such, they are sub-
ject to similar changes as the rest of our living and work
environments. As users we want to change or extend the
application logic from time to time. With better technol-
ogy becoming available, the network or parts of it should
be exchanged without greatly affecting the running appli-
cations. Or by adding nodes and replicating tasks we want
to make the application more reliable. Upgrading and mod-
ifying embedded software is difficult because of the gener-
ally tight coupling between hardware and software. Having
to deal with distributed applications makes changes to the
application even harder.
In this paper we present RuleCaster, a programming sys-
tem for the smart home. This system supports evolutionary
changes in the life-cycle of an application in a unified way
by separating the concerns of implementation, distribution
and execution of an application. Furthermore, this high-
level approach relieves the programmer of dealing with
low-level details such as sending data between nodes, and
issues related to distributed programming. The application
developer defines applications in a high-level language for
the smart home as a whole. A compiler then splits the appli-
cation into a set of distributed tasks that form the executable
application code. The novelty of our approach is that the
programmer perceives the smart home as an integrated run-
time environment. Space is a fundamental concept of the
physical environment of a smart home. The kitchen, for
example, is a space that has different characteristics to the
bedroom. RuleCaster directly reflects the notion of physi-
cal space in software in terms of a space data type. The
programmer is presented with high-level software abstrac-
tions of spaces that allows him to program the smart home
as if it was a single computing platform.
This paper is organised as follows. In the following section
we give a brief overview of the area of smart homes. In
Section 3 we introduce a concrete example of a smart home



and several application scenarios that are used to illustrate
our approach in the remainder of this paper. In Section 4
we present a solution outline. Then we focus on one spe-
cific part, namely a high-level application language, of the
overall approach. Section 5 presents a software abstraction
that builds the basis for the application language introduced
in Section 6. In Section 7 we show the utility of our ap-
proach with a scenario-based evaluation. Finally, Section 8
concludes this paper.

2 Background on Smart Homes

The development of small low-powered computers, sensors
and wireless radios has made impressive progress in recent
years. This is only partly the consequence of Moore’s law
and better materials being developed in research labs. The
potential economic impact of this technology (not just for
the smart home, but in general) shows great potential be-
yond research labs (e.g. [9]). Several companies produce
ready to use hardware platforms (e.g. Crossbow, Ember,
Freescale or Texas Instruments) and industry-driven com-
munication standards have been published (e.g. Zigbee
[1]).
This technological development and the trend of moving
away from a single PC per household has cleared the way
to the development of smart environments. Several research
groups have developed first-generation prototypes of the
smart home to study the computing needs in our everyday
lives ([15, 12, 11]).
Currently, the main technological focusses are on integrat-
ing suitable hardware into the home, and on developing ser-
vices that analyse sensory data in order to identify high-
level contexts. One existing problem is that these systems
are generally purpose-built. This makes the development
or maintenance of applications a challenging task because
expert knowledge is required.
In order to ease the development of applications for these
systems, people have developed middleware solutions and
programming abstractions. The context toolkit [7] provides
the application developer with context widgets that give ac-
cess to context information while hiding the details of con-
text sensing. These widgets can be used in a programming
language to implement context-aware applications.
Similarly Helal et al. propose a service-based middleware
to simplify application development [11]. Basic services
hide low-level details of a specific sensor platform by pro-
viding a standardised interface to the application developer.
These services can be composed into other services or be
directly used in a development environment to build smart
home applications. The underlying middleware takes care
of the management of the distributed infrastructure.
Still, the application programmer is faced with the problem
of having to decompose the global application logic into a
set of distributed tasks. Furthermore, such a static distribu-
tion is not flexible for accommodating future changes. In
contrast to these bottom-up approaches that allow the ap-
plication developer to build higher level abstractions from
low-level services, we propose a top-down approach. Our
approach provides abstractions for the smart home as one

logical entity instead of individual devices. Hence, the pro-
grammer is not forced to decompose the application logic
into distributed tasks and implement them by composing
device-centric services. Instead, applications can be di-
rectly written for the smart home as a whole.

3 The Off-the-shelf Smart Home
In order to simplify the discussion in the remainder of this
paper we introduce concrete application scenarios. First,
we show the smart home infrastructure in Section 3.1.
Then, we describe the scenarios in Section 3.2.

3.1 Infrastructure

The smart home is equipped with a variety of sensors and
actuators. Just like electric wiring or central heating, these
devices are part of our infrastructure. Figure 1 shows a
smart home that is equipped with off-the-shelf hardware.
The home is subdivided into four rooms: kitchen, bedroom,
office and corridor. Each room contains a number of sen-
sors and actuator that build the interface between the com-
puting system and the physical world:

Kitchen. The motion sensor detects the presence of mov-
ing objects. The smart stove senses if it is turned on
or off. And the automatic window can open and close
itself.

Bedroom. It contains an automatic window. The auto-
matic blinds allow to be automatically adjusted. The
smart bed has integrated pressure sensors to detect the
presence of a person on the bed.

Office. The motion sensor detects the presence of moving
objects. The ambient display is an unobtrusive screen
that can display arbitrary RGB colours.

Corridor. The alarm can alert inhabitants with sound and
light effects. The smart mail box detects mail. The
motion sensor detects the presence of moving objects.

Furthermore, every room contains a switch/sensor that is
used to turn on/off the light and to detect if the correspond-
ing lamp is turned on or off.

3.2 Application Scenarios

Alice is the proud new owner of the smart home introduced
in Section 3.1. She has put a lot of effort and money into
adapting her living space to her taste and needs. Similarly,
she also wants to use her computer infrastructure to improve
her living comfort and safety. Because of previous expe-
rience with forgetting to turn off the stove she wants the
alarm to be turned on if the stove is switched on when no-
body is in the kitchen. Meanwhile Alice often works from
home. Mail is delivered to her house several times a day.
She wants to be notified as soon as mail arrives when she is
at work in her home office. During the night she feels more
protected if the blinds are shut; hence, she wants the blinds
to be automatically shut when she is in bed and has turned
off the light. As an energy conscious person she also knows
that shut blinds provide additional insulation.



kitchen

bedroom

corridor

automatic
blinds

smart
bed

light on/off switch/sensor smart
mail box

motion
sensor

smart
stove

ambient
display

alarm

motion 
sensor

office

light on/off switch/sensorautomatic
window

Figure 1: The programmable smart home.

4 Solution Outline
In the following we outline our solution that addresses the
two main problems mentioned earlier: (1) defining the
global application in terms of local actions, and (2) ac-
commodating changes. By dealing with space not only as
a physical entity but also as a software data structure we
realised the concept of a programmable physical environ-
ment. The advantage of this approach is that the application
developer can implement applications for the smart home as
one logical entity; the smart home is the computer. Rule-
Caster provides the application developer with a high-level
language for application development.
As mentioned earlier, dealing with evolutionary changes
to the application requirements and the infrastructure is
a complex job for application developers, which touches
upon several life-cycle phases. We can identify three major
classes of changes that a smart home application undergoes
throughout its lifecycle. These are changes to the

• logical structure,

• physical structure and

• computing infrastructure.

The logical structure describes how functional elements and
application states are connected for describing the applica-
tion logic. Changes to the logical structure refer to changes
in the observable behaviour of an application. For example,
while an application might initially be defined to open the
window when the room is too hot, a new application logic
might turn on the air conditioning instead.
The physical structure describes where computational ele-
ments are executed and where application states are stored
in the network infrastructure. Changes to the physical struc-
ture of an application refer to changes in the distribution of
computing tasks to individual nodes. For example, a task
initially performed by a central node is distributed over sev-
eral nodes in order to improve reliability and decrease en-
ergy consumption.

InfrastructurePhysical
Structure

Logical
Structure

Compiler

Deployment

Figure 2: Changes to one of the three models can be directly
propagated by re-compilation.

The infrastructure is the actual smart home that stores and
computes the application states. It is the distributed runtime
environment. Changes to the infrastructure refer to changes
in the underlying hardware and runtime system (e.g. net-
work system). For example, a system might need to be up-
dated when a new generation of hardware devices becomes
available with different processor, memory or radio. An-
other example is modifying a system by adding or removing
nodes.
RuleCaster supports these classes of changes by separating
them into three separate models (cf. Figure 2). The core
of RuleCaster is a high-level compiler system that takes
these three models as input to generate a distributed soft-
ware system. Changes to any of these three models can be
directly propagated to the running application by recompi-
lation and re-deployment. This separation allows the pro-
grammer to change any model individually and therefore
simplifies maintenance of applications.
The infrastructure is described in terms of a network model
which provides the compiler with a list of properties (e.g.
location, hardware specification etc.) and available node-
level services. The infrastructure consists of the actual
sensor-actuator node hardware running a middleware that
executes the application. This middleware is based around
a service-based architecture. Services give access to the
interface between the network and the physical world (i.e.
sensors and actuators). Nodes are statically assigned to a
space or several spaces (e.g. a node in the kitchen is as-
signed to the space kitchen).
In this paper we exclusively focus on the the description of
the logical structure of an application (or application logic).
More information about the other models can be found pre-
vious work [3, 4, 5]. The application logic is defined in the
RuleCaster Application Language (RCAL) — a program-
ming language that provides the application developer with
high-level abstractions of the programmable smart home.
Figure 3 depicts the architecture of the implemented sys-
tem. The structure of the programming model is reflected in
this architecture. The application, which is programmed in
the high-level language RCAL is split by the compiler into
individual tasks and distributed over the network of sensor
nodes. The physical structure is implicitly described by a



Application Definition
(in RCAL)

Compiler

Task
for node 1 

Task
for node 2

Task
for node n

 

Distribution
Strategy

Network
Model

Middleware

logical
structure

physical
structure

infrastructure

Figure 3: The architecture of the RuleCaster system.

distribution strategy — a compiler plug-in that influences
the generation of the physical structure of an application
based on some quality model such as energy consumption
or robustness.

5 The Space Programming Approach

The smart home is an integrated runtime environment that
can execute user-defined applications. We propose a high-
level language for implementing applications. The basic
data type of this language is space. A space is an ab-
stract representation of a distributed computer consisting of
a collection of nodes with some relationship to one another
such as “all nodes in the same room” or “all nodes within a
circle of radius r around position X”. A node can belong to
one or several spaces. Even though the space type could
be used to define an arbitrary collection of nodes, we solely
use it to describe a network partition contained within a
confined spatial area.
The space data type hides low-level details of the under-
lying network such as the number of nodes or specific com-
munication protocols and encapsulates the manipulation of
state information. Figure 4 illustrates the space data type.
This data type has four distinct communication interfaces.
It uses sensors to observe and actuators to influence the
surrounding physical world. Furthermore, it communicates
with other spaces through the exchange of space state in-
formation.
The smart home is represented as a set of programmable
spaces. Each space encapsulates the state of the corre-
sponding network partition. The application developer im-
plements applications in terms of these states and condi-
tions for state transitions. These conditions can depend on
sensor observations, the activation of actuators or on the
state of other spaces (i.e. it requires state information; cf.
Figure 4). By providing state information to other spaces
or requiring state information from other spaces, the spaces
create an implicit coordination network between each other.

Input:
Sensors

Output:
Actuator

P
ro

vi
de

s
S

ta
te

R
equires
S

tate

Computing System

Physical World

Space S

Figure 4: The data type space provides the application
developer with a high-level abstraction of programmable
space.

PRE_STATE(<state1>) [
<rule>.

] POST_STATES(<state2>,...,<staten>).

Figure 5: The basic structure of a state transition rule.

5.1 A Rule-based Language

As mentioned above the space data type encapsulate the
application logic that corresponds to the respective physi-
cal space. The rule-based language RuleCaster Application
Language (RCAL) is used to describe states and the condi-
tions for state transitions. Figure 5 shows the basic struc-
ture of a state transition rule. The programmer specifies
the conditions for the transition from one current state (la-
belled with PRE STATE) to a set of next states (labelled
with POST STATES) in a rule. This rule is a boolean func-
tion consisting of disjunctions and conjunctions of boolean
terms. Boolean terms are defined in terms of built-in func-
tions (e.g. comparison functions), user-defined functions,
actuator activation functions or filter functions of sensor ob-
servations. For example, a system which is in a state cold
can switch into states hot and humid when the sensors
are observing high temperature and high humidity.
The advantage of this high-level language approach is that
rules can be easily understood by both humans and com-
puters; Dey et al. even argue that people are naturally in-
clined to use rules when asked to describe the behaviour
of a smart space [6]. Furthermore, the declarative nature
of RCAL does not force the programmer to express where
and how the application is executed. He only has to specify
what should be executed by the smart home.

6 The RuleCaster Application Language
We illustrate the syntax and expressiveness of RCAL with
the example scenarios introduced in Section 3.2. We use
the following two expressions in the description of the lan-
guage syntax:

Definition 6.1. A term is a boolean function that is either
TRUE or FALSE at any point in time. It has an ID and
zero or more arguments. An argument is either a value that



NULL stoveOnHazard

stoveOn(), motion(X), X=0

stoveOff()
OR

motion(X), X>=4

Figure 6: The kitchen states and the conditions for the state
transitions. Null represents the empty default state.

is provided to the function or one that is returned from the
function.

Definition 6.2. The signature of a term is defined as a tuple
A/x, where A is the ID of the term and x is the number of
arguments.

In the following we show how these scenarios are expressed
in RCAL in terms of spaces, states and state transitions.
The four rooms (kitchen, bedroom, corridor and office) are
the four spaces we program. The user-specified rules are
written in bold italics followed by the explanation of the
implementation in RCAL.
Turn on the alarm if the stove is switched on and nobody is
in the kitchen. This scenario includes the spaces kitchen
and corridor. Figure 7 illustrates the RCAL program
that implements the application logic. Line 1 introduces
the declaration of the space kitchen. Lines 2-6 declare
the communication interface of this space (cf. Figure 4). It
has three sensors1 to observe the environment.
The sensor is declared with the signature of a term that can
be used in a transition rule to access the sensor. Line 3, for
example, defines the term with ID stoveOn that requires
0 arguments. In the following the term stoveOn() can be
used in transition rules; this term is TRUE if the stove is de-
tected to be on and FALSE otherwise. The space kitchen
provides information about the state stoveOnHazard to
other spaces (declared in line 6).
Figure 6 depicts the two kitchen states and the transition
conditions used to implement the application logic for the
space kitchen. The first state transition is defined in lines
8-10. The transition is to the state called stoveOnHazard;
this state describes the situation when the stove is turned
on and nobody is in the kitchen. Because PRE STATE is
empty, the transition generates a new state. The actual con-
dition for the state transition is defined in line 9. It is de-
fined as the conjunction of the three terms stoveOn(),
motion(X) and X=0. It is important to notice that both
terms stoveOn() and motion(X) have the same sig-
nature as the corresponding sensors in the interface decla-
ration; this allows the use of sensor observations in a rule.
The argument in motion(X) is term specific; this term
is true if the current sensor specific motion value can be
assigned to X. The last term compares the value that is as-
signed to X with 0. If the conjunction of these three terms

1Such a sensor is an abstract concept of programmable space
and does not directly correspond to a specific physical network
sensor.

1 SPACE(kitchen) {
2 INTERFACE:
3 SENSOR(stoveOn/0),
4 SENSOR(stoveOff/0),
5 SENSOR(motion/1),
6 STATE(stoveOnHazard).
7
8 PRE_STATE() : time(2) [
9 STATE :- stoveOn(), motion(X), X=0.
10 ] POST_STATES(stoveOnHazard).
11
12 PRE_STATE(stoveOnHazard) [
13 STATE :- stoveOff().
14 STATE :- motion(X), X>=4.
15 ] POST_STATES().
16 }
17
18 SPACE(corridor) {
19 INTERFACE:
20 SENSOR(mail/0),
21 ACTUATOR(alarm/1).
22
23 PRE_STATE() : STATE(kitchen:stoveOnHazard) [
24 STATE :- alarm(10).
25 ] POST_STATES(alarmOn).
26
27 PRE_STATE(alarmOn) : STATE(NOT kitchen:stoveOnHazard) [
28 STATE :- alarm(0).
29 ] POST_STATES().
30 }

Figure 7: RCAL program for the programmable smart
home.

is TRUE, the condition for a state transition is satisfied (i.e.
the stove is on and nobody is in the kitchen because the
measured motion is zero). There is an additional temporal
constraint for the successful evaluation of this condition.
Line 8 defines time(2); this means that all terms have to
be TRUE at arbitrary points within a common interval of 2
seconds.
Lines 12-15 specify the transition from the state
stoveOnHazard to the empty state. The transition con-
dition is satisfied if either the condition in line 13 or
the one in line 14 is satisfied. In other words, the state
stoveOnHazard is removed if the stove is turned off (i.e.
stoveOff() is TRUE) or if someone is in the kitchen
(motion(X), X!4 is TRUE; the higher the value as-
signed to X the more probable is the presence of a person in
the kitchen). The order of the two rules is of no significance
with respect to the evaluation order of these rules.
Lines 18-30 define the space corridor. This space is re-
sponsible for triggering the alarm in case of a hazardous
situation in the kitchen. This space has two communica-
tion channels in its interface declaration; it is the actua-
tor with ID alarm and the sensor with ID mail. Lines
23-25 define the transition from the empty state to the
state alarmOn (i.e. the valid state when the alarm is
turned on). If the evaluation of the term alarm(10) in
line 24 is TRUE, the condition for this transition is sat-
isfied. Similar to the temporal constraint line 8 there is
a state constraint for this transition defined in line 23 as
STATE(kitchen:stoveOnHazard). This means that
the space kitchen has to be in the state stoveOnHazard
in order to satisfy the transition condition. This state con-
straint concept allows the coordination between different
spaces. The space corridor has access to internal state
information of the space kitchen because this state is de-
clared in line 6 of the definition of the space kitchen.
The transition from the state alarmOn to the empty state
is defined in lines 27-29. The state constraint declared



1 SPACE(bedroom) {
2 INTERFACE:
3 SENSOR(bed/1),
4 SENSOR(isLightOn/0),
5 SENSOR(isLightOff/0),
6 ACTUATOR(blinds/1).
7
8 PRE_STATE() [
9 STATE :- bed(X), X>20.
10 ] POST_STATES(personInBed).
11
12 PRE_STATE(personInBed) [
13 STATE :- isLightOff(), blinds(0).
14 ] POST_STATES(personInBed, blindsDown).
15 }
16
17 SPACE(office) {
18 INTERFACE:
19 SENSOR(floor/1),
20 ACTUATOR(display/3).
21
22 PRE_STATE() : STATE(corridor:newMail) [
23 STATE :- officeOccupied(), display(255,0,0).
24 officeOccupied() :- motion(X), X>=4.
25 ] POST_STATES(mailAlert).
26 }

Figure 8: Definitions of the spaces office and corridor.

in line 27 requires the kitchen not to be in the state
stoveOnHazard. The transition condition is satisfied if
the term alarm(0) is TRUE (i.e. the alarm can be turned
off by the corresponding actuator).

Shut the blinds if someone is in bed and the light is
turned off. Figure 8 shows the definition of the space
bedroom. For simplicity reasons we only show the most
important transitions. In line 9 the weight of the object
on the bed is assigned to X. If this value is more than 20,
the transition condition is satisfied and the bedroom goes
into a state personInBed (i.e. it is assumed that a per-
son is in bed). Lines 12-14 show the concept of a tran-
sition from one state to several states. This allows us to
keep the state personInBed and add the additional state
blindsDown to the current states of the space bedroom.

Notify the person in the office as soon as mail arrives.
Lines 17-26 in Figure 8 define the space office. In or-
der for the transition rule defined in lines 22-25 to work we
have to extend the definition of space corridor shown
in Figure 7. The space office requires access to in-
formation about the state newMail (i.e. the state that
is valid if mail is in the mail box) in space corridor.
Access from outside is granted by adding the statement
STATE(newMail) to the interface declaration of the
space corridor. The transition rule to state newMail
in space corridor is shown in Figure 9.

Lines 23 and 24 in Figure 8 show another important con-
cept of RCAL. The term officeOccupied() in line
23 is defined with the rule in line 24. This rule is sat-
isfied if the conjunction of both its terms (motion(X)
and X!4) evaluates to TRUE. It is also important to no-
tice that a lazy evaluation semantic is applied. This is a
powerful concept that can be used to influence the output
of information through actuators. For example, the actua-
tor term display(255,0,0), that causes the display to
show the colour red, in line 23 is not evaluated if the term
officeOccupied() evaluates to FALSE.

PRE_STATE() [
STATE :- mail().

] POST_STATES(newMail).

Figure 9: Transition rule to the state newMail in space cor-
ridor.

7 Scenario-based Evaluation

One main challenge of developing smart home applications
are changing application requirements (cf. Section 1). A
problem faced is the fact that our experience in building in-
tegrated environments is limited by the set of concepts we
know at the time of development. Once built for a spe-
cific goal (such as to assist the elderly or avoiding haz-
ardous situations), the smart home will likely to be used
for decades to come [10]. Still, we cannot assume that the
application requirements or the physical environment will
be static. RuleCaster addresses these changes by separat-
ing the development of applications into different models
(cf. Section 4). Each model addresses different kinds of
changes.
We evaluate the utility of our approach by showing how
a number of change scenarios are supported by the Rule-
Caster system and the underlying programming model.
This method is inspired by work on scenario-based analy-
sis of software architectures [14, 13]. Scenarios allow us to
express particular instances of a quality attribute important
to specific life-cycles of an application.
The change scenarios are based on the scenario introduced
in Section 3.2. We can assume that the infrastructure is
installed and the initial application deployed. This allows us
to focus on the more interesting change scenarios. Table 1
shows six probable changes that will occur during the life-
time of our smart home example and its applications.
In the following we discuss how the concept of pro-
grammable space and RuleCaster support each individual
scenario. We address each scenario from the perspective of
the application developer who has to make the changes:

Scenario 1. In contrast to the existing scenarios it would
be difficult to assign this scenario to an existing space; it
concerns the whole house. Hence, we implement the ap-
plication logic for the space house. A node can belong
to several spaces and in our infrastructure every node is
statically assigned to the space house. Figure 10 shows
the code we add to the application definition. There are
two alternative conditions that define the transition to a
state lightsOff (i.e. the lights are turned off). The
first condition is satisfied if there is no observed motion
(motion(X), X=0) and the lights are then automati-
cally turned off (light(0)). The second condition is
satisfied if a person is in bed (bed(X), X>20) and the
lights are then automatically turned off (light(0)). Af-
ter these changes the code is recompiled and automatically
re-deployed in the network. Because the smart home is
represented as programmable space, we only have to make
changes to the high-level application code (i.e. the logical
structure) of the application.



Table 1: Change scenarios.
Change scenario Example Concern

1. Extend application. Alice is an energy-conscious person. She wants to have the
smart home modified so that she can save energy by having
the lights turned off when nobody is in the house or she is in
bed.

Logical structure

2. Change the distribution
of the application.

Some nodes have been connected to a permanent power sup-
ply. They should therefore contribute more computational
power to the execution of the application.

Physical structure

3. Add new nodes to the
infrastructure.

The motion sensor in the corridor does not cover the whole
area of the L-shaped room. Hence, a new motion sensor is
added to cover the other part of the corridor.

Infrastructure

4. Extend infrastructure. Alice has read about the danger of carbon monoxide. She
decides to have a carbon monoxide detector installed in the
kitchen.

Infrastructure

5. Extend application. Alice wants all windows to automatically open if a high con-
centration of carbon monoxide is measured. Furthermore,
she wants the alarm to be actuated immediately.

Logical structure

6. Move application. Her parents like her smart home and decide to install a com-
puter infrastructure in their house. They want to run the same
applications as the ones in their daughter’s smart home.

Physical structure

1 SPACE(house) {
2 INTERFACE:
3 SENSOR(motion/1),
4 ACTUATOR(light/1).
5
6 PRE_STATE() [
7 STATE :- motion(X), X=0, light(0).
8 STATE :- bed(X), X>20, light(0).
9 ] POST_STATES(lightsOff).
10
11 ...
12 ...
13 }

Figure 10: Definition of the space house.

Scenario 2. We do not have to change the application
code. The network model reflects the infrastructure changes
to the compiler, which can find a better task assignment to
the nodes. In the changed application the nodes connected
to a permanent power supply take over some tasks previ-
ously executed by other nodes. This can have a positive
effect on the energy consumption of the battery-powered
nodes. The application is recompiled and automatically re-
deployed. The changes only affect the physical structure of
the application.

Scenario 3. After having added the new node configured
with the RuleCaster middleware and assigned to the spaces
corridor and house, we recompile the application and
re-deploy it. We do not have to change the application logic
because the changes do not affect the logical structure of the
application. The new motion sensor is used in the same way
as the existing sensor in the corridor.

Scenario 4. The carbon monoxide detector is installed in
the kitchen and configured with the RuleCaster middleware,
which includes the assignment to the relevant spaces (i.e.
kitchen and house). Because the current smart home
application does not require this sensor, it does not have
a direct effect on the running application. The application
logic is extended to use this sensor in the next scenario.

Scenario 5. This scenario only affects the applica-
tion code of the space house. We add a new state
highCOConcentration that describes the situation of
high carbon monoxide concentration. We also add the re-
quired conditions for a transition into this state (i.e. ob-
served high carbon monoxide concentration). This state
can then be used to define the condition for opening the
windows. This change scenario only affects the application
code. After recompilation the application is automatically
re-deployed and then executed.

Scenario 6. Her parents’ computer infrastructure is set up
differently. Due to their bigger house, they have installed
more motion sensors. Because the application logic stays
the same, the application developer only has to recompile it
to generate the adapted physical structure of the application
before it is re-deployed.
These scenarios show that specific changes can be at-
tributed to separate models. This separation reduces the
complexity of changes. Changes to any of these models
can be directly propagated to the running application by re-
compilation and re-deployment. Hence, RuleCaster does
not only address the implementation of smart home applica-
tions but also supports evolutionary changes after the initial
deployment in a unified way.

8 Conclusion

Our language-based approach provides support for pro-
gramming and maintaining the smart home through a num-
ber of measures:

• Our approach does not force the application devel-
oper to express the global behaviour of an applica-
tion in terms of local actions taken at individual nodes.
This method would be cumbersome because the pro-



grammer has to deal with many issues related to dis-
tributed programming which make application devel-
opment difficult, time-consuming and error-prone. In-
stead, the application developer can program the smart
home as one logical entity.

• The high-level language eases the implementation ef-
forts for the application developer. People are inclined
to use rules for describing the required behaviour of a
smart space. By providing a rule-based language we
can decrease the mental gap between the user-based
application description and the actual implementation.

• By separating application development into different
high-level models we can simplify application mainte-
nance due to changing user requirements or changes in
the living environment. We show that different change
scenarios in the life-cycle of an application address
distinct models.

To successfully realise the vision of a smart home outside
research labs, we have to address issues related to pro-
grammability and maintenance of the related computing in-
frastructure. We believe that the proposed system is a step
into the right direction.

References

[1] Zigbee Alliance. Zigbee specification.
http://www.zigbee.org, December 2006.

[2] Juan C. Augusto and Chris D. Nugent. Smart homes
can be smarter. In Designing Smart Homes - The Role
of Artificial Intelligence, 2006.

[3] Urs Bischoff and Gerd Kortuem. Programming the
ubiquitous network: A top-down approach. In Pro-
ceedings of the System Support for Ubiquitous Com-
puting Workshop (UbiSys’06), 2006.

[4] Urs Bischoff and Gerd Kortuem. Rulecaster:
A macroprogramming system for sensor networks.
OOPSLA Workshop on Building Software for Sensor
Networks, 2006.

[5] Urs Bischoff and Gerd Kortuem. Rulecaster: A pro-
gramming system for wireless sensor networks. In
Proceedings of the First European Conference on
Smart Sensing and Context (EuroSSC’06), 2006.

[6] Anind D. Dey, Timothy Sohn, Sara Streng, and Justin
Kodama. iCAP: Interactive prototyping of context-
aware applications. In Proceedings of the 4th Interna-
tional Conference on Pervasive Computing (PERVA-
SIVE 2006), 2006.

[7] Anind K. Dey, Gregory D. Abowd, and Daniel Salber.
A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications.
Human-Computer Interaction, 16(2):97–166, 2001.

[8] W. Keith Edwards and Rebecca E. Grinter. At home
with ubiquitous computing: Seven challenges. In Ubi-
Comp ’01: Proceedings of the 3rd international con-
ference on Ubiquitous Computing, pages 256–272,
London, UK, 2001. Springer-Verlag.

[9] Mareca Hatler and Chalie Chi. Wireless sensor net-
works: Growing markets, accelerating demand. On-
World, July 2005.

[10] Sumi Helal. Programming pervasive spaces. IEEE
Pervasive Computing, 4(1):84–87, 2005.

[11] Sumi Helal, William Mann, Hicham El-Zabadani, Jef-
frey King, Youssef Kaddoura, and Erwin Jansen. The
gator tech smart house: A programmable pervasive
space. Computer, 38(3):50–60, 2005.

[12] Stephen S. Intille. Designing a home of the future.
IEEE Pervasive Computing, 1(2):76–82, 2002.

[13] Rick Kazman, Gregory Abowd, Len Bass, and Paul
Clements. Scenario-based analysis of software ar-
chitecture. IEEE Software, 13(6):47–55, November
1996.

[14] Rick Kazman, Leonard J. Bass, Mike Webb, and Gre-
gory D. Abowd. SAAM: A method for analyzing the
properties of software architectures. In International
Conference on Software Engineering, pages 81–90,
1994.

[15] Cory D Kidd, Robert Orr, Gregory D. Abowd,
Christopher G. Atkeson, Irfan A. Essa, Blair MacIn-
tyere, Elizabeth Mynatt, Thad E. Starner, and Wendy
Newstetter. The aware home: A living laboratory
for ubiquitous computing research. In Proceedings of
the International Workshop on Cooperative Buildings
(CoBuild 1999), pages 191–198, 1999.

[16] Tom Rodden and Steve Benford. The evolution of
buildings and implications for the design of ubiqui-
tous domestic environments. In CHI ’03: Proceed-
ings of the SIGCHI conference on Human factors in
computing systems, pages 9–16, New York, NY, USA,
2003. ACM Press.


