
Workshop on Software
Engineering Challenges
for Ubiquitous Computing

June 1st – 2nd 2006
Lancaster University

Supported by Edited by Gerd Kortuem

SEUC 2006 Workshop Programme

Session 1

Engineering for real – The SECOAS project
I. W. Marshall, A. E. Gonzalez, I. D. Henning, N. Boyd, C. M. Roadknight, J. Tateson,
L. Sacks

Analysing Infrastructure and Emergent System Character for Ubiquitous
Computing Software Engineering
Martin Randles, A. Taleb-Bendiab

Software Considerations for Automotive Pervasive Systems
Ross Shannon, Aaron Quigley, Paddy Nixon

Session 2: Programming

Ambient-Oriented Programming: Language Support to Program the Disappearing
Computer
Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Wolfgang De Meuter, Theo
D'Hondt

A Top-Down Approach to Writing Software for Networked Ubiquitous Systems
Urs Bischoff

Context-Aware Error Recovery in Mobile Software Engineering
Nelio Cacho, Sand Correa, Alessandro Garcia, Renato Cerqueira, Thais Batista

Towards Effective Exception Handling Engineering in Ubiquitous Mobile Software
Systems
Nelio Cacho, Alessandro Garcia, Alexander Romanovsky, Alexei Iliasov

Session 3: Formal Methods

Towards Rigorous Engineering of Resilient Ubiquitous Systems
Alexander Romanovsky, Kaisa Sere, Elena Troubitsyna

Controlling Feature Interactions In Ubiquitous Computing Environments
Tope Omitola

Dependability Challenge in Ubiquitous Computing
Kaisa Sere, Lu Yan, Mats Neovius

Concurrency on and off the sensor network node
Matthew C. Jadud, Christian L. Jacobsen, Damian J. Dimmich

Session 4: Model-based Approaches

The Self-Adaptation Problem in Software Specifications
Klaus Schmid

Adapting Model-Driven Architecture to Ubiquitous Computing
Julien Pauty, Stefan Van Baelen, Yolande Berbers

Efficient Modelling of Highly Adaptive UbiComp Applications
Andreas Petter, Alexander Behring, Joachim Steinmetz

Model driven design of ubiquitous interactive applications
Jan Van den Bergh and Karin Coninx

Session 5: Engineering for Humans I

Surveying the Ubicomp Design Space: hill-climbing, fields of dreams, and elephants'
graveyards
Michael B Twidale

Connecting rigorous system analysis to experience centred design in ambient and
mobile systems
M. D. Harrison and C. Kray

Addressing Challenges of Stakeholder Conflict in the Development of Homecare
Systems
Marilyn Rose McGee & Phil Gray

Session 6: Engineering for Humans II

'Palpability' as an Architectural Quality
Klaus Marius Hansen

Human-Computer Interaction in Ubiquitous Computing Environments
David Benyon

User Centered Modeling for Context-Aware Systems
Tobias Klug

Task-Based Development of User Interfaces for Ambient Intelligent Environment
Tim Clerckx and Karin Coninx

Session 7: Platforms

Domino: Trust Me I'm An Expert
Malcolm Hall, Marek Bell, Matthew Chalmers

Ubiquitous Computing: Adaptability Requirements Supported by Middleware
Platforms
Nelly Bencomo, Pete Sawyer, Paul Grace, and Gordon Blair

wasp: a platform for prototyping ubiquitous computing devices
Steve Hodges, Shahram Izadi, Simon Han

Papers Not Presented

New paradigms for ubiquitous and pervasive applications
J. Gaber

Development Tools for Mundo Smart Environments
Erwin Aitenbichler

Engineering Trust in Ubiquitous Computing
Sebastian Ries

A model-based approach for designing Ubiquitous Computer Systems
Mahesh U. Patil

MDA-Based Management of Ubiquitous Software Components
Franck Barbier and Fabien Romeo

Enhancing Mobile Applications with Context Awareness
Jens H. Jahnke

SEUC 2006 Workshop Programme

Session 1

Engineering for real – The SECOAS project

I.W.Marshall (University of Kent), A.E.Gonzalez (University College London),
I.D.Henning (University of Essex), N.Boyd (Salamander Ltd), C.M.Roadknight
(BT plc), J.Tateson (BT plc), L.Sacks (University College London)

Introduction
SECOAS was funded by the DTI as part of the Envisense centre

(pervasive computing for natural environments) within the Next Wave
Technologies and Markets initiative. The objective was to deploy a sensor
network to monitor sedimentation processes at small scales in the area of Scroby
Sands just off the coast at Great Yarmouth, Norfolk. Scroby Sands is the site of
a wind-farm, and the DTI business case was based on improving the monitoring
and impact assessment of offshore infrastructure. The research motivation from
the academic side was to demonstrate the potential of a range of collegiate AI
ideas that the group had previously simulated [1,2,3].

Successful deployment of a sensor network in a natural environment
requires the devices to survive for long periods, without intervention, despite the
fact that the conditions encountered are very likely to be antithetical to electronic
devices. This means that any deployed devices must be both robust and able to
deal with partial failures gracefully, without requiring large amounts of power.
The project team believe that embedded AI is a good solution to enabling
adaptation to failure and power management, since many AI algorithms are
known to be tolerant to partial inputs and noise, and our own simulations had
shown this to be true of the particular algorithms we were aiming to test. In other
words the approach was likely to lead to reasonably robust software. On the
other hand it is not possible to prove properties of this type of algorithm, and
simulations can never capture the full complexity of reality (and are thus only
indicative). It is therefore necessary to test ”in situ”, by undertaking a real
deployment. SECOAS was designed to combine the software expertise of Kent,
UCL and BT with the hardware expertise of Plextek, Essex and Salamander, and
provide robust hardware and a challenging scenario that would represent a good
test of the AI based approach.

What Happened
During the life of the project there were 3 full trials of sensing nodes, an

initial deployment of one node (measuring Pressure, Temperature, Turbidity and
Conductivity) for one week, an early deployment of 5 nodes for 2.5 weeks, and a
final deployment of 10 nodes for 2 months. In all cases the AI algorithms
performed well, and further tests are certainly justified. However none of the
tests allowed an exhaustive characterisation of the software performance since
the rate of failure of the nodes was significantly higher than expected. During the
initial deployment (intended as a technology trial) no problems were observed.
During the 5 node deployment one node failed completely and one node failed
after 24 hours. Both failures were due to water ingress at an unplanned cable

joint, introduced during deployment for operational reasons. No other hardware
failures were observed. These trials gave the team confidence that the hardware
was reasonably robust and had a good chance of surviving the planned final
deployment of 2 months, providing the equipment was deployed as intended. In
the final trial however 4 nodes were destroyed through external intervention, 2
nodes failed as a result of water ingress down a weak antenna cable (that was
not intended to be submerged), and the remaining 4 nodes lasted for only 4
weeks. As a result the statistics generated by the recovered data samples are not
sufficient to make conclusive claims about the software performance (remember
the measured parameters exhibit long range dependency as a result of the
turbulent flows, so very large sample sizes are needed). However the project did
return some interesting oceanographic data, and some useful lessons for
pervasive system engineering. These lessons are briefly outlined in the next
section.

Lessons
A major difficulty faced by the project was aligning the language and

methodologies of the software team and the hardware team. There does not
appear to be any established literature on hardware /software co-design of
extended systems of this nature, and the team had to create its own ad-hoc
solutions (we spent a lot of time engaged in cross-disciplinary training). The
difficulty was most clearly expressed close to deadlines when the software and
hardware engineers had no mechanisms for dealing with the instability of each
others outputs.

A second related difficulty was enabling full understanding of the
limitations and failure mechanisms of the hardware and software across the
whole team. This was most clearly expressed at module interfaces, where the
software engineers tended to assume module clocks were as accurate as
required, and the hardware engineers assumed the clocks would operate in
spec. It turned out during the first multimode trial that neither group was correct,
and more sophisticated interface protocols were used in the final trial.

A third key problem was the need to consider unintended interactions with
non-project participants (such as local fishermen). The team did not start with
sufficient expertise in this area.

Clearly for the future it is necessary to develop a methodology that
systematizes approaches and solutions to these and similar problems.

We acknowledge the Support of the DTI and our industry sponsors (BT, Salamander and
Plextek) and the contributions of many other team members during the life of the project. We
particularly note the assistance of UEA with the oceanographic aspects of the work.

[1] A Novel Mechanism for Routing in Highly Mobile Ad-hoc Sensor Networks. J Tateson and I W
Marshall. In Willig Karl and Wolisz, editors, Wireless Sensor Networks, number 2920 in LNCS, 2004.
[2] A Weekly Coupled Adaptive Gossip Protocol for Application Level Active Networks. I Wokoma, I
Liabotis, O Prnjat, L Sacks, and I Marshall. In 3rd International Workshop on Policies for Distributed
Systems and Networks (POLICY 02), Monterey, California, 2002.

[3] Emergent organization in colonies of simple automata. IW Marshall and CM Roadknight. In J Kelemen
and P Sosik, editors, Advances in Artificial Life, number 2159 in Lecture Notes in Artificial Intelligence,
pages 349-356. Springer Verlag, 2001.

Analysing Infrastructure and Emergent System Character for
Ubiquitous Computing Software Engineering

Martin Randles, Prof. A. Taleb-Bendiab

m.j.randles@2004.ljmu.ac.uk a.talebbendiab@ljmu.ac.uk

School of Computing and Mathematical Sciences, Liverpool John Moores University,
Liverpool, L3 3AF, UK

Introduction

 A complete and rigorous understanding of the behaviour and nature emanating from complicated
interconnected systems provides a major technological challenge, at present. In ubiquitous computing
the character and programming model of the individual components is well understood. However this is
little help in predicting or allowing for the behaviour of the macro-scale entire system or for protecting
against the cascading failure subsequent to some apparently harmless device breakdown. These failures
are of greater concern due to the increasing application of ubiquitous computing systems in critical real
world situations. Thus the future engineering requirements, of these systems, must involve a model that
encompasses the simple behaviour and actions of the individual ubiquitous computing devices and the
emergent large scale behaviour of the complex interconnected system. To this end this work proposes
using known results; applicable to engineering predictable macro-scale behaviour in complex systems,
together with associated (most likely aggregated) cognitive systems to monitor and influence the system
behaviour and evolution. Additionally this will be presented in a formalism that specifies the low scale
programming models of the individual components whilst simultaneously providing the deliberative
functionality necessary for the cognitive systems to reason analyse and influence the whole system. This
in turn leads to future work in identifying and assessing further characteristics, dimensions and metrics
applicable to such systems. This formal account is then easily translated into software code.

Engineering Behaviour

 Current methodologies are adept at engineering system microscopic features. So, for instance,
embedded devices conform and function according to clearly defined rules. They interact and exchange
data according to some engineered set of regulations. However there is no analogous macroscopic
engineering focus. It is, of course, necessary to specify the low level functioning and interactions of the
ubiquitous networked devices. However, for organisation via emergent system features, the lack of any
coherent methods to explicitly deal with macroscopic system properties is a serious shortcoming.

Techniques to Better Serve Ubiquitous Systems

 It is necessary to consider suitable architectures and formalisms in which to express, analyse and
represent ubiquitous systems. In this way it is possible to understand and deal with the consequences
emanating from both the bottom-up device interactions and the top down influenced macro scale
behaviour. Thus an observer hierarchy is proposed. That is, at any level of system granularity, a simple
observer module will be extant monitoring some portion of the system. This observer can act to keep the
autonomy of the participants bounded as well as influence the system’s members towards micro-scale
actions that are known to tend the system towards some macro-scale self-organising point. In addition
such an arrangement displays self-similar properties that are in general not present for large scale
complex systems.

For reasons of scalability (no state space enumeration), correctness property specification (through
deduction) and knowledge utilisation it is proposed that a propositional account of a system is best. In
this way the programming model of the embedded devices can be described, the norms and bounds
affecting the interactions and operations are easily enacted whilst large scale behaviour can be monitored
and deliberated upon through the logical entailment process. The Situation Calculus has been used
throughout this work as the first choice propositional medium.

Emerging Network Characteristics

 The point of promoting self-organising behaviour is to divest some of the control of the system to
itself. That is, if the behaviour is conforming to some set organisational model then, observation need not
be as stringent or highly programmed. Scale free (SF) systems represent a starting point from which to
look at systems exhibiting some form of organisational behaviour that cannot be envisioned from the
small scale interactions. The main properties of these systems, as detailed in the literature, are: SF
systems have scaling (power law) degree distributions, they can be generated by certain stochastic
processes (the most widely regarded being preferential attachment), SF networks consist of highly
connected hubs, SF networks are generic in that they are preserved under degree preserving rewiring,
they are self-similar and are universal in that there is no dependence on domain specific data. There is
still much confusion over which of these properties is necessary and/or sufficient to entail the others. The
SF property is variously said to occur when there is a scaling or power law distribution present or when
generation occurs based on incremental growth and preferential attachment. There is no rigorous
definition for scale-free behaviour. There is also no clear comprehension of how certain properties and
mechanisms lead to such effects as power law tail distributions. Some researchers expound Self-
Organising Criticality (SOC) or Edge of Chaos states as forces that tend to migrate systems towards this
behaviour. Here at a certain threshold a bifurcation point exists between a safe, predictable states and
complete chaos. The existence of power laws is said to represent a signature for such states. Other
researchers stress more the role of optimised design in producing these effects. Systems optimized to be
highly tolerant to perceived threats, known as The Highly Optimized Tolerance or Heuristically
Organised Trade-off (HOT) systems, lead to power laws in the tails of degree distributions. Here
systems are designed to optimise in the presence of constraints and uncertainty. It has been observed that
the high performance and robustness of the optimised design, taken with the uncertainty the systems
were designed for, leads to extreme sensitivity to additional uncertainty not recognised in the original
design. It seems SOC type systems are less susceptible to rule changes than HOT systems but this is
compensated for in less overall robustness. It is noted that complexity appears to be derived from some
involved and deeply embedded trade-offs between robustness and uncertainty. These are fundamental
conservation principles that may, in future, prove as important to ubiquitous system design as matter
energy and entropy are to physical systems.

 Example Application

 This approach is especially relevant when considering planetary wide architectures that may occur as
peer-to-peer links through ubiquitous computing devices. In this case the observer model may comprise a
sensor-actuator overlay. The approach proposed here gives high assurance for both the systems
development and the life time management because of the appeal to mathematical logic. Additionally
complexity and scalability is handled via the self-organising principles and the behaviour entailing
propositional account. Such a sensor-actuator overlay may be specified and engineered for use within the
Planetlab environment where sensors may be added, edited or discovered to conform to a model for self-
organisational robustness via the observer model.

Software Considerations for Automotive Pervasive Systems

Ross Shannon, Aaron Quigley, Paddy Nixon
{ross.shannon, aaron.quigley, paddy.nixon}@ucd.ie

Abstract

The pervasive computing systems inside modern-
day automobiles are made up of hundreds of inter-
connected, often replaceable components. These
components are put together in a way specified by
the customer during manufacturing, and can then
be modified over the lifetime of the automobile, as
part of maintenance or upgrading.

This flexibility means that system implementers
cannot know in advance which of a wide variety
of configurations they are programming for, and so
the software system must be designed in a way that
is agnostic of implementation details.

1 Introduction

Many modern automobiles contain hundreds of em-
bedded microcontrollers [2]. The automobile in-
dustry has seen a shift towards the use of more
on-board technology and, as such, is becoming in-
creasingly software-dependant. From sophisticated
navigation systems to computer-controlled driver-
assistance safety systems and in-car multimedia
and entertainment, the amount of software written
for cars is increasing rapidly.

These systems work in concert across the Con-
troller Area Network (CAN) [1], seamlessly passing
data from the sensory system [3] of the car (con-
stantly measuring factors like speed, in-car temper-
atures and rainfall), to the actuator system, which
will perform actions like augmenting the opera-
tion of the breaking mechanisms, maintaining air-
conditioning and controlling the audio-visual sys-
tem.

Though embedding multiple microcontrollers is
more cost-effective and facilitates more reuse than
designing a central control system of powerful mi-
croprocessors, there is an associated cost in addi-
tional software complexity. Many components in
these automobiles are designed to be replaceable to
ease future maintenance of the vehicle. This means
that a new component will often have a different
feature-set to the component it replaces. Separate
components need to be able to work together de-

spite not always being aware of each other’s capa-
bilities. It is also likely that this modularity will
give rise to a market for cheaper non-OEM compo-
nents.

The requirements for such hardware and soft-
ware are poorly defined and poorly understood. [6]
Components must expose their interface to the rest
of the system, and find suitable points where they
may “hook in” to the existing system, integrate un-
obtrusively, and make use of and extend its func-
tionality.

2 Component Integration

2.1 Modularity

In modern-day automotive design, cars are made to
modularised, so that a customer may outfit a car to
his own specifications. This means that any vehicle
could come in hundreds or thousands of possible
configurations, each with their own functionality
and internal dependencies.

High-end models will have additional function-
ality, but use many of the same hardware compo-
nents across the product line. For instance, a high-
end model may have additional logic to control the
windscreen-wipers based on a rainwater sensor at
the front of the car, whereas drivers without this
feature will have to engage the wipers manually.
An upgrade to the car’s Body Electronic Control
Unit (ECU) might make this functionality available
later in the car’s life.

Alongside this, further features can be purchased
and added to the car once it has left the factory,
which should integrate seamlessly into the exist-
ing pervasive system. Consider the dashboard-
mounted GPS unit. Hardware interfaces are pro-
vided so that these modules can be added to the ve-
hicle, but oftentimes the system designer will also
want to make use of this new functionality from
within the current software system, if it is made
available. For example, a mapping program posi-
tioned in the car’s central control console which
previously prompted the user to manually enter
their location each time they wanted to use it can

1

now query the GPS module automatically. Simi-
larly, the GPS unit itself would like to have access
to the car’s built-in text-to-speech program so that
it can provide aural feedback to the driver.

2.2 Feature Discoverability

The challenge for the designers of software within
this ubiquitous system is that there is never any
guarantee which components are installed at a time
inside the automobile. This necessitates strong
capability-checking before any code can be exe-
cuted.

However, this only covers the gamut of modules
that the designers knew about as they were building
the system. New modules (from other manufactur-
ers) will have capabilities that the system designers
hadn’t considered. For new features to integrate
and be made available to the rest of the system,
feature discoverability must be made a priority.

The hardware and software parts of a module
should be thought of as a single entity, with a single
interface. [4] When a new module is connected, it
is required to make contact with a central directory
server within the car’s internal network, which will
keep track of the services being provided by com-
ponents within the car. This facilitates modules
which would like to use each other’s services being
put in contact.

2.3 Ease of Integration

Adding a module to an automotive pervasive sys-
tem is different than adding a new device to a
standard computer system. In general, non-critical
hardware components in a computer system are not
expected to work together. However, in the case
of automotive systems the ease of integration and
extensibility of the shipping system are two major
selling points.

It is for these reasons that we feel the program-
ming paradigm of Aspect-Oriented Programming
(AOP) [5] to be suitable for programming automo-
tive pervasive systems. The hardware and software
modules being added to the automobiles should al-
ready overlap in functionality as little as possible.

Ideal cross-cutting concerns present themselves,
like all devices wishing to direct feedback to the
driver through the automobile’s central console.
Similarly, many aspects of the car’s safety sys-
tem (tyres with pressure sensors, headlight sensors,
proximity sensors) will all need access to the brak-
ing mechanism. AOP allows these concerns to be
centralised, independant of the number of compo-
nents that pass information to the safety system,
where it is collated and acted upon.

3 Conclusion

Software engineering for automotive systems intro-
duces new challenges and new opportunities. Un-
obtrusively integrating a new component requires
all existing elements of the system to be alerted of
the new features it supports. The new component
also needs to publish a list of their capabilities to a
central service within the automobile, so that other
modules that would like to make use of them are
able to do so.

Aspect-Oriented Programming is an ideal pro-
gramming paradigm to help in solving these prob-
lems, as it allows disparate components to advise
each other on desired behaviour without requiring
that the components know many details about the
component’s implementation.

References

[1] R. Bannatyne. Controller Area Network Sys-
tems Continue to Proliferate Through Low-cost
Components. Electronic Engineering Times,
Mar 2004.

[2] R. Bannatyne. Microcontrollers for the Auto-
mobile. Micro Control Journal, 2004.

[3] W. J. Fleming. Overview of Automotive Sen-
sors. Sensors Journal, IEEE, 1(4):296–308,
2001.

[4] J. Hennessy. The Future of Systems Research.
Computer, 32(8):27–33, 1999.

[5] G. Kiczales, J. Lamping, A. Menhdhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In
M. Akşit and S. Matsuoka, editors, Proceed-
ings European Conference on Object-Oriented
Programming, volume 1241, pages 220–242.
Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

[6] A. Möller, M. Åkerholm, J. Fröberg, and M. No-
lin. Industrial grading of quality requirements
for automotive software component technolo-
gies. In Embedded Real-Time Systems Imple-
mentation Workshop in conjunction with the
26th IEEE International Real-Time Systems
Symposium, 2005 Miami, USA, December 2005.

2

SEUC 2006 Workshop Programme

Session 2: Programming

Ambient-Oriented Programming:
Language Support to Program the Disappearing Computer

Jessie Dedecker∗ Tom Van Cutsem∗

Stijn Mostinckx† Wolfgang De Meuter Theo D’Hondt
Programming Technology Laboratory

Department of Computer Science
Vrije Universiteit Brussel, Belgium

jededeck | tvcutsem | smostinc | wdmeuter | tjdhondt@vub.ac.be

1. INTRODUCTION
The past couple of years, pervasive and ubiquitous comput-
ing have received more and more attention from academia
and industry alike. Wireless communication technology and
mobile computing technology have reached a sufficient level
of sophistication to support the development of a new breed
of applications. Mobile networks will play an important role
to realize ubiquitous computing scenarios because through
cooperation of different devices context can be derived. For
example, a meeting can be automatically detected by a mo-
bile phone by identifying a video-projector in a room and ask
if it is beaming a video signal. This small example already
shows that the cooperation between devices plays an impor-
tant role to derive the a device’s context. Hence, realizing
the vision of ubiquitous computing entails the construction
of a distributed system.

At the software-engineering level, we observe that thus far,
no general stable, robust and standard ubiquitous comput-
ing platform has emerged. Moreover, although there has
been a lot of active research with respect to mobile comput-
ing middleware [14], we see little innovation in the field of
programming language research. Although distributed pro-
gramming languages are rare, they form a suitable devel-
opment tool for encapsulating many of the complex issues
engendered by distribution [2, 3]. The distributed program-
ming languages developed to date have either been designed
for high-performance computing (e.g. X10 [5]), for reliable
distributed computing (e.g. Argus [13] and Aeolus [20]) or
for general-purpose distributed computing in fixed, station-
ary networks (e.g. Emerald [10], Obliq [4], E [15]). None
of these languages has been explicitly designed for mobile

∗Research Assistant of the Fund for Scientific Research Flan-
ders, Belgium (F.W.O.)
†Author funded by a doctoral scholarship of the “Institute
for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT Vlaanderen”

networks. They lack the language support necessary to deal
with the radically different network topology.

In this paper we take the position that a new breed of
programming languages is needed to deal and manage the
complexity that arises from the novel hardware constella-
tion used to realize the vision of ubiquitous computing. In
our approach we started from analyzing important phenom-
ena exhibited by such hardware constellations. Based on
this analysis we derived characteristics for a novel comput-
ing paradigm, which we have named the ambient-oriented
programming paradigm [7], to program such systems.

2. HARDWARE PHENOMENA
Based on the fundamental characteristics of mobile hard-
ware, we distill a number of phenomena which mobile net-
works exhibit. There are two discriminating properties of
mobile networks: applications are deployed on mobile de-
vices which are connected by wireless communication links
with a limited communication range. The type of device and
the type of wireless communication medium can vary, lead-
ing to a diverse set of envisaged applications. Devices might
be as small as coins, embedded in material objects such as
wrist watches, door handles, lamp posts, cars, etc. They
may even be as lightweight as sensor nodes or they may be
material objects “digitized” via an RFID tag1. Devices may
also be as “heavyweight” as a cellular phone, a PDA or a
car’s on-board computer. All of these devices can in turn
be interconnected by a diverse range of wireless networking
technology, with ranges as wide as WiFi or as limited as
IrDA.

Mobile networks composed of mobile devices and wireless
communication links exhibit a number of phenomena which
are rare in their fixed counterparts. In previous work, we
have remarked that mobile networks exhibit the following
phenomena [7]:

Volatile Connections. Mobile devices equipped with wire-
less media possess only a limited communication range,
such that two communicating devices may move out
of earshot unannounced. The resulting disconnections
are not always permanent: the two devices may meet

1Such tags can be regarded as tiny computers with an ex-
tremely small memory, able to respond to read and write
requests.

again, requiring their connection to be re-established.
Quite often, such transient disconnections should not
affect an application, allowing both parties to con-
tinue with their conversation where they left off. These
volatile disconnections do expose applications to a much
higher rate of partial failure than that which most dis-
tributed languages or middleware have been designed
for.

Ambient Resources. In a mobile network, devices spon-
taneously join with and disjoin from the network. The
same holds for the services or resources which they
host. As a result, in contrast to stationary networks
where applications usually know where to find their re-
sources via URLs or similar designators, applications
in mobile networks have to find their required resources
dynamically in the environment. Moreover, applica-
tions have to face the fact that they may be deprived
of the necessary resources or services for an extended
period of time. In short, we say that resources are
ambient : they have to be discovered on proximate de-
vices.

Autonomous Devices. In mobile wireless networks, de-
vices may encounter one another in locations where
there is no access whatsoever to a shared infrastruc-
ture (such as a wireless base station). Even in such
circumstances, it is imperative that the two devices
can discover one another in order to start a useful col-
laboration. Relying on a mobile device to act as infras-
tructure (e.g. as a name server) is undesirable as this
device may move out of range without warning [11].
These observations lead to a setup where each device
acts as an autonomous computing unit: a device must
be capable of providing its own services to proximate
devices. Devices should not be forced to resort to a
priori known, centralized name servers.

Natural Concurrency Due to their close coupling to the
physical world, most pervasive applications are also
inherently event-driven. Writing correct event-based
programs is far from trivial. There is the issue of con-
currency control which is innate in such systems. Fur-
thermore, from a software design point of view, event-
based programs have very intricate, confusing, control
flow as they are not based upon a simple call-return
stack.

As the complexity of applications deployed on mobile net-
works increases, the above unavoidable phenomena cannot
keep on being remedied using ad hoc solutions. Instead, they
require more principled software development tools specifi-
cally designed to deal with the above phenomena. For some
classes of applications – such as wireless sensor networks
– such domain-specific development tools are emerging, as
can be witnessed from the success of TinyOS [12] and its
accompanying programming language NesC [8].

3. AMBIENT-ORIENTED PROGRAMMING
In the same way that referential transparency can be re-
garded as a defining property for pure functional program-
ming, this section presents a collection of language design
characteristics that discriminate the AmOP paradigm from

classic concurrent distributed object-oriented programming.
These characteristics have been described earlier [6] and are
repeated in the following four sections.

3.1 Classless Object Models
As a consequence of argument passing in the context of re-
mote messages, objects are copied back and forth between
remote hosts. Since an object in a class-based program-
ming language cannot exist without its class, this copying
of objects implies that classes have to be copied as well.
However, a class is – by definition – an entity that is con-
ceptually shared by all its instances. From a conceptual
point of view there is only one single version of the class
on the network, containing the shared class variables and
method implementations. Because objects residing on dif-
ferent machines can autonomously update a class variable of
“their” copy of the class or because a device might upgrade
to a new version of a class thereby “updating” its methods,
a classic distributed state consistency problem among repli-
cated classes arises. Independent updates on the replicated
class – performed by autonomous devices – can cause two
instances of the “same” class to unexpectedly exhibit dif-
ferent behaviour. Allowing programmers to manually deal
with this phenomenon requires a full reification of classes
and the instance-of relation. However, this is easier said
than done. Even in the absence of wireless distribution,
languages like Smalltalk and CLOS already illustrate that
a serious reification of classes and their relation to objects
results in extremely complex meta machinery.

A much simpler solution consists of favouring entirely self-
sufficient objects over classes and the sharing relation they
impose on objects. This is the paradigm defined by prototype-
based languages like Self [18]. In these languages objects
are conceptually entirely idiosyncratic such that the above
problems do not arise. Sharing relations between different
prototypes can still be established (such as e.g. traits [17])
but the point is that these have to be explicitly encoded by
the programmer at all times2. For these reasons, we have
decided to select prototype-based object models for AmOP.
Notice that this confirms the design of existing distributed
programming languages such as Emerald, Obliq, dSelf and
E which are all classless.

3.2 Non-Blocking Communication Primitives
Autonomous devices communicating over volatile connec-
tions necessitate non-blocking communication primitives since
blocking communication would harm the autonomy of mo-
bile devices. First, blocking communication is a known
source of (distributed) deadlocks [19] which are extremely
hard to resolve in mobile networks since not all parties are
necessarily available for communication. Second, blocking
communication primitives would cause a program or device
to block long-lasting upon encountering volatile connections
or temporary unavailability of another device [14, 16]. As
such, the availability of resources and the responsiveness of
applications would be seriously diminished.

2Surely, a runtime environment can optimise things by shar-
ing properties between different objects. But such a sharing
is not part of the language definition and can never be de-
tected by objects.

Non-blocking communication is often confused with asyn-
chronous sending, but this neglects the (possibly implicit)
corresponding ‘receive’ operation. Non-blocking reception
gives rise to event-driven applications, responsive to the
stream of events generated by spontaneously interacting au-
tonomous devices. We thus conclude that an AmOP lan-
guage needs a concurrency model without blocking commu-
nication primitives.

3.3 Reified Communication Traces
Non-blocking communication implies that devices are no
longer implicitly synchronised while communicating. How-
ever, in the context of autonomously collaborating devices,
synchronisation is necessary to prevent the communicating
parties from ending up in an inconsistent state. Whenever
such an inconsistency is detected, the parties must be able
to restore their state to whatever previous consistent state
they were in, such that they can synchronise anew based on
that final consistent state. Examples of the latter could be
to overrule one of the two states or deciding together on a
new state with which both parties can resume their compu-
tation. Therefore, a programming language in the AmOP
paradigm has to provide programmers with an explicit rep-
resentation (i.e. a reification) of the communication details
that led to the inconsistent state. Having an explicit reified
representation of whatever communication that happened,
allows a device to properly recover from an inconsistency by
reversing (part of) its computation.

Apart from supporting synchronisation in the context of
non-blocking communciation, reified communication traces
are also needed to be able to implement different message
delivery policies. A broad spectrum of such policies exists.
For example, in the M2MI library [11], messages are asyn-
chronously broadcasted without guarantees of being received
by any listening party. In the actor model on the other hand,
all asynchronous messages must eventually be received by
their destination actor [1]. This shows that there is no sin-
gle “right” message delivery policy because the desired deliv-
ery guarantee depends on the semantics of the application.
Reifying outgoing communication traces allow one to make
a tradeoff between different delivery guarantees. Program-
ming languages belonging to the AmOP paradigm should
make this possible.

3.4 Ambient Acquaintance Management
The combination of autonomous devices and ambient re-
sources which are dynamically detected as devices are roam-
ing implies that devices do not necessarily rely on a third
party to interact with each other. This is in contrast to
client-server communication models where clients interact
through the mediation of a server (e.g. chat servers or white
boards). The fact that communicating parties do not need
an explicit reference to each other beforehand (whether di-
rectly or indirectly through a server) is known as distributed
naming [9]. Distributed naming provides a mechanism to
communicate without knowing the address of an ambient
resource. For example, in tuple space based middleware this
property is achieved, because a process can publish data in
a tuple space, which can then be consulted by the other pro-
cesses based on a pattern matching basis. Another example
is M2MI [11], where messages can be broadcast to all objects
implementing a certain interface.

We are not arguing that all AmOP applications must nec-
essarily be based on distributed naming. It is perfectly pos-
sible to set up a server for the purposes of a particular ap-
plication. However, an AmOP language should allow an
object to spontaneously get acquainted with a previously
unknown object based on an intensional description of that
object rather than via a fixed URL. Incorporating such an
acquaintance discovery mechanism, along with a mechanism
to detect and deal with the loss of acquaintances, should
therefore be part of an AmOP language.

4. POSITION
The defining characteristics of the AmOP paradigm influ-
ence the structure of the applications written in the paradigm.
For example, the non-blocking communication characteris-
tic results in an event-driven programming model. Programs
written based on such an event model are usually complex
because the code is cluttered with callbacks. Callbacks force
the developer to encode the continuations of an applica-
tion manually and this complicates the code enormously.
Our position is that languages with explicit support to deal
with these hardware phenomena are a necessary first step to
reduce the complexity of software that enables ubiquitous
computing. For this reason our research focusses on find-
ing language features that reduce the program complexity
brought by the different hardware phenomena. An AmOP
language that serves as a laboratory to experiment with such
language features has already been reported on [7].

5. REFERENCES
[1] Agha, G. Actors: a Model of Concurrent

Computation in Distributed Systems. MIT Press, 1986.

[2] Bal, H. E., Steiner, J. G., and Tanenbaum, A. S.
Programming languages for distributed computing
systems. ACM Comput. Surv. 21, 3 (1989), 261–322.

[3] Briot, J.-P., Guerraoui, R., and Lohr, K.-P.
Concurrency and distribution in object-oriented
programming. ACM Computing Surveys 30, 3 (1998),
291–329.

[4] Cardelli, L. A Language with Distributed Scope. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(1995), ACM Press, pp. 286–297.

[5] Charles, P., Grothoff, C., Saraswat, V.,
Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., and Sarkar, V. X10: an object-oriented
approach to non-uniform cluster computing. In
OOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming
systems languages and applications (New York, NY,
USA, 2005), ACM Press, pp. 519–538.

[6] Dedecker, J., Van Cutsem, T., Mostinckx, S.,
D’Hondt, T., and De Meuter, W.
Ambient-Oriented Programming. In OOPSLA ’05:
Companion of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications (2005), ACM Press.

[7] Dedecker, J., Van Cutsem, T., Mostinckx, S.,
D’Hondt, T., and De Meuter, W.

Ambient-oriented Programming in Ambienttalk. In
Proceedings of the 20th European Conference on
Object-oriented Programming (ECOOP) (2006),
D. Thomas, Ed., Lecture Notes in Computer Science,
Springer. To Appear.

[8] Gay, D., Levis, P., von Behren, R., Welsh, M.,
Brewer, E., and Culler, D. The nesC language: a
holistic approach to networked embedded systems. In
ACM SIGPLAN Conference on Programming
Language Design and Implementation (2003).

[9] Gelernter, D. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems 7, 1 (Jan 1985), 80–112.

[10] Jul, E., Levy, H., Hutchinson, N., and Black, A.
Fine-grained mobility in the Emerald system. ACM
Transactions on Computer Systems 6, 1 (February
1988), 109–133.

[11] Kaminsky, A., and Bischof, H.-P. Many-to-many
invocation: a new object oriented paradigm for ad hoc
collaborative systems. In OOPSLA ’02: Companion of
the 17th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications (New York, NY, USA, 2002), ACM Press,
pp. 72–73.

[12] Levis, P., Madden, S., Gay, D., Polastre, J.,
Szewczyk, R., Woo, A., Brewer, E. A., and
Culler, D. E. The emergence of networking
abstractions and techniques in TinyOS. In Proceedings
of the first Symposium on Networked Systems Design
and Implementation (NSDI 2004) (March 29-31 2004),
USENIX, pp. 1–14.

[13] Liskov, B. Distributed programming in Argus.
Communications Of The ACM 31, 3 (1988), 300–312.

[14] Mascolo, C., Capra, L., and Emmerich, W.
Mobile Computing Middleware. In Advanced lectures
on networking. Springer-Verlag New York, Inc., 2002,
pp. 20–58.

[15] Miller, M., Tribble, E. D., and Shapiro, J.
Concurrency among strangers: Programming in E as
plan coordination. In Symposium on Trustworthy
Global Computing (April 2005), R. D. Nicola and
D. Sangiorgi, Eds., vol. 3705 of LNCS, Springer,
pp. 195–229.

[16] Murphy, A., Picco, G., and Roman, G.-C. Lime:
A middleware for physical and logical mobility. In
Proceedings of the The 21st International Conference
on Distributed Computing Systems (2001), IEEE
Computer Society, pp. 524–536.

[17] Ungar, D., Chambers, C., Chang, B.-W., and
Hölzle, U. Organizing programs without classes.
Lisp Symb. Comput. 4, 3 (1991), 223–242.

[18] Ungar, D., and Smith, R. B. Self: The power of
simplicity. In Conference proceedings on
Object-oriented Programming Systems, Languages and
Applications (1987), ACM Press, pp. 227–242.

[19] Varela, C. A., and Agha, G. A. What after java?
from objects to actors. In WWW7: Proceedings of the
seventh international conference on World Wide Web
7 (Amsterdam, The Netherlands, The Netherlands,
1998), Elsevier Science Publishers B. V., pp. 573–577.

[20] Wilkes, C., and Leblanc, R. Rationale for the
design of aeolus: A systems programming language for
an action/object system. In Proceedings of the IEEE
CS 1986 International Conference on Computer
Languages (New York, Oct. 1986), IEEE, pp. 107–122.

A Top-Down Approach to Writing Software for
Networked Ubiquitous Systems

Urs Bischoff
Lancaster University, UK

Abstract — First implementations of ubiquitous
computing systems have shown promising results for a
business environment. By integrating computing resources
into real physical objects we can move the execution or
monitoring of business processes closer to where the actual
process happens. This can reduce cost and reaction time.
Despite this promise there is a lack of standardised
protocols. This makes it difficult for an application
developer to implement business applications on top of a
given network. We argue that a top-down approach to
writing applications is useful. We propose a high-level
language that can specify a ubiquitous network's global
behaviour. A compiler can automatically generate device-
level executables from this global specification.

I. What are we talking about?

Writing software can be a challenging task. Especially
when we are dealing with applications in a complex
environment. The ubiquitous computing scenario
provides us with such an environment. This position
paper focuses on an essential part of a software design
process for this environment; it is about implementing
applications for an environment of ubiquitous computers.

We are interested in applications in a business
environment. Nowadays IT-solutions in this environment
are based around a powerful backend infrastructure that
collects all necessary input data in order to execute a
centralised process. The ubiquitous computing vision has
changed this architecture. By embedding computers into
the actual physical environment, into the physical
products, we can push the computation into the network.
The execution or monitoring of business processes can
be done closer to where the actual process happens. This
can reduce cost and reaction time.

By embedding computers and sensors into objects we
can make these objects “smart”; accordingly we call
them smart objects. Our vision is a world of these smart
objects and other more powerful devices (e.g. PDAs) that
can provide useful services to a business. We refer to
such a network as a smart object system.

What do we need to make a deployment of such a
network feasible? We need a network that can execute the
required services. If an application developer wants to
deploy services in the network, then they should not need
the expert knowledge of the system designer.

II. What are the problems?

The network we are addressing is highly distributed. It
mainly consists of embedded computers (i.e. smart
objects). Other devices (e.g. PDAs, PCs or RFID-tags)
can interact with this system; they can use it or provide

services for the system. The resulting network is very
heterogeneous.

Compared to traditional distributed systems (e.g. [1])
we face slightly different problems. Efficiency, for
example, is defined in different terms. Throughput and
latency do not play the major role in smart object
systems. Because the wireless devices are normally
battery powered, minimum energy consumption is an
important design criterion. Dealing with this kind of
problems requires a lot of low-level knowledge. This can
be a challenging task for an application designer.

Because of the young nature of the field, there are not
any well-established protocols for communication and
collaboration between devices. It is difficult to define
common protocols, because we are dealing with a variety
of totally different hardware platforms. They range from
passive RFID-tags to high-end PCs. It is hard to establish
a “narrow waist”, or a common layer, that all devices can
implement. There is no “TCP/IP” for smart object
systems.

In a smart object system the network as a whole is in
the centre of concern. The user is interested in the results
of a running service. Knowing the individual node(s) that
execute(s) this service is of less interest. This is in
contrast to a more traditional point of view that focuses
on a single device in a distributed environment. The
ubiquitous computing vision of a large number of
“invisible” devices strengthens the network-centric or
global view in contrast to the node-centric one.
Evaluation (at all stages) is difficult. We are dealing with
new technology that allows for fundamentally new
applications. Domain experts of the business
environment may be unable to make use of this new
potential. It is important to find a way to close the gap
between domain knowledge and the way new technology
can make use of this knowledge.

There is a lack of usable and stable programming
abstractions or middleware solutions. Experts are needed
to design the whole system (hardware and software) from
scratch. It can be challenging for an application
developer who is an expert in the actual business
environment to implement or adapt applications.

III. The Top-Down Approach

Communication protocols and applications are
traditionally organised in different layers [2]. This
encourages the design of device-based software on top of
established layers. This approach works well in a
traditional network where we can find these well-
established layers (e.g. TCP/IP). We described the

problems of establishing common layers in a smart
object system. Furthermore, we showed that the network
as a whole as opposed to single networked devices is in
the centre of concern. In contrast to this bottom-up
approach we favour a top-down approach.

We propose an abstraction that allows an application
developer to write network services in a high-level
language. This definition of a service does not have to
specify where and how this service is executed in the
network; it only specifies what the network as whole has
to do and what results the user expects.

Related projects identified that many business
processes are described in form of rules [3]. Rules are
very natural - they can be understood by both humans
and computers. We therefore developed a rule-based
language for smart object systems.

In the following we show a simple example. For
illustration purposes we have simplified the language. In
this scenario we want to implement a service that can
detect when a storage room is too hot for products that
need to be chilled.

SPACE(storage), TIME(SIMULTANEOUS) {
STATE tooWarm : product(X),

hasToBeChilled(X),
hot().

}
The network is in a state tooWarm if there is a product X
that needs to be chilled and the storage room is hot. This
rule has a spatial and a temporal constraint. The rule is
only valid in a certain region and at a certain time. In our
example, the rule is restricted to a region called storage.
A rule consists of a goal (tooWarm) and several
conditions (e.g. product(X)). The temporal constraint in
our example specifies that all conditions have to be valid
simultaneously in order to satisfy the whole rule.
An application developer might have to specify several
rules. In the example above there is a condition called
hot(). However, it does not say how warm a room has to
be in order to be hot. A rule specifying that it is hot if the
temperature is more than 25 degrees centigrade has to be
defined:

SPACE(storage), TIME(SIMULTANEOUS) {
hot() : temperature(X),

X>25.
}
Similar rules are defined for product(X) and
hasToBeChilled(X).

Each device in the network exposes an interface; it
specifies the device's capabilities and properties. A
device that can measure the room temperature, for
example, defines a capability temperature(X) in its
interface. Other devices have different capabilities. In
order to provide the whole service, they have to
collaborate.

By using the temporal and spatial constraints we can
define the global behaviour of a network. The declarative
nature of this language allows us to separate the
definition from the execution of a service. Another

advantage of this declarative language is its implicit
parallelism; rule conditions that could be executed in
parallel can be easily extracted.

Analogously to a compiler for a single device
application we can have a process that can translate the
rule-based service description into a distributed
application for the given network. The network is given
by all the interfaces of the devices in the network.

The service description does not specify where and
how a service has to be executed; it could be centralised
or fully distributed. The choice is left to the translation
process. This process has to decide which nodes require
what knowledge and how they can collaborate in order to
provide the specified service. The translation can be
influenced by a translation policy; minimising overall
energy consumption is one example of such a policy.
This translation process is the biggest challenge of this
top-down approach.

IV. Conclusion

In order to make ubiquitous networks more accessible
to application developers we need programming
abstractions. It is important to find a trade-off between a
problem specific language and a very generic abstraction.
We proposed a rule-based language. Rules are widely
used to specify business processes; the translation of
such a natural language rule into an application is
straightforward. Furthermore, the domain expert is
familiar with rules. By hiding the complexity of the
underlying network the application developer can focus
on the correctness of the service rules. Evaluation time
can be reduced.

The proposed top-down approach is suitable for
heterogeneous networks. This approach does not require
all nodes to have the same common communication
protocols. We still require them to be able to
communicate with each other. However, we do not build
applications on top of certain common layers.

By automating the translation process the application
developer does not have to deal with communication,
synchronisation or other low-level optimisation problems
which make distributed application complex and error-
prone.

References

[1] The Message Passing Interface (MPI) Standard. Available:
http://www-unix.mcs.anl.gov/mpi/

[2] Open Systems Interconnection – Basic Reference Model:
The Basic Model. ISO/IEC 7498-1, 1994.

[3] M. Strohbach, H.W. Gellersen, G. Kortuem and C. Kray.
Assessing Real World Situations with Embedded
Technology. In Proceedings of the Sixth International
Conference on Ubiquitous Computing (Ubicomp), 2004.

http://www-unix.mcs.anl.gov/mpi/

Context-Aware Error Recovery in
Mobile Software Engineering

Nelio Cacho
1
, Sand Correa

2
, Alessandro Garcia

1
, Renato Cerqueira

2
, Thais Batista

3

1
Computing Department, Infolab21, Lancaster University – UK

2
Computer Science Department, PUC-Rio – Brazil
3
Computer Science Department, UFRN – Brazil

1. Motivation
The recent advances on mobile computing have enabled the development of a wide variety of pervasive mobile

applications, which are able to monitor and exploit dynamically-changing contextual information from users and

surrounding environments. However, with mobile software systems becoming applicable in many sectors, such

as ambient intelligence, manufacturing, and healthcare, they have to cope with an increasing number of

erroneous conditions and satisfy stringent dependability requirements on fault tolerance, integrity, and

availability. Hence a deep concern to engineers of dependable mobile systems is how to properly deal and handle

errors in the presence of contextual changes. Dependable systems traditionally detect errors caused by

environmental, software, and hardware faults, and employ error-recovery techniques to restore normal

computation.

Exception handling and replication techniques are complementary fundamental means to design and implement

error recovery in software systems. Exception handling [2] is a forward-recovery technique that provides

abstractions and mechanisms to respectively model and treat erroneous states, such as exceptions, handlers,

exception interfaces, control of the abnormal control flow, exception propagation, and so forth. Replication is a

backward-recovery technique based on the concept of replicated software component, that is, a component with

representations in more than one host [5, 6]. In this position paper, we first discuss (Section 2) the impact of

context-awareness on the characterization and handling of erroneous conditions in mobile applications. The idea

is to understand why and to what extent the traditional abstractions and mechanisms from exception handling

and software replication techniques need to be rethought and adapted to the engineering of dependable mobile

applications. Based on this initial discussion, we draw some software engineering challenges for such

applications (Section 3).

2. Is it an Error? How to Handle it? Well… It Depends on the Context

Contextual Errors. Based on our previous experience on the design of pervasive mobile applications [1, 3], we

have found that the characterization of a plethora of erroneous conditions have a direct impact from contextual

system changes. For example, a software component state may be considered an error in a given contextual

configuration, but it may be not in others. In addition, several concurrently thrown events relative to contextual

information in different devices can occur in a mobile application, which together means the occurrence of a

more serious abnormal situation. For instance, fire occurrences affect many sensors which can throw different

concurrently exceptions that individually represent one localized problem but should be handler as a more

severe, general fault by all the mobile devices located at the impacted physical region.

Implications of Contextual Changes on Error Recovery. The importance of exploiting contextual changes in

mobile systems seems not only restricted to the characterization of errors themselves, but also in the way they

need to be handled by the error recovery techniques. First, error propagation needs to be context aware since it

needs to take into consideration the dynamic system boundaries and the frequent variation of device contexts

such as fluctuating network bandwidth, temperature changes, decreasing battery power, changes in location or

device capabilities, degree of proximity to other users, and so forth. Second, contextual information also may

impact on the selection of error handlers and the determination on which and how many software replicas need

to be executed.

Asynchrony and Openness Issues. With physical mobility, network failures are one of the greatest concerns

once wireless communication is susceptible to frequent disconnections. To address this issue, asynchronous

communication mechanisms become the main pattern of device interactions. However, traditional mechanisms

for exception handling and replica management in distributed systems, such as transactions and checkpointing

techniques, rely often on the utilization of synchronous communication protocols. Additionally, the openness

characteristic of several context-aware mobile systems complicates this scenario. Such characteristic leads to

increased unpredictability of erroneous conditions, and involves a diversity of devices with different capabilities

which in some situations are not aware about certain errors in dynamically-changing environments.

3. Engineering Dependable Context-Aware Systems: Research Challenges

This section discusses how the influence of context-awareness on error detection and handling brings new

software engineering challenges to designers of exception handling (Section 3.1) and replication techniques

(Section 3.2).

3.1. Context-Aware Exception Handling

Context-awareness seems to indicate that the handling of exceptional situations in mobile applications is more

challenging, which in turn makes it impossible the direct application of conventional exception handling

abstractions and mechanisms used in sequential and distributed systems [4]. First, since error propagation needs to

be context-aware (Section 2), new software engineering abstractions are necessary to allow designers to define

proper exception handling scopes in the structuring of their mobile applications. For example, exceptions may need

to be dynamically propagated to different groups of devices in a given physical context so that they are collectively

handled by them. Second, execution of exception handlers, selection of exception handling policies, and

exceptional control flows often need to be determined according to user or environmental contexts. Third, as the

characterization of an error itself may depend on the context, there is a need to define proper abstractions to support

the definition of such contextual exceptions. In addition, several concurrently thrown exceptions can occur in a

context-aware application, which actually mean the occurrence of a more serious abnormal situation (Section 2).

Thus, a monitoring system should be able to collect all those concurrent exception occurrences and resolve them so

that the proper exception is raised.

The openness feature creates an unawareness of the devices in terms of the existing exceptions, in which software

was developed by different designers, would not be able to foresee all the exceptions provided by the current

context. As a result, there is a need to explore the mobile collaboration infrastructure when an exceptional

context is detected by one of the peers. Thus, severe exceptions should be notified to other mobile devices even

when they have not registered interest in that specific exception. In other words, the exception should be

proactively raised in other mobile collaborative devices pertaining to the same contextual boundaries. In order to

handle the unforeseen exceptions, the receiver should start a collaborative activity to search for an adequate

handler for this received exception and handle it according to the contextual conditions.

3.2. Context-Awareness and Replication Techniques
Traditionally, replication techniques have been applied explicitly and statically at design time. As a

consequence, the designer of the application is responsible for identifying which services are critical to the

systems and making decisions about what should be made robust and which strategies should be taken. New

pervasive mobile applications, however, are much more dynamic, leading to scenarios where it is difficult to

identify in advance the critical services and their software components. Moreover, the concept of criticality itself

changes over time as context changes. As a result, a software component that is critical at a moment can lose this

property a moment later. Since replication has a high cost, it is important to update de number of replicas in the

system as the criticality of the software components and services change. Another important issue that may vary

over time, as context changes, refers to the strategy applied to the replication. Replication techniques can be

active, in which all replicas process all messages, or passive, in which only one replica processes all input and

periodically transmits its current state. Each replication strategy has its advantages and disadvantages and the

suitability of one strategy to the other is context dependent. As a result, to cope with scenarios where context

environment changes constantly, we need to explore new approaches in which the system itself can dynamically

identify the most critical components in a given context and dynamically performers the needed adaptation on

the number of copies and the replication policy. Another key issue is how to provide the application developers

with high-level programming abstractions to specify the relationship between the context information and fault-

tolerance policies.

References
[1] Cacho, N. et al. Handling Exceptional Conditions in Mobile Collaborative Applications: An Exploratory Case Study. Proceedings of the 4th Workshop

on Distributed Mobile Collaboration, WETICE.06, Manchester, UK, June 2006.

[2] Goodenough, J. B. Exception handling: issues and a proposed notation. Communications of the ACM 18, 12 (Dec. 1975), 683-696.

[3] Damasceno, K. et al. Context-Aware Exception Handling in Mobile Agent Systems: The MoCA Case. Proceedings of the 5rd SELMAS

Workshop@ICSE, May 2006.

[4] Xu, J. et al. Fault Tolerance in Concurrent Object-Oriented Software through Coordinated Error Recovery. In Proc. 25th FTCS, 1995.

[5] Anderson, T., Lee, P. Fault Tolerance: Principles and Practice. Prentice-Hall, 2nd edition, 1990.

[6] Guessoum, Z., Briot, J., Charpentier, S. Dynamic and Adaptative Replication for Large-Scale Reliable Multi-Agent Systems. Proceedings of the 1st

SELMAS Workshop@ICSE. May 2002.

Towards Effective Exception Handling Engineering in
Ubiquitous Mobile Software Systems

Nelio Cacho
1
, Alessandro Garcia

1
, Alexander Romanovsky

2
, Alexei Iliasov

2

1
Computing Department, Infolab21, Lancaster University – UK

2
Computing Science School, University of Newcastle upon Tyne - UK

1. Motivation

Resilience through Exception Handling. Exception handling techniques [3,5] provide the fundamental

abstractions and mechanisms for constructing resilient software systems. They ensure system modularity in the

presence of faults by offering software engineering abstractions for (i) representing erroneous states of software

systems and their internal modules as exceptions, (ii) introducing scopes for handling exception occurrences,

(iii) encapsulating exception handling activities into handlers, and (iv) explicitly specifying exceptional

interfaces of modules. In addition, exception handling mechanisms promote more reliable programming by

hiding from programmers a plethora of complexities relative to error handling. First, they provide explicit

support for both systemic and application-specific exception detection. Second, they implement disciplined

deviation from the normal control flow to the exceptional one, thereby automatically searching for and

activating suitable handlers upon the occurrence of exceptional states. Once handlers are successfully executed,

the system is seamlessly returned to its normal operation. Third, they tend to support simple basic solutions by

being tightly coupled to the abstractions and mechanisms of the underlying programming paradigm.

Evolution of Exception Handling Mechanisms. Since the publication of seminal papers on exception handling

[3,5], this area has received considerable attention from researchers across different communities, such as

Software Engineering, Programming Languages, Dependability and Distributed Systems. Exception handling

techniques for sequential programs were been initially designed to support the abstractions and mechanisms

mentioned above. Their designs have also been systematically enhanced in order to promote their integration

with mainstream development paradigms, such as object-orientation [6], and characteristics of modern

applications, such as concurrency and distribution [7]. For instance, exception mechanisms in distributed

concurrent systems rely on advanced transaction mechanisms in order to both cope with erroneous conditions in

multi-thread collaborations and support proper modular units for error confinement, handler attachments,

exception resolution, and exception handling scopes.

Why is Exception Handling in Ubiquitous Computing Challenging? There are several middleware systems

available nowadays for the development of ubiquitous mobile applications. Their underlying architectures rely

on different coordination models, such as tuplespaces, pub-sub mechanisms, and computational reflection.

However, such middleware systems rarely provide appropriate support for exception handling. Treatment of

exceptional conditions in mobile applications offers a number of challenges due their stringent requirements of

openness, asynchrony, context-awareness, and increased unpredictability [1,2,4]. The dynamically changing

collaboration contexts need a more flexible exception handling approach. Devices working collaboratively may

fail to perform specific actions, which may in turn affect other participants in the collaboration. This is why

exception handling cannot rely on traditional techniques such as transactions or sequential exception handling.

In addition, exception interfaces, exception resolution, search for handlers, and error propagation policies need

to adapt according to the frequent changes in the environmental and collaboration contexts. The existing

solutions are too general and not specific to the characteristics of the coordination techniques used. Typically

they are not scaleable because they do not support clear system structuring using modular units corresponding

well to the exception handling scopes in such dynamic environments.

2. Research Challenges
Based on the motivation described above, in the last two years we have performed a number of exploratory

studies [1,2,4] and derived a number of research questions which are guiding our ongoing and future work.

Some of the problems and potential directions for solutions are sketched in the following.

A. Ensuring resilience of ubiquitous software through exception handling engineering. This work will rely

on introducing a set of exception handling abstractions supporting development of resilient ubiquitous

applications. These abstractions will fit the specific characteristics of the ubiquitous systems and typical

applications and scenarios: system openness and context awareness, component mobility and autonomy, and a

large variety of errors which need to be tolerated. This work will enrich the current engineering methods with

the basic abstractions, such as exceptions, exception handlers, exception propagation, and nested scopes, to be

used by developers to design well-structured resilient ubiquitous applications which interlink in an intuitive and

effective ways separated descriptions of the normal and abnormal system and component behaviour and states.

As an example we will look into understanding of how errors need to be handled in the mobile collaborative

applications. To the best of our knowledge, there is no systematic study that investigates: (i) the intricacies of

collaborative error handling in the presence of physical mobility, and (ii) how mainstream coordination

techniques, such as pub-sub and tuple-spaced mechanisms, are appropriate to implementing robust, mobile

collaborative applications.

B. Development of a middleware supporting these abstractions in the typical paradigms used for

developing ubiquitous systems. Developers of the traditional ubiquitous middleware do not pay enough

attention to developing specialised and effective exception handling facilities. The typical assumption is that to

handle exceptions at the application level the developers will be using the standard middleware services. This is

clearly a mistake. The functionally related to exception handling are very specific and implementing them using

general services not tailored to these specific characteristics typically causes more errors and makes system

even less resilient. These services need to include exception propagation to all parties involved in handling,

managing nested scope structures, concurrent exception resolution, changing the mode of exception from the

normal one to the abnormal and back after successful recovery, detecting and raising a common set of

predefined exceptions typical for ubiquitous systems.

C. Development of the earlier architectural models explicitly incorporating the exception handling

abstractions and ensuring seamless model transformation. It is well understood nowadays that exception

handling is typically a global design issue, rather than a particularly system property to be dealt only at the

implementation stage. To ensure resilience of the ubiquitous systems they need to be architected from the

earlier steps of their development by incorporating exception handling features into their component,

connectors, and configurations. This needs development of the specialized architectural solutions (patterns,

styles and sets of standardized dedicated architectural elements) and modelling techniques (architectural views,

model specification, and model transformations). The existing fault tolerance architectures are not directly

applicable in the context of ubiquitous computing as they typically support hardwired static solutions and do not

allow context awareness of fault tolerance.

D. Aspect-oriented solutions for integrating exception handing into ubiquitous applications. One of the

general motivations for employing exception handling in the development of resilient applications is to improve

software modularity in the presence of erroneous system states [5]. The code devoted to exception detection and

handling should not be intermingled with the implementation of normal system activities. The situation is

potentially more complicated in mobile ubiquitous systems where an exceptional condition may be a result of

concurrent application-specific events in code embedded in multiple mobile devices; as a consequence, the code

needed to check invariants is typically scattered all over the mobile programs. We have performed an empirical

study [8] on the suitability of aspect-oriented programming (AOP) to promote improved modularization of

exception handling in distributed systems. Although AOP techniques have mostly worked well to lexically

separate error handling code from normal code, traditional pointcut languages seem not scale up in distributed,

ubiquitous environments. For example, we think that a state-based joinpoint model and a corresponding

specialized pointcut language (such as, the one defined in [9]) for exception detection can improve the

modularization of error handling in ubiquitous mobile applications. They can potentially provide enhanced

mechanisms to quantify exceptional context-specific conditions over sets of hosts and mobile devices.

References
[1] Cacho, N. et al. Handling Exceptional Conditions in Mobile Collaborative Applications: An Exploratory Case Study. 4th DMC Workshop, 2006.

[2] Iliasov, A., Romanovsky, A. CAMA: Structured Communication Space and Exception Propagation Mechanism for Mobile Agents. ECOOP-EHWS
2005, 19 July 2005, Glasgow.

[3] Goodenough, J. B. Exception handling: issues and a proposed notation. Commun. ACM 18, 12 (Dec. 1975), 683-696.

[4] Damasceno, K. et al. Context-Aware Exception Handling in Mobile Agent Systems: The MoCA Case. 5rd SELMAS Workshop@ICSE, May 2006.
[5] Parnas, D., Würges, H. Response to Undesired Events in Software Systems. Proc. of the 2nd International Conference on Software Engineering. San

Francisco, California, USA, pp. 437 - 446, 1976. IEEE-CS.
[6] Garcia, A., Rubira, C., Romanovsky, A., Xu, J. A Comparative Study of Exception Handling Mechanisms for Building Dependable Object-Oriented

Software. Journal of Systems and Software. 59(2001), 197-222.

[7] Xu, J. et al. Fault Tolerance in Concurrent Object-Oriented Software through Coordinated Error Recovery. In Proc. 25th FTCS, 1995.
[8] Filho, F. et al. Aspects and Exceptions: The Devil is the Details. Submitted to Foundations on Software Engineering (FSE.06), November 2006.

[9] Navarro, L. et al. Explicitly Distributed AOP using AWED. Proceedings of AOSD.06, Bonn, Germany, March 2006.

SEUC 2006 Workshop Programme

Session 3: Formal Methods

Towards Rigorous Engineering of Resilient Ubiquitous Systems
Alexander Romanovsky Kaisa Sere Elena Troubitsyna

University of Newcastle upon Tyne
UK

alexander.romanovsky@ncl.ac.uk

Aabo Akademi University
Finland

kaisa.sere@abo.fi

Aabo Akademi University
Finland

etroubit@abo.fi

1. Introduction
Ubiquitous systems should smoothly weave themselves into our everyday life. In general,
ubiquitous systems are complex computing environments integrating a large number of
heterogeneous devices. Such computing environments can be considered as complex decentralized
distributed systems composed of loosely-coupled components asynchronously communicating
while providing system services. Since the system components are typically autonomous and
mobile, the systems as such are open and dynamically reconfigurable. To ensure reliable provision
of system services in presence of component mobility, dynamically changing configuration and
inherent unreliability of communicating channels, we should aim at designing resilient systems,
i.e., the systems which are able to withstand unpredictable changes and faults in their computing
environments.

2. Resilient Ubiquitous Systems
Ensuring predictable and correct behaviour of ubiquitous systems is an open issue as the
developers of these systems are facing overwhelming complexity coming from various sources.
Generally speaking, this complexity is caused by a large size, openness and distributed nature of
such systems. Let us observe that while complexity is currently perceived as a major threat to
dependability of computing systems, our society puts a high level of reliance on ubiquitous
systems, trusting them to perform a wide range of everyday critical functions. Indeed, these
systems are rapidly becoming business- and safety-critical.

Traditionally managing system complexity is achieved via abstract modelling, decomposition and
iterative development. In our work we focus on creating models and development techniques for
designing resilient ubiquitous systems. For instance, we specifically focus on explicit modelling of
mechanisms for coping with system impairments (faults, errors and failures), since a resilient
system needs to be constructed and shown to be predictably tolerant to the faults, which are most
harmful and most likely to affect the overall system service.

Fault tolerance is an acute issue in designing resilient ubiquitous systems. First of all, this is due to
the fact that complexity and openness of these systems make it impossible to avoid or remove
faults altogether. Moreover, fault tolerance is needed because of a high heterogeneity of
components, modes of operation and requirements, causing mismatches. Furthermore, the growing
involvement of the non-professional users requires improved fault tolerance.

Complexity of ubiquitous systems makes it extremely difficult for the developers to design
appropriate and effective fault tolerance measures. Such systems are susceptible to tangled
erroneous conditions caused by combinations of errors, their complex interference, as well as
errors caused by malfunctioning infrastructures and misbehaving hosts, agents and people.

The worst thing the developers should be doing is including fault tolerance measures that make
systems more complex and more error-prone.

3. Challenges in Engineering Ubiquitous Systems
Widely used ad-hoc techniques for engineering ubiquitous systems provide cheap and quick
solutions for constructing various “lightweight” applications, but cannot ensure the appropriate
level of system resilience when used in designing complex business- or safety-critical applications.
To guarantee a high degree of resilience of such applications, we need to employ rigorous methods

for system engineering – the methods, which support a disciplined development process based on
formal modelling and reasoning about system correctness. This is why one of the main challenges
in engineering complex ubiquitous systems is the creation of advanced models and methodologies
for resilience-explicit rigorous design. This will include development of the generic design and
modelling patterns and tools supporting the rigorous methods.

The methods and models defined will need to support a systemic approach to development. While
adopting such an approach we will model the system together with the relevant part of its
environment and decompose it into the software- and hardware-implemented parts later in the
development process. This approach should be especially suitable for resilience-explicit
development of ubiquitous systems since it will allow developers to clearly express the essential
properties of the system without imposing constraining design decisions early in the design
process.

In particular, we have identified a number of specific issues which resolution will contribute to the
creation of a viable methodology for rigorous engineering of resilient ubiquitous systems:

− ensuring interoperability of independently developed components in formal construction of
ubiquitous systems

− design and formal modelling of advanced mechanisms for tolerating faults typical for
ubiquitous systems

− development of application-level fault tolerance techniques, such as flexible open exception
handling mechanisms suitable for the open asynchronous and anonymous systems

− formal modelling and development of resilient context-aware ubiquitous systems.

4. Research on Ubiquitous Systems in RODIN Project
Currently we are involved in a FP6 STREP-project on Rigorous Open Development Environment
for Complex Systems - RODIN http://rodin.cs.ncl.ac.uk. Among the methodological and
technological issues addressed by RODIN we are actively working on creating a methodology for
rigorous development of fault tolerant agent systems. As a case study we develop an
implementation of Ambient Campus – a multi-agent application facilitating studies of students via
mobile hand-held devices. Our implementation will be obtained through the rigorous modelling
and development.

To attain this goal we have identified an initial set of the abstractions to be used for developing
resilient ubiquitous applications. They support locations, scopes, agents, roles, exception
propagation, etc. Then we have proposed a collection of development patterns supporting rigorous
development of fault tolerant multi-agent systems in the B Method. In particular we have
demonstrated how formal development allows us to ensure interoperability of independently-
developed agents. Moreover, we have created an approach to rigorous stepwise development of the
distributed fault tolerant middleware for multi-agent systems.

In parallel with our work on top-down approaches to the development of ubiquitous systems, we
put forward bottom-up, model-checking approaches. We have identified typical behavioural
patterns of ubiquitous systems and propose model-checking techniques optimized for these
patterns.

Our ongoing work contributes not only to the methodology of developing resilient ubiquitous
systems but also to the creating the RODIN tool platform. By exercising the platform in modelling
multi-agent systems we enhance its capability in dealing with novel complex computational
phenomena, such as resilient ubiquitous systems.

Controlling Feature Interactions In Ubiquitous Computing Environments

Tope Omitola

University of Cambridge, Computer Laboratory

15 JJ Thomson Avenue Cambridge CB3 0FD UK

too20@cam.ac.uk

1 Abstract

Ubiquitous computing depicts a world where several
electronic objects are embedded everywhere in the
environment and made available to people using a
wide variety of user interfaces. These objects need
to co-operate and interact to help users achieve their
goals. These interactions will lead to a high propor-
tion of feature interactions. A feature interac-

tion is some way in which a feature modifies another
feature in the overall system’s behaviour set, thus
affecting overall system’s reliability and dependabil-
ity, and therefore users’ trust in the system. This
paper describes a solution to the Feature Inter-

action problem. We take advantage of the onto-
logical descriptions of these electronic objects, and
provide a language of interaction used to specify ob-
jects’ intended behaviour; and we use a deductive sys-
tem which detects possible feature interactions before
they occur, and takes ameliorating actions.

2 Introduction

Some of the properties of the elements of a ubiquitous
computing environment are:

• the devices will be of limited storage, processing,
display and battery power capabilities

• the computing environment will be open [1], i.e.
there will be a continual entry, exit, and re-
entry of devices and applications from disparate
sources

• the resources will vary in their availability, their
quality, and their reliability

• the devices and resources will be increasingly
aware of their context, including their location,
and their relationships with the wider world
(both real and virtual)

• applications will be built by dynamically com-
posing disparate sub-systems together

• as the devices, resources, and applications have
variable characteristics, they will need to inter-
act to provide overall system behaviour, and
therefore some of them will need to have shared
access to resources

• creation of new applications and codes in the
form of rules

• and, there will be a very high potential of feature
interactions and unexplored consequences.

Although each component may work very well on its
own, composing them together will lead to a high
proportion of (unwanted) feature interactions1. A
feature is any part of a specification having a self-
contained functional role, and a feature interaction

is some way in which a feature or features modify
or influence another feature in the overall system’s
behaviour set. This influence takes many forms de-
pending on the nature of their composition. Fea-
tures might interact by causing their composition to

1More information on the feature interaction problem and
its effects can be found at [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

1

be incomplete, inconsistent, nondeterministic, or un-
implementable. Or, the presence of a feature might
simply change the meaning of another feature with
which it interacts. Effective solutions to a system’s
feature interaction problems should improve that sys-
tem’s dependability and reliability.

3 Towards Solving the Feature

Interaction Problem

It was argued in [13] that the interactions of elec-
tronic objects of the physical world of PDAs, sensors,
RFIDs, and other embedded systems of an open
Ubiquitous Computing environment will be based
on policies and rules. A policy may express such
diverse characteristics as transactionality, security,
response time, pricing, etc. For example, a policy of
a service may specify that all interactions be invoked
under transaction protection, that incoming mes-
sages have to be encrypted, that outgoing messages
will be signed, that responses may only be accepted
within thirty seconds, and that certain operations
are subject to a fee to be paid by credit card by
the invoker. Examples: XDDML [14], a system
independent device description language, is used to
describe network components in a network/bus inde-
pendent manner, and to describe devices’ properties
and behaviour of the applications they host. In
consumer electronics, CC/PP [15] is used to describe
devices’ capabilities and behaviour. A rule expresses
the relation of domains in that environment, e.g.,
a user may express that the sensors in the home
should be activated at some particular times, or they
may express rules concerning how they want service
composition to be done. Such rules may be expressed
textually, or by speech, or by a combination of both.

Since these open computing ubiquitous environ-
ments will be governed by policies and rules, we
argue for a rule-based control system to manage
and control feature interactions, and thereby to
improve the reliability and trustworthiness of these
environments.

4 Properties of the Rule Based
Control (RBC) Architecture

(1). A non-monotonic deductive system that elicits
possible feature interactions;
(2). Policies of incoming electronic objects in onto-
logical form (using, for example, RDF [16]);
(3). A Rule language to specify intended behaviour
of electronic objects interactions

5 Properties of rule specifica-

tion language

(A). Be declarative, allowing users to express be-
haviour in terms of what to be done, and not in
terms of how to do it
(B). Gives its users good primitives to express time
and duration
(C). Good primitives to express uncertain informa-
tion.
We have developed a language for such a purpose,
called Rule (Language for) Feature Interaction RFI .

5.1 Informal Semantics of RFI lan-
guage

RFI is a sorted language based on topological [17]
and metric [18] logic. Its grammar and (informal)
semantics are given below:
A Rule is of the form:

RFI ::= (EID , (ETEMP PRE • EventPRE)

→ (ETEMP POST • EventPOST))
(1)

EID is the Identifiers expression,
ETEMP PRE , ETEMP POST are temporal expres-
sions,
EventPRE is the Events’ Pre-condition expression,
and EventPOST is the Events’ Post-condition ex-
pression.

5.1.1 EID Syntax and Semantics

EID ::= (RID, RPRIO , UID, UPRIO)
RID is the rule identifier.

2

RPRIO is the rule priority. Purpose: Defines the pri-
ority for the rule.
UID is the user identifier. Purpose: Specifies the
identifier of rule creator.
UPRIO is the user priority. Purpose: Specifies prior-
ity of rule creator.

5.1.2 ETEMP {PRE,POST} Syntax and Seman-

tics

Alphabets, Terms, and Formulae

1. the temporal sort, ST

2. the granularity sort, SG , denoting the set of gran-
ularity temporal domains, such as years, months,
weeks, days, minutes, seconds

3. the temporal position operator ?(φ)

4. the granularity, ∇granularity , and displacement
operator, ∇displacement

5. the projection operator, 2, and its dual, ♦

6. a derived operator, ∇granularity
displacement, where

∇granularity
displacement = ∇granularity ∇displacement

7. a binary predicate,w, over SG , where Gi w
Gy means granularity Gi takes precedence over
granularity Gy with years w months w weeks w
days w mins w secs

8. the temporal position operator, ?(φ)F , which
evaluates F from temporal position ?(φ)

9. the projection operator 2F evaluates formula F
and F is true if F is true at all related instants,
and its dual

10. projection dual operator ♦F , where ♦F =
¬2 ¬F . It evaluates to true if F is true in at
least one related instant

11. the temporal displacement operator, ∇αF .
Here, F is true at the time instant at distance α

from the one specified by ?(φ), where α ∈ Z+

12. the granularity operator, ∇granularityF . F is
true with respect to granularity G from SG

({years, months, weeks, days, mins, secs}), and
years w months w weeks w days w mins w
secs

13. the derived temporal granularity and displace-
ment operator, ∇G

α . F is true with respect to G

and at the time instant at distance α from the
one specified by ?(φ), where α ∈ Z+

5.1.3 EventPRE and EventPOST Syntax and

Semantics

Alphabets, Terms, and Formulae

1. A set R of Resource (device and object) names,
e.g. switch1, light1, etc.

2. A set A of action names, e.g. “on”, “off”, “up”,
“down”, etc.

3. A serial conjunction operator, ⊗, which com-
poses events together sequentially

4. A serial disjunction operator, ⊕, which composes
events together but acts like a choice operator

5. A parallel operator || which joins events together
and performs them in parallel

6. A set L of logical connectives: L = { ∧, ∨ },
used to connect composite events

7. The unary operator, ¬

8. A pair of port commands P = { ? , ! }, where
? is an input port command, and ! is an output
port command

9. The quantification symbols Q = { ∃, ∀ } on R

5.1.4 Some Examples of Rules

(rule1, 3, too20, 5),

(?[2006−09−28T11:00] 2 (door!open))

→ (?[2006−09−28T11:00] 2 ∇mins
15 (door?close))

(2)

If the door is open at 11:00, keep it open for 15
minutes, and close it after 15 minutes.

3

Figure 1: RBC System Architecture

(rule2, 2, too20, 5),

(?[2006−09−28T11:00] 2 switch1!on)

→ (?[2006−09−28T11:00] 2 (∇mins
60 switch1?off)

|| (light1?on ⊗∇mins
60 light1?off))

(3)

This means, if switch1 is on at 11:00 on 28 Sept
2006 until 12:00 on 28 Sept 2006, keep light1 on dur-
ing the length of that time.

6 System Mechanism of the
Rule Based Controller

Fig. 1 shows the high level system architecture of the
RBC. It consists of:

1. Scriptlets Editor: This allows users to create
small scripts (rules) expressing intended ob-
jects’ interactions. Creation of scriptlets as
forms of interactions is compatible with socio-
anthropological studies made on how people in-
teract in everyday practice. For example, de-
Certeau [19] showed that everyday practices de-

pend on a vast ensemble which is difficult to
delimit but which we may provisionally desig-
nate as an ensemble of procedures. The latter
are schemas of operations and of technical ma-
nipulations. Procedures lack the repetitive fix-
ity of rites, customs, or reflexes. Their mobil-
ity constantly adjusts them to a diversity of ob-
jectives. Scriptlets can be viewed as the goals
and intentions of the user. Intentions are con-
duct controllers and good co-ordinators of ac-
tions [20]. For example, an intention to bring
about a particular effect will normally give rise
to one’s endeavouring to bring about that ef-
fect. To endeavour to bring about some effect
is, partly, to guide one’s conduct and actions ac-
cordingly, thereby controlling one’s conduct and
co-ordinating one’s actions. Scriptlets can be
gestures, speech, texts, or combinations of these

2. Rules Module: contains scriptlets-converted
RFI- form rules

3. Resources, represented in the system as sensors

and actuators. Sensors monitor the state of the
external world, i.e. the devices in the environ-
ment. They provide inputs to the system. The
generated actions are used by actuators to influ-
ence and/or control the external world

4. Registration Resource Module: Registers re-
sources; Generates Horn clauses of events’
sinks and sources in resources; Notifies the
Event Service of events’ sinks and sources

5. Rules Processor: Converts rules into Horn
clauses inserting them into the rule base

6. Rule Base, which consists of

• Rules in Horn clause form

• A Logic Inference Engine: Runs inferenc-
ing and reasoning algorithms on rules. The
outputs of these reasoning algorithms are
rules which have the following characteris-
tics:

– feature interaction-free

– conflict-free

4

– satisfy safety and liveness properties

(section 6.1 has more on these)

Users are notified of satisfiability of
submitted rules.

• The Execution Engine. Activates feature
interaction-free, conflict-free rules turning
them into commands that are sent to the
Event Service

We can notice from our rule-based system that
the stored knowledge (i.e. the inference engine)
is orthogonal from the control mechanism (i.e.
the execution engine). This separation is the
proclaimed, if rarely achieved, goal of rule-based
systems.

7. Events Service: Is notified of events originating
from resources; Receives commands from the
Execution Engine and generates events for re-
sources; Provides the asynchronous messaging
capability of the system.

6.1 Types of Reasoning performed on
Rules

• Conflict Detection and Resolution algorithms
which solve the following problems: a rule is an
event structure: E.S. =< τ, I, R, A ∪ Vi >

τ = Priority Assignment, I = time interval (in
milliseconds), R = resource,
A = action, Vi = action attributes.
A feature interaction problem, is defined as:
For e.s.1 ∈ E.S.1 ∧ e.s.2 ∈ E.S.2 .
e.s.1 = [τ1, i1, rX , a1]∧ e.s.2 = [τ2, i2, rX , a2] and
a truth-value binary relation R on i1 × i2 ∧ R ∈
{during, equal, overlaps, starts, ends}, there is
a feature interaction if i1Ri2 ∧ a1 6= a2 given
the same resource rX , and
A conflict discovery problem is a structure
< RuleSet1 ×RuleSet2, φ > where φ is a truth-
value binary relation on RuleSet1 × RuleSet2 .

• Safety reasoning on rules: A property P is
a safety property if for all histories H =
(H0, . . . , Hn, Hn+1, . . .), over the RuleBase B

and the domain of rules R, the following holds:
if H does not belong to P , then some prefix
(H0, H1, . . . , Ht) of H cannot be extended to any
history in P , and

• Liveness reasoning on rules: A property P is
a liveness property if any finite history H =
(H0, H1, H2, . . . , Ht) can be extended to an el-
ement of P .

6.2 Overview of System Operation

• Resources: Resource (with its RDF) registers;
Horn clauses generated for events in the RDF;
Event Service is notified of events’ sources and
sinks in RDF.

• Rules: User creates scriptlets; Converted to
RFI rules and later to Horn clauses; Reasonings,
as enumerated in 6.1, performed on rules; Fea-
ture interaction-free, conflict-free rules inserted
into Rule Base; Rules triggered by (a) temporal
elements of some rules, or (b) by events coming
from the environment through the Event Service.

7 Conclusion

Adequate solution to the feature interaction prob-
lem is needed to achieve the vision of seamless co-
operation and interaction of electronic objects of
ubiquitous computing systems. We built a rule-based
control solution where a non-monotonic deductive
system used electronic objects’ policies and users’
rules combined with powerful reasoning algorithms
to elicit and handle unwanted feature interactions.

References

[1] C. Hewitt and P. de Jong: Open Systems. Tech-
nical Report, AIM 691, A.I. Laboratory, M.I.T.
Dec. 1982

[2] L.G. Bourma, H. Velthuijsen: Feature Interac-
tions in Telecommunications Systems. pub. IOS
Press (Amsterdam), 1993

5

[3] K.E. Cheng, T. Ohta: Feature Interactions in
Telecommunications Systems III. pub. IOS Press
(Amsterdam), 1995

[4] P. Dini, R. Boutaba, L. Logrippo: Feature Inter-
actions in Telecommunications Systems IV. pub.
IOS Press (Amsterdam), 1997

[5] K. Kimbler, L.G. Bouma: Feature Interactions
in Telecommunications Systems V. pub. IOS
Press (Amsterdam), 1998

[6] M. Calder, E. Magill: Feature Interactions in
Telecommunications Systems VI. pub. IOS Press
(Amsterdam), 2000

[7] D. Amyot: Feature Interactions in Telecommu-
nications Systems VII. pub. IOS Press (Amster-
dam), 2002

[8] ISTAG Scenarios for Ambient Intelli-
gence in 2010 Final Report Feb 2001:
http://www.cordis.lu/ist/istag.htm(last viewed
Aug. 2005)

[9] Manfred Broy: Automotive Software Engineer-
ing. Proceedings of the 25th International Con-
ference on Software Engineering (ICSE), pp.
719-720, 2003

[10] NASA: Concept Definition for Distributed
Air/Ground Traffic Management (DAG-TM),
Version 1.0. Advanced Air Transportation Tech-
nologies Project. NASA Ames Research Center.
NASA Langley Research Center, 1999

[11] J. Hoekstra, R. Ruigrok, R. van Gent, J. Visser:
Overview of NLR Free Flight Project 1997-1999.
NLR-CR-2000-227, National Aerospace Labora-
tory (NLR), May 2000

[12] J. Maddalon, R. Butler, A. Geser, and C
Muńoz: Formal Verification of a Conflict Res-
olution and Recovery Algorithm. NASA/TP-
2004-213015. NASA Langley Research Center,
April 2004

[13] T. Omitola: Building Trustworthiness Into the
Semantic Grid. Workshop on Ubiquitous Com-
puting and e-Research, Edinburgh, UK 2005

[14] IDA - Interface for Distributed Automation: Ar-
chitecture Description and Specification, IDA
Group, Nov. 2001

[15] CC/PP: http://www.w3.org/Mobile/CCPP/

[16] Resource Description Framework:
http://www.w3.org/RDF/

[17] N. Rescher, J. Garson: Topological logic. Journal
of Symbolic Logic, 33, pp. 537-548, 1968

[18] R. Koymans: Specifying Message Passing and
Time-Critical Systems with Temporal Logic, in
Lecture Notes in Computer Science, vol. 651,
1992

[19] M. de Certeau: The Practice of Everyday Life.
University of California Press, 1988

[20] P. R. Cohen, J. Morgan, M.E. Pollack: Inten-
tions in Communications. MIT Press, 1990

6

Dependability Challenge in Ubiquitous Computing

Kaisa Sere, Lu Yan, Mats Neovius
Åbo Akademi University, Department of Computer Science, FIN-20520 Turku, Finland

{Kaisa.Sere, Lu.Yan, Mats.Neovius}@abo.fi

1. Background

With more than 2 billions terminals in commercial
operation world-wide, wireless and mobile
technologies have enabled a first wave of pervasive
communication systems and applications. Still, this is
only the beginning, as wireless technologies such as
RFID are currently contemplated with a deployment
potential of ten’s of billions of tags and a virtually
unlimited application potential.

Although significant R&D work has been
undertaken over recent years on these systems, most of
the research is still very application specific, with
security and environmental applications dominating
and demonstration driven. However, it is likely that
more generic and comprehensive approach is required,
where different stakeholders and research specialists
work together to solve true systems level problems.

2. Research problem

During the past years, various projects were
launched around the world on ubiquitous computing,
including Georgia Tech’s Aware Home, Inria’s Smart
Office, Stanford’s iRoom, Cisco’s Internet Home,
Essex’s Intelligent Inhabited Environments, HP’s Cool
Town, ATR’s Creative Space, CMU’s Aura, Xerox’s
Smart Media Spaces, IBM’s DreamSpace, KTH’s
comHOME, Microsoft’s EasyLiving, MIT’s Oxygen,
Philips’ Home of the Future, UW CSE’s Portolano,
Intel’s Proactive Health, UF’s Assistive Smart House,
Keio’s SSLab, etc.

Ubiquitous computing touches on a broad array of
disciplines. Though above projects in this field address
various aspects of ubiquitous computing, the
dependability problems of these systems have not
received enough attention. Nonetheless, all of these
smart objects and their applications are to be
implemented into our everyday environments. Those
systems should exhibit different aspects of
dependability, such as, reliability, availability, safety,

security, etc. Therefore, dependability has become one
major prerequisite and a must for future prevalence of
the commercial products based on those technologies.

3. Objective

In particular, ubiquitous systems will not be widely
deployed if they require users to invest substantial
amounts of time or money to keep them operating. Our
goal is to provide dependability methodology and
potential tools that (1) maximize the dependability of
ubiquitous systems, while (2) minimizing the cost of
operation (including deployment and maintenance
costs).

If we succeed to make ubiquitous system deployed
widely, they will become an integral part of the
infrastructure upon which our society depends. (1)
While some ubiquitous systems might be mission
critical (e.g., health-care, transportation, etc), the
dependability bottom line of these deployed ubiquitous
systems are safety-guaranteed. (2) Other ubiquitous
systems can mostly be categorized as QoS-related
dependability: while the unavailability of a few such
systems might be a mere inconvenience, the concurrent
outage of a large number of systems might have broad
economical consequences. For instance, it might be
acceptable if a few ubiquitous home networking go
down, but if a large number fail concurrently, our
society might be adversely impacted.

Hence, we would like to use the term ubiquitous
dependability to emphasize the difference from
traditional dependability in control systems. In
addition to inheriting most of the dependability
problems from standard control systems, the special
characteristics of the mobile and wireless
environments upon ubiquitous systems introduce new
challenges that have only begun to be studied.

4. WSN challenge

We see one important challenge in ubiquitous
computing as building dependable wireless
sensor/actuator networks (including RFIDs), as this is
one key player as well as critical milestone of
ubiquitous future: WSN (Wireless Sensor Network) is
on the brink of widespread applications in logistics,
transport, manufacturing, distribution, retail,
healthcare, safety, security, law enforcement,
intellectual property protection and many other areas.

It is our hypothesis that WSN is likely to have a
long lasting impact on our society, from both technical
and business perspectives. Therefore, it is vital that
researchers and developers investigate and address the
dependability challenges in WSN before they have a
chance to cripple the promise of the ubiquitous future.

5. Our contribution and approach

We are mainly interested in middleware, service-
oriented architecture and networking issues for
wireless sensor networks. Sensor technologies are not
considered.

As the previous work [1], we have described a
formal approach to context-aware ubiquitous
computing: we offer the context-aware action systems
framework, which enables the correct-by-construction
approach [2]. The context-aware action systems
framework is supported by its associated refinement
calculus [3], which gives us the formal techniques to
verify the correctness of the specification and develop
the system stepwise from an abstract specification to
its implementation.

Figure 1. Smart kindergarten case study

With this formalism, we stepwise derived context-

aware services for mobile applications [4], and
implemented a smart context-aware kindergarten
scenario where kids are supervised unobtrusively with
wireless sensor networks [5]. As shown in Figure 1,
the children are allowed to move freely in a predefined
area (playground), and the supervisor is able to get the
location information of all nodes (visually). When a

child leaves the predefined area, the alertness level of
the system increases, and the supervisor is informed.
Higher alertness level implies intensified
communication.

Based on the experiences gained from the case
study, we outlined an abstract design framework for
wireless sensor networks and provided guidelines with
the intension to ease reasoning about WSN as a system
and its applications [6]. Figure 2, deducted from
Nokia’s end-to-end model [7], presents a sensor
network architecture that factors out the key
functionalities required by applications and composes
them in a coherent structure, while allowing innovative
technologies and applications to evolve independently.

Figure 2. WSN architectural framework

Further, by taking a formal view of context-aware

computing that integrates different perspectives, we
look at the formal foundation and software engineering
techniques for ubiquitous context-aware and context-
dependent service derivation and application
development, and propose a notion of synthesizing
reliable complex systems from vast numbers of
unreliable components, emphasizing the relationships
between context and system. In particular, we
developed a context-dependency model as a rigorous
basis for the further development of a formal
framework for design and evaluation of context-aware
technologies [8].

6. Concluding remark

Dependability issues are approached using a variety
of methods. Formal methods in general and
verification techniques in particular are used to
guarantee software correctness. These methods can
also be used for the design of communication networks
and hardware, but they are not enough. Here
simulation and fault tolerance methods are also
appropriate. In all, our approach is to combine these
methods into a system design approach for dependable
ubiquitous systems in different levels.

References

[1] L. Yan, K. Sere, “A Formalism for Context-Aware
Mobile Computing”, Proc. Third International Symposium
on Parallel and Distributed Computing/Third International
Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Networks, Cork, Ireland, 2004.

[2] R. -J. Back, K. Sere, “From Action Systems to Modular
Systems”, Software - Concepts and Tools, (1996) 17: 26-39.

[3] R. -J. Back, J. Wright, Refinement Calculus: A Systematic
Introduction, Graduate Texts in Computer Science, Springer-
Verlag, 1998.

[4] M. Neovius, C. Beck, “From requirements via context-
aware formalisation to implementation”, Proc. the 17th
Nordic Workshop on Programming Theory, Copenhagen,
Denmark, 2005.

[5] C. Beck, An application and evaluation of Sensor
Networks, Master thesis, Åbo Akademi, Finland, 2005.

[6] M. Neovius, L. Yan, “A Design Framework for Wireless
Sensor Networks”, Proc. of the 19th IFIP World Computer
Congress, Santiago De Chile, Chile, 2006. To Appear.

[7] J. Ziegler, End-to-End Concepts Reference Model, Nokia,
2003.

[8] M. Neovius, K. Sere, L. Yan, “A Formal Model of
Context-Awareness and Context-Dependency”, Submitted to
4th IEEE International Conference on.Software Engineering
and Formal Methods, Pune, India, 2006.

Concurrency on and off the sensor network node

Matthew C. Jadud, Christian L. Jacobsen, Damian J. Dimmich

1. INTRODUCTION
The Transterpreter is a small, portable run-time for the occam-
π programming language[14, 2]. As a language, occam-π
provides powerful constructs for safely managing concur-
rency and parallelism in a framework derived from Hoare’s
Communicating Sequential Process algebra (CSP), a model
of concurrency with message-passing synchronisation prim-
itives[12]. Given the fundamentally parallel nature of wire-
less sensor networks (WSN) and their nodes, we believe there
is great value in beginning with a well-defined concurrency
model for reasoning about, and ultimately authoring, soft-
ware on the network. Here we introduce our run-time in
light of other popular environments and languages for WSN
applications, and some thoughts on possible future direc-
tions given our experiences.

2. OPERATING SYSTEMS FOR
SENSOR NETWORKS

Broadly speaking, software developed for wireless sensor net-
works either works as a custom application tailored to the
hardware, or relies on services provided by an operating sys-
tem. Where an OS layer is employed, these are either open-
source projects[4, 1, 11] or commercial solutions[20, 9, 19,
3]. In all cases, they provide different guarantees; for ex-
ample, eCos[4], an embedded version of the Linux kernel,
provides a rich, POSIX environment for programmers, while
VxWorks, a proprietary run-time system, delivers hard real-
time guarantees to programmers developing for small de-
vices.

In almost all cases, these run-time environments provide an
impoverished model of concurrency. Most operating sys-
tems for WSNs provide an event-based model of concurrency,
and rarely provide any safety for the programmer working in
this space. Race hazards, deadlock, livelock, and all the other
dangers of concurrent execution face a programmer work-
ing in the constrained space of a sensor mote. While envi-
ronments like TinyOS[11] and the corresponding language

Submitted to the SEUC 2006 workshop; this document is made available
under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5
License (http://creativecommons.org/licenses/by-nc-nd/2.5/).

nesC[8] provide some compile-time race condition checks,
the TinyOS concurrency model of events and tasks is difficult
to reason about—either formally (using modern tools for ver-
ification) or informally (as the TinyOS programming model
is rather unique).

2.1 On models and algebras
The CSP algebra, developed by Tony Hoare, has provided
a sound model for reasoning about concurrency for thirty
years. A fundamentally cooperative model of concurrency, it
has been adapted into the real-time space[17, 18], as well as
crossed into many other paradigms. Furthermore, it was im-
plemented in hardware in the form of the Transputer[21]; this
implementation of the model (in the form of the occam2 pro-
gramming language[13]) is well documented, and occam2
programs (as well as many programs written in occam-π)
are formally verifiable.

Using existing documentation, we have built a “Transputer
interpreter,” or the Transterpreter[14]. This virtual machine
(VM) for the occam-π programming language requires ap-
proximately 12KB of space on 16-bit architectures, and ex-
ecutes a concise (space-conserving) Huffman-encoded byte
code. This VM is designed to be portable and executes code
on all major desktop platforms, and has been ported to some
PDAs, mobile phones, and other small devices. It has been
most actively used at Kent in teaching robotics both on the
LEGO Mindstorms and the Pioneer3 robotics platforms[6,
15].

Unlike TinyOS, Mate[16], Mantis[1], eCos, or other virtual
machines intended for small devices, we have made a focus
of providing well-reasoned support for concurrency. While
a cooperative model of concurrency can provide some chal-
lenges in the context of hard real-time operation, it eases many
other programmer tasks in the face of concurrent and parallel
systems. We believe it is important to explore the use of con-
current programming languages (or languages that provide
powerful and appropriate abstractions for managing paral-
lelism and concurrency) in the embedded systems space.

3. MANAGING CONCURRENCY
ON THE WSN

The occam-π programming language makes it trivial to ex-
ecute processes in parallel: we simply declare them in a PAR
block. To handle communication between processes, we make
use of the CSP idioms of sending (!) and receiving (?) data
over a unidirectional, blocking, point-to-point channel be-

tween two concurrent processes. To handle multiple inputs
to a process at once, we ALTernate over many inputs, and
deal with them as they are ready. What makes these ab-
stractions particularly powerful is that they are not limited
to a single WSN node; we might just as easily be express-
ing communications between a radio driver and a buffer in
our software as between two processes running on two sep-
arate nodes in the network. The consistency of this model,
both on a node and between nodes, is a boon (in our experi-
ence) to developers. For example, we have no need for “pat-
terns,” as described by Gray et. al. with respect to TinyOS[7];
our concurrency model already has natural concurrency pat-
terns, and we can implement them directly in occam-π.

That said, there are challenges for principled languages and
run-times. For example, hard real-time constraints are al-
ways a challenge, in any language—unless you evolve your
language to explicitly support time[10]. While our run-time
provides a clean abstraction for communications—which can
easily be used for inter-node communications—robustly hid-
ing the complexities and dangers of wireless communica-
tions between nodes “in the wild” is a challenging abstrac-
tion to get right. Also, developing a portable virtual machine
requires trade-offs, and power consumption is one: is a byte
code interpreter running on a small device too power hungry
for use in the general case? Our initial tests suggest that this
is not a significant concern, but there is a subject for future
work and discussion.

Lastly, using a “different” language brings its own set of chal-
lenges. To leverage existing code, we provide facilities for
bridging from occam-π to “foreign code” (C libraries, etc.)[5];
this is a fragile process, as the C-code may violate invariants
our compiler previously guaranteed regarding safety in the
face of concurrency. And change never comes freely; despite
being a fundamentally unsafe tool, programmers may pre-
fer to implement using eCos and C, as opposed to learning a
new language that forces them to “think differently,” regard-
less of the safety such a change might bring.

4. REFERENCES
[1] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose,

A. Sheth, B. Shucker, J. Deng, and R. Han. Mantis:
system support for multimodal networks of in-situ
sensors. In WSNA ’03: Proceedings of the 2nd ACM
international conference on Wireless sensor networks and
applications, pages 50–59, New York, NY, USA, 2003.
ACM Press.

[2] F. R. M. Barnes and P. H. Welch. Communicating
Mobile Processes. In Communicating Process
Architectures 2004, pages 201–218, 2004.

[3] T. Brusehaver. Linux in air traffic control. Linux J.,
2004(117):10, 2004.

[4] C. Curley. Open source software for real-time solutions.
Linux J., 1999(66es):33, 1999.

[5] D. J. Dimmich and C. L. Jacobsen. A Foreign Function
Interface Generator for occam-pi. In J. Broenink,
H. Roebbers, J. Sunter, P. Welch, and D. Wood, editors,
Communicating Process Architectures 2005, pages
235–248, Amsterdam, The Netherlands, September
2005. IOS Press.

[6] D. J. Dimmich, C. L. Jacobsen, M. C. Jadud, and A. T.
Sampson. The robodeb player/stage/transterpreter
virtual machine. http://robodeb.transterpreter.org,
2006.

[7] D. Gay, P. Levis, and D. Culler. Software design
patterns for tinyos. In LCTES’05: Proceedings of the 2005
ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, pages 40–49,
New York, NY, USA, 2005. ACM Press.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesc language: A holistic approach
to networked embedded systems. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages
1–11, New York, NY, USA, 2003. ACM Press.

[9] Green Hills Software.
http://www.ghs.com/products/velosity.html, 2006.

[10] K. Hammond and G. Michaelson. Predictable space
behaviour in fsm-hume, 2002.

[11] J. Hill. A software architecture supporting networked
sensors, 2000.

[12] C. Hoare. Communicating Sequential Processes.
Prentice-Hall, Inc., 1985.

[13] Inmos Limited. occam2 Reference Manual. Prentice
Hall, 1984. ISBN: 0-13-629312-3.

[14] C. L. Jacobsen and M. C. Jadud. The Transterpreter: A
Transputer Interpreter. In Communicating Process
Architectures 2004, pages 99–107, 2004.

[15] C. L. Jacobsen and M. C. Jadud. Towards concrete
concurrency: occam-pi on the lego mindstorms. In
SIGCSE ’05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, pages 431–435,
New York, NY, USA, 2005. ACM Press.

[16] P. Levis and D. Culler. Mate: a tiny virtual machine for
sensor networks. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for
programming languages and operating systems, pages
85–95, New York, NY, USA, 2002. ACM Press.

[17] G. Lowe. Prioritized and probablistic models of timed
csp.

[18] G. Lowe. Relating the prioritized model of timed csp to
the timed failures model, 1992.

[19] QNX Software Systems. http://www.qnx.com/, 2006.

[20] VXWorks. http://www.windriver.com/, 2006.

[21] C. Whitby-Strevens. The transputer. In ISCA ’85:
Proceedings of the 12th annual international symposium on
Computer architecture, pages 292–300, Los Alamitos, CA,
USA, 1985. IEEE Computer Society Press.

SEUC 2006 Workshop Programme

Session 4:
Model-based Approaches

The Self-Adaptation Problem in Software Specifications
Klaus Schmid

University of Hildesheim
Marienburger Platz 22
D-31141 Hildesheim

ABSTRACT
Future ubiquitous computing systems will need an
unprecedented level of adaptability and autonomy. From a
software engineering point of view, this desire for
adaptability poses a major challenge as it is in direct
opposition of the traditional requirements engineering goal
of a system specification that is very precise and complete.

In this paper, we will discuss some implications of this
problem and will outline some approaches to dealing with
this challenge.

1. SOFTWARE ADAPTIVITY
Ubiquitous computing is not only characterized by its
omnipresence, but more importantly by the demand that
these individual computing nodes provide optimally
adapted end-user services [1]. As a consequence, we can
expect any ubiquitous computing system to be capable of
several forms of adaptivity. These forms of adaptivity can
be characterized as follows based on the adaptivity drivers:
Task-adaptivity: Even for a fixed environment and a fixed

user, the specific tasks will vary from time to time. The
acceptance and usefulness of ubiquitous computing
systems can be greatly improved, if the system adapts
its behavior to the specific tasks the user performs.

User-adaptivity: even given the same tasks, different users
might have different preferences on how to get support
for them (e.g., expert vs. novice). In particular,
handicapped users need a different level of support.

(Physical) Environment-adaptivity: depending on the
environment, the system must provide information
through different channels, using different
representations and so forth (e.g., in a load environment
we will prefer visual input over audio input).

Function-adaptivity: depending on the other devices (and
thus functional capabilities) that are around the overall
service level which the integrated system will be able to
provide may vary significantly. As a result, the system
should be able to adapt to different functional
environments.

All of these forms of adaptivity are relevant to ubiquitous
systems, although to different degrees. In particular, we
regard function-adaptivity as a major issue for all kinds of
ubiquitous systems as in complex multi-node networks
certain services may always be only temporarily available.
Further, in an open system additional services may become
available during its life-time. Here, we would prefer if the

system would be able to take advantage of such
incrementally available services.

All of these forms of self-adaptation of software systems
have in common that they may lead to an explosion of the
space of possible behaviors. In order to discuss the problem
of how to deal with this space explosion more precisely, we
may categorize adaptivity in the following ways.

First, we can distinguish different forms of adaptivity
based on the direction of adaptivity:
• Corrective adaptivity: in this case a system aims at

improving its current level of service quality. This
possibility of improvement is desired from a change in
the environment, e.g., if additional services become
available.

• Enhancing adaptivity: in this case a system aims at
improving its current level of service quality. This
possibility of improvement may be triggered from a
change in the environment, e.g., if additional services
become available.

• Contextual adaptivity: in this case a system aims at
adapting to a change in a context parameter. As a result
of this change the current behavior is less desirable and
the system aims at achieving the previous level of
appropriateness by changing its behavior. This can be
seen as a combination of corrective and enhancing
adaptivity.

On the other hand, we distinguish different forms of
adaptivity by their range of adaptivity:
• In bounded adaptivity, we can determine the range of

possible adaptations systematically at development
time.

• In open adaptivity, there is either an infinite range of
possibilities (that cannot be expressed by a parameter),
or we simply do not know enough about the
possibilities (e.g,. new services that will become
available in the future).

The following table provides an overview of the different
forms of adaptivity and the relationships among them.
Drivers Direction Range
Task Contextual Bounded
User Contextual, (enhancing)1 Bounded (open) 1
Environment Contextual,(enhancing) 1 Bounded (open) 1
Function Corrective, enhancing,

contextual
Bounded, open

1 this category requires a machine learning system

2. THE SOFTWARE ENGINEERING
VIEWPOINT
Traditional software engineering methods, especially
software specification techniques, work on the assumption
that they should produce a complete specification of the
behavior of the final system, given a complete list of all
possible inputs. Especially if we need to trust the final
system, it is very important that it always behaves in a way
that the user accepts as foreseeable and useful. This
approach is at odds with self-adaptation capabilities of a
ubiquitous computing system.

As a consequence of the adaptivity described above,
software engineering approaches must become sufficiently
sophisticated to deal with this range of flexibility of the
final system. Currently we see two main approaches of
dealing with this issue:
• Variability modeling: this approach aims at the

integrated description of a whole range of systems.
Both commonalities among the systems and
differences are described in an integrated system.

• Goal-modeling: this approach aims at justifying the
specification of a software system in terms of the goals
the users would like to achieve with it.

We will now discuss each of these approaches and their
applicability briefly.

2.1 Variability Modeling
Variability modeling is widely used in product line
engineering in order to specify (and develop) various
systems in an integrated manner [2, 3]. Here,
commonalities and variabilities are described in a single
model, while providing a mark up of variations and the
context of their applicability.

As product line engineering focuses on development time
variability, it is always possible to work with a bounded
range of variability. Even if a new system requires
unforeseen variations, we can update the specification and
continue the life-cycle from there.

While these approaches are traditionally not used for
runtime variability, they can be easily extended in this way.
However, their major limitation from the point of view of
specifying adaptivity is that they focus only on bounded
adaptivity. While this is not much of a problem in the
context of product line engineering, it can be a major
problem in specifying adaptive systems as shown above.

2.2 Goal Modeling
Goal modeling aims at describing explicitly in a
hierarchical manner the underlying goals for a software
system [4]. In this way, both the system specification and
its underlying rationales are derived in an integrated
manner.

So far, this has only been applied in a static manner,
however, these goal trees are conceptually strongly related
to planning systems and theorem provers.

As a result, it could be possible to enhance this approach
by explicitly providing the necessary knowledge so that a
system would be able to compare different function
invocations with respect to their contribution to achieving a
certain goal. If the necessary knowledge would be provided
at runtime, this would allow extending goal-based
requirements modeling to the handling of open adaptivity.

In the context of open user or environment adaptivity,
this required knowledge needs to be provided beforehand.
In this case the various behaviors are not described
explicitly, but they are described implicitly as the available
knowledge provides boundaries on the possible behaviors.

On the other hand for functional adaptivity, additional
services could provide the necessary knowledge for their
integration along with the service definition. This would
require a common ontology of both application and
services in order to support the service integration. In [5]
we discussed this approach and its prerequisites further.

3. CONCLUSIONS
In this contribution, we discussed some forms of adaptivity
that can be expected from ubiquitous computing systems.
We classified these forms of adaptivity and related them to
different forms of modeling that could be applied to
adaptivity and outlined some challenges in this area.

From our point of view, both variability modeling and
goal modeling hold promises for addressing the notion of
adaptivity, although for different situations. We are
currently working on the integration of these approaches
into requirements engineering and their extension towards
addressing the challenges of ubiquitous computing.

REFERENCES
[1] M. Weiser, The computer for the 21st century, Scientific

American, September 1991.
[2] P. Clements and L. Northrop, Software Product Lines:

Practices and Patterns;: Addison-Wesley, 2001.
[3] K. Schmid and I. John, "A Customizable Approach to Full-

Life Cycle Variability Management," Science of Computer
Programming, vol. 53, pp. 259-284, 2004.

[4] A. Lamsweerde, Goal-Oriented Requirements Engineering:
from System Objectives to UML Models to Precise Software
Specifications", ICSE '03 Tutorial, Portland, 2003.

[5] K. Schmid, M. Eisenbarth, M. Grund: From Requirements
Engineering to Knowledge Engineering: Challenges in
Adaptive Systems, Workshop on Service-oriented
Requirements Engineering (Soccer) at the International
Conference on Requirements Engineering (RE’05), 2005,
also available as Publication of the Fraunhofer Institute for
Experimental Software Engineering, IESE-Report No.
118.05/E

Adapting Model-Driven Architecture to Ubiquitous Computing

Julien Pauty, Stefan Van Baelen, Yolande Berbers
K.U. Leuven, Department of Computer Science
Celestijnenlaan 200 A, B-3001 Leuven, Belgium

{Julien.Pauty - Stefan.VanBaelen - Yolande.Berbers}@cs.kuleuven.be

Deploying ubiquitous computing applications in the real world

Ubiquitous computing aims to support the user in his everyday tasks by proposing him relevant and implicit
services. Such a user support imposes to deploy applications in different locations, settings and conditions.
Ubiquitous computing applications are indeed deployed in and linked to distinct physical spaces.

Current software engineering practices to develop ubiquitous computing applications mix top-down and bottom-
up approaches. To design an application and its accompanying services, ubiquitous computing developers and
researchers use a top-down approach, by analyzing the needs of the user and how to fulfill these needs.
Afterwards, the application needs to be actually developed and deployed in the target physical setting. During
this phase the application developers use a bottom-up approach. They start by choosing the best technologies
with respect to the target application and the physical setting wherein the application will be deployed.
Afterward, the application may also have to be adapted to the limitations of the available and applied
technologies.

Deploying a ubiquitous computing application in the real world implies that the application is deployed in
different settings with different constraints. The aforementioned mixed approach implies that each time the
application is deployed a great part of the application must be redeveloped, which leads to little software reuse,
or even to systematic redevelopment from scratch. If we want ubiquitous computing to leave the laboratory
settings and to become truly ubiquitous, software engineering techniques must be created in order to ease the
development process and the deployment of applications in different physical and technological settings.

In this position paper, we propose to adapt the Model-Driven Architecture (MDA) approach to the ubiquitous
computing environment [1] in order to significantly increase software reuse and ease application adaptation to
new deployment environments. MDA decouples the applications from their execution platforms via model
abstractions and model transformations. An application is initially described by a Platform-Independent Model
(PIM) that does not contain any information on the final execution platform and middleware. This model is
refined several times via successive transformations, each transformation integrating new constraints like
persistency or redundancy. Once the PIM is enough detailed, an execution platform is chosen and the PIM is
transformed into a Platform-Specific Model (PSM). This PSM is in turn transformed several times, in order to
generate code, compile the application, package the application…

Adapting MDA to ubiquitous computing

Consider an application that supports an elderly person in order to help her staying home alone despite possible
disease, such as dementia. This application can monitor the person’s activity to detect changes in habits denoting
possible aggravation of the person’s diseases. In this section, we consider an application which monitors how the
person sets up the table for dinner and triggers a visual or sound alarm when the person forgets a key element,
such as the forks of the knifes. Such an application must be deployed in different house settings, with users that
may be affected by different diseases.

The initial PIM should contain the main application logic and generic geometric logic. In our example,
application logic just defines a monitoring loop that regularly checks the configuration of the table and notifies
the user when it detects an incorrect table setting. Application logic can also log date and time when alarms are
triggered for offline analysis of user habits. Generic geometric logic defines that the table is an area and that
several objects must be present at the same time in this area, such as forks, glasses… Several elements must be
also relatively located in the area: a plate should be between a knife and a fork.

The PIM is then transformed several times. Each transformation modifies the PIM to integrate user constraints
and geometric constraints. These constraints are technology independent. User constraints describe user
disabilities, such as deafness or blindness. For example, if the user is blind the model is transformed so that is
only relies on sound output. Geometric constraints describe the geometric configuration of the place where the
application will be used. For our application, this geometric configuration describes the size and shape of the
table and the objects.

Once user and geometric constraints are integrated, the PIM is transformed into a PSM in order to integrate
environment constraints and technology constraints. Environment constraints describe the environment where
the application will be used: home/factory, indoor/outdoor, noisy, dark… For example outdoor applications may
rely on mobile devices. Factory applications may need communication technologies that can resist to
electromagnetic perturbations. In a home environment, technology must be as discrete as possible. In our
application, the loudspeakers could be integrated into the table. Technology constraints describe the limitations
of the technology, such as screen size for a user terminal or accuracy for a location sensor. Transformations take
into account these limitations in order to adapt the PSM.

Technology constraints may lower the quality of service of the application. In our example, we may choose
RFID or image recognition to detect the table configuration. RFID is a simpler technology than image
recognition, but it is also less precise for detecting geometric configurations. It only enables the application to
detect if every key element is on the table, but not to detect whether the table is correctly organized. In this case,
the service provided by the PSM is a degraded version of the service defined by the PIM.

Discussion

In the previous section we have presented an adaptation of MDA to ubiquitous computing. This approach can
significantly increase software reuse and ease application adaptation to new deployment environments. To
reduce adaptation time towards a new deployment environment, we can choose the most elaborated PIM that is
adapted to the new environment and use this model as the base for our adaptation. This results in the fact that
only the remaining transformations must be performed again instead of having to develop the whole application
from scratch.

If we want to save development time transformations must be automated and reused as much as possible. We
have seen in the previous section that applying MDA to ubiquitous computing involves new transformations,
such as taking into account technological and user constraints. Research results to solve these separated
problems already exist in the ubiquitous computing community. We need now to synthesize and group them, in
order to create automated and reusable transformations. For example, a lot of work has been done to adapt
applications to limited screen size. We now need a generic methodology that could be used in order to create the
corresponding model transformation.

New domain-specific languages also need to be developed, or existing languages need to be adapted, in order to
define the different models. We need a language to define user and technology constraints, to describe geometric
configurations… Several areas have been already investigated, such as user interfaces [2].

We do not claim that our proposal to adapt MDA to ubiquitous computing is neither complete nor already
applicable. It is mostly intended to support discussion during the workshop. Indeed, adapting MDA to ubiquitous
computing raises several questions:

- Which UML profiles and domain-specific languages should be defined in order to obtain fitted
notations for ubiquitous computing?

- In which order should we perform transformations? Indeed, the transformation order has an impact on
model reuse. For example, if user transformations are performed before geometric transformations, then
when the user changes we must restart from the initial PIM and perform every transformation, despite
the fact that the geometric transformations remain the same.

- Is the approach of gradually refining models anyhow applicable for ubiquitous computing? Maybe an
orthogonal approach, in which a developer can start independently from a PIM by introducing user
constraints, geometric constraints or technology constraints in parallel, integrating the 3 models
afterwards into a single PSM model is better fitted.

- Is adapting MDA to ubiquitous computing a reasonable approach, or should we try to develop new
techniques? On the one hand, experience can be drawn from the MDA community and tool support for
MDA can be used for the development of ubiquitous computing software. On the other hand,
differences between traditional MDA applications and ubiquitous computing applications may be too
important to make MDA a sound approach for ubiquitous computing.

References

[1] S. Bonnet. Model driven software personalization. In Smart object conference (SOC’03), 2003.

[2] J. Vanderdonckt. A MDA-Compliant Environment for Developing User Interfaces of Information Systems.
In Advanced Information Systems Engineering: 17th International Conference (CAiSE’05), 2005.

Efficient Modelling of Highly Adaptive UbiComp Applications

Andreas Petter, Alexander Behring, Joachim Steinmetz
University of Technology Darmstadt

Telecooperation Group, Hochschulstr. 10, 64289 Darmstadt, Germany
{a petter, behring, joachim}@tk.informatik.tu-darmstadt.de

Adaptive applications in ubiquitous computing depend
on large sets of parameters while requiring device inde-
pendency. To efficiently develop such applications, we
discuss a possible solution, we call “amending models”.

1 Introduction
Ubiquitous computing introduces new challenges for soft-
ware engineering, among these are support for a large vari-
ety of platforms and numerous different contexts. By lever-
aging modeling, a great degree of abstraction from the un-
derlying platform is achieved. By interpreting models at
runtime, the abstraction is further improved. But still there
is the need to go into different contexts of usage, which
would have to be modeled explicitely. Therefore an ap-
proach where models are adapted to changing contexts at
runtime and contexts not known at development time can
be dealt with is sought after. Ideally such an approach also
reduces the development efforts associated with the devel-
opment of ubiquitous computing applications.

Amending Models are a possible solution to this ques-
tion. They especially allow modelling for applications
adapting to numerous different contexts. Amending Models
address this problem by enabling an application designer to
model only parts of his model and let other model elements,
due to introduction or change of context, be explored and
modelled automatically during runtime.

In the next section, we briefly explain what an amend-
ing model is and argue against and for it in sections 3 re-
spectively 4, also taking into account the effects of its ap-
plication. Section 5 scetches a possible setup and section 6
concludes and gives further perspectives on this field.

2 The Thesis
Building on the ideas expressed in [1] and [7], we argue for
utilizing and interpreting models at runtime and amending
them by leveraging Artificial Intelligence (AI) concepts in
the adaptation process. Further, we propose that

to develop highly adaptive software for ubiquitous
applications in a cost effective manner, a standard
modeling approach is not sufficient. The concept of

amending models is a feasible approach to adress this
problem.

An Amending Model hereby is a graph with nodes (e.g.
tasks, UI elements, . . .) carrying attributes and the possibil-
ity to link the nodes through edges (e.g., in a task model,
UI model, . . .). An initial setup (a start model) is given by
the developer. During runtime, the application is adapted

by amending its model(s). This is done through applying
AI algorithms and thereby, e.g., changing the links between
and the usage of nodes, as well as inserting and removing
nodes. The adaptation process hereby takes into account
the Amendment Context, which includes all information that
could be relevant to amend the model.

By reducing the number of different Amendment Con-
texts (e.g., different available sensor systems) that are mod-
eled explicitly the adaptation process must be able to cope
with by then unknown parameters. Therefore, standard
model transformations alone aren’t suitable to transform
Amending Models. AI algorithms are a possible way of
dealing with such a situation.

In order to produce models compliant with the specifi-
cation of the system, validation and evaluation become an
essential part of the adaptation process. This compliance
could be achieved by, e.g., choosing suitable amendment
methods or validation of the model.

3 Arguing against Amending Models
Validation consequently is an integral part of amending
models. Unlike in current Software Engineering (SE), (par-
tial) validation must be done automatically at runtime. This
introduces new complexity and the need for special knowl-
edge how to write validation rules. However, if validation
rules can be generated automatically from e.g. a goal model,
this drawback is greatly reduced.

To reduce the number of models explored at runtime for
one adaptation step, heuristics seem most suitable. Formu-
lating heuristics can be difficult [4] and might result in the
need for AI experts. This drawback could be reduced by im-
proved tool-support, potential reuse of heuristics and results
of further research.

Modeling might lead to unpredictability, which in turn
results in reduced usability, e.g., for user interfaces [9].
Amending Models intensifies these problems, because the
Amendment Context is not modeled explicitly. Besides
improving the adaptation process itself, model templates
could provide predefined model parts for certain Amend-
ment Contexts (e.g., UIs for the most used devices) to regain
predictablity. Furthermore, there has been improvement in
this area, e.g., [2], [8] and [7].

4 Arguing for Amending Models
Modeling highly adaptive applications with a traditional ap-
proach implies to model every possible Amendment Con-
text (e.g., for User Interface Adaptation in [3]). Amending
Models loosen this restriction by providing an abstraction

and allowing to model only the key ingredients of an appli-
cation.

Design flexibility is gained through opening up a trade
off between the effort of modelling elements and compu-
tational power at runtime. Closely connected to this is the
decision of the developer to spend effort in modeling a spe-
cific Amendment Context (e.g., UIs for a certain device) or
relying on the adapatation process.

By reducing the sheer number of elements to model, de-
velopment time is reduced. By the same effect, a better
overview over the application model is gained. This can im-
prove the effectiveness of the development and reduce bugs.
Consequentially, development costs are reduced through the
application of Amending Models. Sometimes this cost re-
duction could be the prerequisite to start developing in the
first place.

In industry software projects change requests (in all
phases of the software lifecycle) are common. Especially
changes affecting wide parts of an application are diffi-
cult to implement. Amending Models reduce the effort
needed to implement a change request by abstraction from
the Amendment Context. This abstraction also results in
improved reusability. Consequently, in fortunate cases, a
change request could be solved by writing a single trans-
formation rule. Additionally, since Amending Models are
interpreted at runtime, such a change might even be imple-
mented after deployment of the application. Overall, main-
tainance costs are reduced.

Recapitulating, through Amending Models the adaptiv-
ity of applications is improved. An important aspect of this
is improved Plasticity [11], denoting the size of the Amend-
ment Context an UI stays usable in.

5 Action Example
In [1] an software architecture reference model for UI adap-
tivity is discussed. In the following, a brief description of a
set of development methods and tools that could be used is
given:

• adapted MDA (see [6]) concept and pattern
• MOF (see [10]) compliant metamodel similar to

UML
• specific tools for abstract and concrete UI design
• integration of domain specific languages
A setting like this would leverage the spread of UML

wihin software development companies and the concepts of
MDA. The metamodel could be downsized and taylored to
the specific needs of the software company using it. At the
same time, it enables the usage of powerful domain spe-
cific languages. Finally Myers concerns [9] are adressed by
integrating special UI design tools to reduce unpredictabil-
ity. Thus setting is aimed to facilitate cost-effective develop-
ment of context-aware, adaptive ubiquitous computing ap-
plications.

6 Conclusion and Outlook
We argued for Amending Models, which are modified and
interpreted at runtime in order to adapt to different Amend-
ment Contexts. By using this concept, typical challenges of

Ubiquitous Computing are addressed and
• development costs are reduced, by reducing develop-

ment time and improving effectiveness,
• design flexibility is gained, by opening up a trade-

off between invested effort for detailed modeling of
possible Amendment Contexts versus more abstract
modeling, and

• adaptivity of applications is improved by reducing di-
rect dependence of models on parameters.

Further research within this area may adress:
• identification of possible transformation processes,
• characterization of tools used for modelling with this

paradigm, and
• detailed characterization of relations between differ-

ent elements in this concept.
Some of these topics will be addressed within the eMode
project [5].

Bibliography
[1] L. Balme, A. Demeure, N. Barralon, J. Coutaz, and

G. Calvary. Cameleon-rt: A software architecture ref-
erence model for distributed, migratable, and plastic
user interfaces. In EUSAI, pages 291–302, 2004.

[2] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg,
N. Souchon, L. Bouillon, M. Florins, and J. Vander-
donckt. Plasticity of user interfaces: A revised ref-
erence framework. In TAMODIA 2002, pages 18–
19, Publishing House Bucharest, Romania, 2002. IN-
FOREC.

[3] B. Collignon. Dégradation harmonieuse d’interfaces
utilisateur. Master’s thesis, Universite Catholique De
Louvin, 2004.

[4] R. S. Engelmore (ed.). Knowledge-based systems in
japan. Technical report, JTEC, Baltimore, MD, USA,
1993.

[5] EMODE. http://www.emode-projekt.de.

[6] J. Mukerji (ed.) J. Miller (ed.). Mda guide version
1.0.1. Technical report, OMG, 2003.

[7] J.-S.Sottet, G. Calvary, and J.-M. Favre. Towards
model-driven engineering of plastic user interfaces. In
MDDAUI, 2005.

[8] G. Mori, F. Paternò, and C. Santoro. Tool support
for designing nomadic applications. In IUI ’03, pages
141–148, New York, NY, USA, 2003. ACM Press.

[9] B. Myers, S. E. Hudson, and R. Pausch. Past, present,
and future of user interface software tools. ACM
Trans. Comput.-Hum. Interact., 7(1):3–28, 2000.

[10] OMG. Mof specification, 2002.

[11] D. Thevenin and J. Coutaz. Plasticity of user inter-
faces: Framework and research agenda. In Interact’99,
volume 1, pages 110–117. IOS Press, 1999.

Model-driven design of ubiquitous interactive applications

Jan Van den Bergh
Expertise Centre for Digital Media – Institute for

BroadBand Technology
Hasselt University – transnationale Universiteit

Limburg
Agoralaan

3590 Diepenbeek, Belgium

Jan.VandenBergh@uhasselt.be

Karin Coninx
Expertise Centre for Digital Media – Institute for

BroadBand Technology
Hasselt University – transnationale Universiteit

Limburg
Agoralaan

3590 Diepenbeek, Belgium

Karin.Coninx@uhasselt.be

ABSTRACT
The ubiquitous availability of interactive applications means
that the diversity of people use an increasing number of
different mobile or networked computing devices with di-
verse but constrained input and output capabilities. This
increases the interest in programs and technologies that ex-
ploit context knowledge, such as the user’s location or past
behavior. At the same time, the behavior of the application
should be predictable and correspond to the user’s expecta-
tions. In this document, we propose the usage and genera-
tion of high-level models incorporating context information
for certain aspects of the design while still allowing some
designer freedom in other areas. The usage of models, with
roots in both human-computer interaction and software en-
gineering, should however not divert attention away from
the final users, which should be involved in the design pro-
cess and provide feedback on prototypes that are generated
from the specified models.

1. INTRODUCTION
In our work, we focuss on the design of context-sensitive
interactive applications. These applications pose specific
problems, not fully addressed in current methodologies. We
specifically target the early stages in designing those sys-
tems. The goal is to provide models that can be understood
by human-computer interaction (HCI) experts, software en-
gineers and programmers, and customers 1. Those models
should convey enough information to generate the skeletons
of context-sensitive user interfaces. We do not attempt to
automate much of the detailed design, such as detailed lay-
out and style.

We build our approach on existing models in both the soft-
ware engineering and HCI community and provide exten-

1When direct exposure to the models is not an option, we
propose to use generated prototypes.

SEUC2006, Lancaster, United Kingdom

sions where we deem them necessary. In the following sec-
tions, we provide an overview about the work we performed
up till now, our current and future work. We start by giving
some background by the envisioned design process and how
our work supports that design process. Then we introduce
the different models, as well as the extensions we provided.
Finally, we present some thoughts about tool support and
formulate some conclusions.

2. APPROACH
We believe that the use of models can significantly ease
the creation of context-sensitive interactive systems, while
not preventing an agile methodology. The process typically
starts by specifying the user’s tasks and the concepts that
are important to perform these tasks. These tasks and con-
cepts can be described using well-known models and nota-
tions. The ConcurTaskTrees (CTT) notation [2] can be used
for (user) task modeling, while the Unified Modeling Lan-
guage (UML) [1] can be used to express the concepts and
their interrelations.

The concepts can be annotated with context information to
specify which concepts represent context information that
will be used at runtime and whether it will be generated
(automated generation) or profiled (manual input). Also
the sources of the context information can be specified. The
information in these models can be used to describe differ-
ent contexts of use. For each of the tasks in the task model,
one can specify the relevant contexts of use, whether the ef-
fect of a task is noticed by an external entity (and fed back
to the system), or whether it is executed by another sys-
tem, . . . Based on these “context-sensitive” models, one can
generate (high-level) system interaction models and user in-
terface models. These models can be expressed using UML.
We consider semi-automatic generation of prototypes at dif-
ferent levels of abstraction to be crucial.

Finally, user interface designers can design the user interface
guided by the information in the models, in addition to their
experience and guidelines. We envision that most if not all
of the models can be kept in sync by a tool, especially when
only high-level design is done in the models and a high-level
declarative user interface description is generated by the tool
to be augmented by a stylesheet that reflects the work done
by the designer.

3. HIGH-LEVEL MODELING
The proposed model notations build on existing model no-
tations used in software engineering or the human computer
interaction community.

User Task Model
The user task model is modelled using the Contextual Con-
curTaskTrees notation [3] (CCTT). With CCTT we propose
a hierarchical task model notation based on the CTT nota-
tion, introduced by Paternò [2].

It enhances the CTT with an extra task type: “the context
task”. The context task represents an activity that has in-
fluence on the context of use and as such has an indirect
influence on the subsequent execution of the task. One can
distinguish four different kinds of context tasks: each of the
three concrete task types (user task, application task and
interaction task) of the CTT can have influence on the con-
text of use. In addition, there are also external activities
that can have an influence on the execution of the tasks.
These tasks are called environment tasks.

Application Model
The context and application model is represented using the
class diagram of the UML [1]. Stereotypes – stereotypes are
special structures to extend the meaning of UML constructs
– have been defined for identifying concepts that are not
part of the modelled application but belong to the context
of use. The stereotype profiledContext is used for context
information that is entered by humans, while the stereotype
detectedContext can be used for context information that
is gathered through sensors, or is processed by other software
or hardware. The entities that are responsible for detecting
the context information can be made by using the stereotype
contextCollector. All these stereotypes can be applied to
UML classes and are part of the CUP-profile [4], just as
all other stereotypes used for the discussed models that use
UML diagrams.

System Interaction Model
The system interaction model is expressed using UML 2.0
activity diagrams. The activity diagram is extended using
stereotypes that correspond to the task types in the CCTT
notation. These stereotypes are: application, interaction
, user, environment and task (corresponding to an abstract
task in the CCTT with a limited difference in semantics).

Abstract User Interface Model
The abstract user interface model is specified using the UML
class diagram. It specifies a hierarchy of abstract interac-
tion components that define which types of actions can be
performed using a certain component. Four kinds of user in-
terface components are possible: input components (allow a
specific kind of input such as selection or free input), output
components (do not allow user interaction), action compo-
nents (allow the user to interact with the system scope) and
group components). Each of the different types of user in-
terface components is represented by a stereotype with an
alternative representation.

Context Model

The context model specificies the applicable contexts of use
within class diagrams. Each context of use is defined within
a stereotyped package using the classes defined in the appli-
cation model.

User Interface Deployment Model
The mapping of the abstract user interface model to concrete
user interfaces is illustrated in the user interface deployment
model, expressed using a specialized version of the UML de-
ployment diagram. This model specifies the target platform
and context. A stereotype contextualNode is defined to link
a UML Node, representing a software or hardware platform,
with a specified context.

4. AUTOMATION
For the model-driven approach to become more efficient,
tool support between the user-task model and the system in-
teraction model and between the system interaction model
and the abstract user interface model is needed. Further-
more, we consider semi-automated generation of prototypes
at different levels of fidelity and abstractness to be crucial
for an effective development of context-sensitive interactive
applications. In early stages of design, prototypes at an high
level of abstraction can be used, especially when supporting
hardware and/or software are not available.

5. CONCLUSIONS
We presented our approach for the design of context-sensitive
interactive applications, and more specifically the user inter-
face side of the modeling. We believe that a model-driven
approach with proper abstractions and good tool-support,
which integrates support for the creation and evaluation of
prototypes and allows designer creativity, is vital for ubiqui-
tous interactive applications that are easy to use and func-
tion predictably and correctly.

6. ACKNOWLEDGEMENTS
This research was partly performed within the IWT project
Participate of Alcatel Bell. The research at the Expertise
Centre for Digital Media is partly funded by the ERDF (Eu-
ropean Regional Development Fund), the Flemish Govern-
ment.

7. REFERENCES
[1] Object Management Group. UML 2.0 Superstructure

Specification, October 8 2004.

[2] Fabio Paternò. Model-Based Design and Evaluation of
Interactive Applications. Springer Verlag, ISBN:
1-85233-155-0, 2000.

[3] Jan Van den Bergh and Karin Coninx. Contextual
ConcurTaskTrees: Integrating dynamic contexts in task
based design. In Second IEEE Conference on Pervasive
Computing and Communications WORKSHOPS, pages
13–17, Orlando, FL, USA, March 14–17 2004. IEEE
Press.

[4] Jan Van den Bergh and Karin Coninx. Towards
Modeling Context-Sensitive Interactive Applications:
the Context-Sensitive User Interface Profile (CUP). In
SoftVis ’05: Proceedings of the 2005 ACM symposium
on Software visualization, pages 87–94, New York, NY,
USA, 2005. ACM Press.

SEUC 2006 Workshop Programme

Session 5:
Engineering for Humans I

Surveying the Ubicomp Design Space: hill-climbing, fields of dreams, and elephants’
graveyards

Michael B Twidale
Graduate School of Library and Information Science

University of Illinois at Urbana-Champaign
twidale@uiuc.edu

Introduction
The famous quotation from the movie the Field of Dreams
seems to guide so much techno-optimism from dot-com
bubble business plans to ubicomp research proposals: “if we
build it, they will come”. Sometimes they will. But not
always. Is there a better way to explore a design space to
help decide what exactly to build, rather than just picking
the first idea that occurs to us and then focusing exclusively
on how to make it work?

I believe that there is a way, by applying a range of high
speed low cost techniques to more actively explore and
analyze various design spaces. Even spending a few hours
doing this can be worthwhile. My contention is that even
this is rarely done. The challenge is to explore and refine
those methods and to demonstrate their power and their
relatively low cost. It is quite understandable that developers
are somewhat skeptical of analytic techniques that appear to
mostly slow down development. This is even more the case
in the context of research activities where the development
activity is itself part of the learning process and the
requirements elicitation process.

The problem
In teaching undergraduates and graduate students with
strong technical development skills I have noticed that
unsurprisingly they want to build applications and start
building as soon as possible. That is perfectly
understandable and something I want to encourage. One
learns a lot about a topic by trying to build an application.
However the first idea one has is unlikely to be optimal.
Once one has spent a lot of time on working on that design
and emotionally committing to it, it can be very difficult to
abandon it and start afresh. Available resources just may not
permit it. I see such a scenario playing out time and again –
an obsessive focusing on one point in the design space that
was chosen arbitrarily and too early on. This creates a
pedagogical problem and one that can be addressed in
planning future classes. However, once noting it, I realized
that it applies to many research projects too. The decision of
what to build is made hurriedly and in ignorance, often as
part of the rush of putting together a grant proposal and is
not considered thoroughly. Very experienced researchers can
draw on their previous work to make snap decisions in such
circumstances and stand a good chance to locating a
productive point in the design space. Less experienced
researchers are unlikely to be so lucky.

In the case of novel ubiquitous computing applications, our
intuitions can be wrong and even misleading. These is ample
evidence from the field of CSCW research of how
considerable experience in developing single user
applications does not guarantee success in developing
useful, usable and acceptable collaborative applications. It is
most likely that the same occurs when we get up from the
desktop and move around and think about workspaces,
home spaces, social spaces and moving between these and
others. One approach is to acknowledge the problem, but
apply a Darwinian, market based solution: just create a
whole host of ideas embodied in applications as fast and as
productively as possible and let the marketplace of ideas

decide which are successful or not. Such a method certainly
works but it is very wasteful. Is a more considered approach
possible without excessively slow analysis getting in the
way of design creativity and innovation?

A solution
The classic, powerful solution to this issue in CSCW is to
first do a detailed ethnographic study. I am all in favour of
these and have participated in some as both a systems
developer and as an ethnographer. However they are very
slow and often are better at telling you what not to build
rather than what to build. Can such approaches be
supplemented by other rapid analysis techniques? Methods
that can be applied in minutes or a couple of hours and
integrated into rapid prototyping iterations. Below I list
some that I’ve been looking at. Ideally I think the real
answer is ways to select from and combine these at different
points in a design cycle, tightly integrated with exploratory
development with an idea of build in the morning, test,
analyse, plan redesign in the afternoon.

Affordance Analysis
Building on the HCI concept of affordances this looks at an
individual component of a use case, either how people
currently do something or our new proposed device and
consider what are the generic kinds of activities that that
component affords, supports or enables. Anti-affordances are
also considered. In this way it becomes possible to consider
a slice-and-dice solution where the new design does not
attempt to do everything that the old design does and more
and better in all cases, but rather focuses on supporting
certain activities for which it is dramatically better and
integrates with the old approach for the other activities. As a
very simplistic example, an exploration of the technological
and social affordances and anti-affordances of cellphone use
in public settings can lead to ideas such as sound output but
button-press input as a way to enable conversations in public
settings where listening is acceptable but speaking is not. A
very simple interaction might involve pressing a button that
transmits a recorded message such as “I’m in a public place.
I can listen to any message you want to give me, but I can’t
really talk right now. If you want to ask me questions I can
press buttons to say yes or no. Otherwise, I’ll get back to
you in X [typed in] minutes”. Not exactly programming
rocket science, but a very simple case of application
innovation inspired by affordance analysis.

Goals, Constraints, Opportunities, Issues,
Inspired by SWOT analysis, this is a quick way of
considering aspects a design space:
• Goals lists all the desirable features and uses of the

envisaged application, acknowledging that some can be
contradictory or lead to design tradeoffs.

• Constraints are limitations either of requirements and use
or of the available technology or development
environment.

• Opportunities lists advantages, most usually caused by
new technologies having disruptive effects on traditional
cost benefit calculations.

• Issues are things that arise in discussing potential
applications and can include features of privacy,
ownership, expectations, acceptability, trust etc.

Scenario Based Design, Personas, Body Storming
Building on a rich tradition in this area of trying to envisage
the proposed application in actual use and then acting out
these scenarios and critiquing them. The main new
contribution here is to consider various forms of failure
analysis, inspired by HCI cognitive walkthroughs. That is,
one begins with the optimistic scenario of how the ubicomp
app ought to work and so be a better way of doing tings than
the traditional approach. Then at each stage of the scenario
we stop and consider “what could go wrong here?” Having
identified problem, maybe f learning, use, interpretation, or
systems failure, we then consider how people might cope
and how the design might cope, either via a redesign to
prevent the error, or to mitigate its consequences or to
support recovery, or to inspire a rapid exploration of a
different design solution altogether.

Creativity and Bad Ideas
The methods above can be characterized as explorations
around a particular point on a design space, an attempt to do
local hill climbing in that space rather than sticking purely
with the point in that space of the first application idea.
Working with Alan Dix, we have been looking at how to
inspire design creativity to look at entirely different places
on the design space. On method is the consideration of ‘bad
ideas’ – design solutions and applications that are clearly
bad. By then analyzing exactly why they are bad, one does a
local design space exploration very similar to the effects of
the techniques above. This can then lead to new ideas for
applications that are slight variants of the original bad idea,
or inversion of parts of that idea. We have written a couple
of papers on that work and wish to explore it further.

Rapid prototyping
This approach is mostly about analysis, but the development
of prototypes is a very important part of analysis. Very rapid
prototyping is helpful. It has a lot of precedent with the
classic story f the developer of the palm pilot carrying a
block of wood in his shirt pocket and pulling it out
periodically and imagining how it could help his life. In
traditional desktop application development, paper
prototyping has a long tradition in both interface design, but
also forms of requirements capture, especially as part of
participatory design. The mapping between sheets of paper
and windows on a PC is pretty obvious. What is the
equivalent of paper prototyping for ubicomp? Working
proofs of concept can also be highly valuable as ways to
inspire analysis of what really should be built, so long as
they can be put together fast enough that they do not cause a
lock-in forcing the project to stick with that particular
design. We have been exploring the use of mashups, wikis
and other pieces of open source software as ways to produce
very crude but operational elements of functionality to
illustrate a design idea before committing to a particular
implementation

Analysis as a process of exploring spaces
I’ve talked about ‘the design space’ as something to be
explored semi-systematically as part of low cost analysis. In
fact, it is impossible to fully explore this space. It is so huge
it is not surprising that students cling to their first design
idea. The immensity of the space can inspire a form of
‘cognitive agoraphobia’ making people reluctant to consider
too many or any alternate design ideas for fear of getting
swamped by choice and producing noting. The techniques
outlined above are ways to explore some small parts of this

space without being overwhelmed. However there are
several spaces:
• Design space: what we can build, combining features,

functionalities, interfaces
• Adoption space: what people want, might want, like,

don’t like
• Research space: build to learn, to think, to understand, to

articulate
• Funding space: fashion, strategies, rhetoric, re-

articulating, advocating

Related Work
Dix, A. Ormerod, T., Twidale, M.B., Sas, C., Gomes da

Silva, P.A., McKnight, L. (2006). Why bad ideas are
a good idea. To appear in Proceedings of the First
Joint HCI Educators’ Workshop.

Jones, M.C., Floyd, I,R. (forthcoming). Patchworks of
Open-Source Software: High-Fidelity Low-cost
Prototypes. In “Handbook of Research on Open
Source Software: Technological, Economic, and
Social Perspectives”, K. St. Amant, B. Still (Eds).
Idea Group, Inc.

Jones, M.C., Floyd, I.R., Twidale, M.B. (2006). Patching
Together Prototypes on the Web. Submitted as a
Notes paper to CSCW 2006.

Jones, M.C., Rathi, D., & Twidale, M.B. (2006). Wikifying
your Interface: Facilitating Community-Based
Interface Translation. Proceedings of DIS 2006.

Jones, M.C., Twidale, M.B. (2006). Snippets of Awareness:
Syndicating Copy Histories. Submitted as a Notes
paper to CSCW 2006

Twidale, M.B. & Jones M.C. (2005). “Let them use emacs”:
the interaction of simplicity and appropriation.
International reports on socio-informatics 2(2) 66-71.

Twidale, M.B. & Ruhleder, K. (2004). Where am I and Who
am I? Issues in collaborative technical help.
Proceedings, CSCW04. 378-387.

Twidale, M.B. (2005). Over the shoulder learning:
supporting brief informal learning. Computer
Supported Cooperative Work 14(6) 505-547.

Twidale, M.B., Wang, X. C., & Hinn, D. M. (2005). CSC*:
Computer Supported Collaborative Work, Learning,
and Play. Proceedings, Computer Supported
Collaborative Learning (CSCL), 687-696.

Twidale, M.B. (2006). Worrying About Infrastructures. CHI
2006 Workshop: Usability Research Challenges for
Cyberinfrastructure and Tools.

Connecting rigorous system analysis to experience centred design in
ambient and mobile systems

M. D. Harrison and C. Kray
Informatics Research Institute, University of Newcastle upon Tyne, NE1 7RU, UK

michael.harrison@ncl.ac.uk,c.kray@ncl.ac.uk

1 Introduction
Ambient and mobile systems are often used to bring informa-
tion and services to the users of complex built environments.
The success of these systems is dependent on how users experi-
ence the space in which they are situated. Such systems are de-
signed to enable newcomers to appropriate the environment for
the task at hand and to be provided with relevant information.
The extent to which a system improves the user’s experience of
such environments is hence important to assess. Such a focus
on experience provides an important trigger for a fresh look at
the evaluation for such systems but there are other reasons too
why traditional notions of usability need reconsideration:

• the impact of the environment as the major contributor in
understanding how the system should work — its texture
and complexity

• the possible role of location and other features of context
in inferring action and as a result action may be implicit
or incidental in the activities of the user — how natural
and transparent this inference is.

Due to these and other problems it is difficult to assess ambi-
ent and mobile systems early in the design process. For this
reason, we are investigating how to relate experience require-
ments to more rigorous methods of software development.

2 Eliciting user experience require-
ments

A conclusion that may be drawn from these differences is that
the evaluation of such ambient and mobile systems must be
carried out in-situ within the target environment, with typical
users pursuing typical activities. The problem with this conclu-
sion is that it is usually infeasible to explore the role of a proto-
type system in this way, particularly due to cost considerations
or when failure of the system might have safety or commercial
consequences. We therefore need methods that would enable
us to establish experience requirements and to explore whether
they are true of a system design before expensive decisions are
made.

Eliciting experience requirements for an envisaged ambient
system can be carried out using a combination of techniques.
For example, it can be valuable to gather stories about the
current system, capturing a variety of experiences, both nor-
mal and extreme, and visualising the experiences that differ-
ent types of user or persona might have in the design. The

results of this story gathering process will be a collection of
scenarios that can be valuable in exploring how the new design
would behave. These scenarios can be used to evaluate the de-
sign [7] perhaps using a specification of the design or using
a rapidly developed prototype. Techniques such as cognitive
walkthrough or co-operative evaluation can provide valuable
complementary approaches to evaluation based on these sce-
narios [7].

In addition to scenario orientated techniques for elicitation
other techniques are also valuable. Techniques such as cul-
tural probes [5] are used to elicit “snapshot experiences” and
complement these more scenario orientated approaches to the
establishing and discussing of user requirements. The elici-
tation process here involves subjects collecting material: pho-
tographs, notes, sound recordings to capture important features
of their environment. While these snippets may make sense as
part of a story they may equally well be aspects of the cur-
rent system that are common across a range of experiences or
stories.

3 Formal analysis and experience re-
quirements

A question then is how to make sense of these snapshots. Con-
sider, for example, a system developed to help passengers ex-
perience a sense of place in the unfamiliar setting of an airport.
One might imagine a combination of ambient displays, kiosks
and mobile services for hand-held devices. They combine to-
gether to provide an environment in which passengers can ob-
tain the information they need, in a form that they can use it,
to experience the place.

Consider a situation exemplifying the kind of system that
is being described. On entry to the departures hall, a sensor
recognises the electronic ticket. As a result the passenger is
subscribed to the appropriate flight and the passenger’s con-
text is updated to include current position in the departures
hall. The flight service publishes information about the status
and identity of queues for check in. A message directing the
passenger to the optimal queue is received by the passenger’s
handheld device because the context filter permits its arrival.
This information is displayed on a public display in the de-
partures hall. When the passenger enters the queue a sensor
detects entry and adds the queue identifier to the passenger in-
formation. As a result different messages about the flight are
received by the passenger — this might include information
about seating so that the passenger can choose a seat while
waiting to check in baggage. This process continues as the

1

passenger progresses through the various stages of embarka-
tion.

In the context of this system a frequent flyer might be anx-
ious about missing his flight. One could imagine in the old
system that he might take a snapshot of the public display and
comment that he always looks for a seat where this information
is visible. He might also comment: that the flight information
relevant to him is not always clearly discernible on the display;
that delay information is often displayed late and is not updated
so there is no sense of there being any progress.

This information is not captured well by a specific scenario
because although one such situation can be captured well, the
scenario does not cover all situations — that this information
needs to be available whatever “path” the user takes. More for-
mal approaches may play a role here. The challenge is whether
it is possible to produce models of systems in such a way that it
becomes feasible to explore experience issues in the design of
these systems. In particular we claim that an approach used in
earlier work that combines scenarios with property checking
would be of value [2]. In such an approach model-checking
may play a role in checking experience requirements. Sup-
pose that a passenger reports that she wants to be able to ac-
cess “up to date flight information” wherever she is. Properties
can be specified of the model that capture this notion of up-
to-dateness and used to check the model. Just as in [6] we
would use the model to explore the possible paths that passen-
gers might take to reach the flight gate.

4 Technical realisation
We envisage a software architecture to realise systems such as
those illustrated here using a publish-subscribe architecture [3]
coupled with a sensor interface, public displays and handheld
devices as clients, and a model of context to filter published
messages. Generic publish subscribe models are a relatively
well established area of research [4, 1]. In general these ap-
proaches focus on features of the publish subscribe mechanism
including:

• reusable model components that capture run-time event
management and dispatch

• components that are specific to the publish subscribe ap-
plication being modelled.

With such models it is possible to explore properties such
as:

• when the passenger enters a new location, the sensor de-
tects the passenger’s presence and the next message re-
ceived concerns flight information and updates the pas-
senger’s handheld device with information relevant to the
passenger’s position and stage in the embarkation pro-
cess.

• when the passenger moves into a new location then if the
passenger is the first from that flight to enter that location,
then public displays in the location are updated to include
this flight information

• when the last passenger in the location on a particular
flight leaves it then the public display is updated to re-
move this flight information

• as soon as a queue sensor receives information about a
passeneger entering a queue then queue information on
the public display will be updated.

These properties can all be related to the experience that a
user has of the system. Checking properties of the model will
generate sequences that do not satisfy them. The domain ex-
pert will use this information to inspire potentially interesting
scenarios. These scenarios may then be used to visualise how
different personae would experience them. A potential user
might be asked to adopt the persona and then to visualise the
system. Paper or electronic prototypes would be used to indi-
cate what the system would appear to be like at the different
stages of the scenario.

5 Conclusion
In this brief position paper we argue that experience centred
design is of particular importance where a user is situated
in a dynamic environment involving an ambient and mobile
system. We have outlined approaches to experience require-
ments elicitation and summarised an approach to analysis that
is based on the use of formal methods such as model checking
to identify potential problems related to the user experience
and a technical realisation based on publish-subscribe models.

References
[1] L. Baresi, C. Ghezzi, and L. Zanolin. Modeling and valida-

tion of publish / subscribe architectures. In S. Beydeda and
V. Gruhn, editors, Testing Commercial-off-the-shelf Com-
ponents and Systems, pages 273–292. Springer-Verlag,
2005.

[2] J.C. Campos and M.D. Harrison. Model checking in-
teractor specifications. Automated Software Engineering,
8:275–310, 2001.

[3] P.T. Eugster, P.A. Felber, R. Gerraoui, and A. M. Kermar-
rec. The many faces of publish subscribe. ACM Computing
Surveys, 35(2):114–131, 2003.

[4] D. Garlan, S. Khersonsky, and J.S. Kim. Model check-
ing publish-subscribe systems. In Proceedings of the 10th
International SPIN Workshop on Model Checking of Soft-
ware (SPIN03), Portland, Oregon, 2003.

[5] W. Gaver, T. Dunne, and E. Pacenti. Design: cultural
probes. ACM Interactions, 6(1):21–29, 1999.

[6] K. Loer and M.D. Harrison. Analysing user confusion in
context aware mobile applications. In M.F. Constabile and
F. Paternò, editors, INTERACT 2005, number 3585, pages
184–197. Springer Lecture Notes in Computer Science,
2005.

[7] M.B. Rosson and J.M. Carroll. Usability Engineering:
scenario-based development of human computer interac-
tion. Morgan Kaufman, 2002.

Addressing Challenges of Stakeholder Conflict in the

Development of Homecare Systems

Marilyn Rose McGee & Phil Gray

Department of Computing Science, University of Glasgow, UK,

1 Introduction

In this position paper we identify particular types of conflict that can arise in home care systems and

consider ways in which system development methods and tools can address the satisfactory resolution of

such conflict. We conclude by presenting our proposed future work.

2 Home Care Systems and Their Stakeholders

We define home care as a potentially linked set of services of either social care, health care, or both, that

provide, or support the provision, of care in the home. Our focus in this paper in on technologically

supported home care, in particular those that involve specialised computer systems. Such home care support

can range from simple stand-alone electro-mechanical alarms installed in a person’s home, perhaps to

indicate a bath overflowing or a door left ajar, to systems integrated into the home’s physical infrastructure

[6,7] that monitor patient state, perform sophisticated analyses, deliver customised information to patients

and clinicians and support communication among them.

We distinguish between
• the social and professional aspects of home care, including the people being cared for, the carers, and any

external stakeholders playing a role in the care, which we call the Network of Home Care, and

• the technology used to support and realise the activities of the network of care, providing the means to collect,

distribute, analyse and manage care related information. Such technology typically includes sensors, devices,

displays, data, and networks, and computing infrastructures. Together we call this the Home Care System.

The key features of home care systems, from the point of view of this paper, are the following:
• Sensors provide data about the status of the cared person

• Home care can be multi-user and often collaborative

• Home care can be distributed

• Homecare System Interaction can be multimodal

Given the multi-user, multimodal, potentially collaborative and distributed nature of Home Care Systems, it is likely

that the software and system solutions will produce conflicts and challenges that ubiquitous research much address.

3 Key Issues and Conflicts
3.1 Sources of Conflict
Conflicts might arise if the user(s) of the system misinterpret (a) other user(s) intentions or interactions and/

or (b) the systems intentions or interactions. In order for home care systems to minimize the damage these

conflicts can potentially cause, they have to be identified and described in such a way that their structure and

characteristics are revealed with respect to potential resolution. What follows is not intended as a

comprehensive and complete analytic model of such conflict, but merely an initial attempt to examine some

examples, to illustrate their likely structure and variety.

• Shared Interaction Spaces
• Multiple care conditions
• Service quality versus user experience
• Control and use of data
• Accountability
• Volatility of behaviour and belief
• Consequences of conflict
• System failure
• Makes it hard to provide autonomic configuration
• Poor Usability

4 Conflict Identification, Negotiation and Resolution

Stakeholder conflict is a potential threat to the realisation of effective and usable home care systems.

Solutions involve improving the identification, description and resolution of these conflicts. In this section,

we present some initial ideas about how this might be accomplished. These potential solutions, or partial

solutions, to stakeholder conflict, include technological solutions, socially or clinically negotiated, or

implemented at a system design level, or some combination of these.

4.1 Technological

• Modify sensing or interaction technologies.
• Enhance the network policy languages for networks being built for homecare systems
• Develop configuration/monitoring tools that are based on these patterns of care and system models

4.2 Social and Clinical

Social and Clinical solutions can be derived from some combination of the other solutions. Where
appropriate, multiple users and stakeholders are invited to feed into either or both of participatory design of
the home care system and the ongoing configuration and evolution of the home care system.

4.3 System design-oriented Solutions

• Participatory design of the home care system
• Develop or augment activity, requirements and system models to enable conflicts to be identified and dealt

with effectively
• Languages and prototyping tools to support system models.
• Identify and categorise patterns of care at home within these networks and ultimately develop a pattern

language to support this and enable future home health care systems to be built successfully

4.4 Configuration Oriented Solutions

Instead of trying to resolve the conflicts at design time, they might be addressed by enabling the system to be

configured appropriately at run-time. Given our earlier observations about the difficulty of identifying

conflicts before users have experience the system, this approach is perhaps the most important but also one

of the most demanding in terms of changes to home care system development. The challenge here is to make

it possible to change the functionality and the interactive appearance and behaviour of the system, more or

less fundamentally, at an acceptable cost to the user(s) and/or stakeholder(s).

Furthermore, while personalisation seems a key requirement for configuration oriented solutions, it can also

exacerbate the problem if handled incorrectly [2]. If one stakeholder is allowed to personalise the system for

themselves this may create a conflict with another. Thus personalisation has be implemented in such a way

that conflicts are notified during personalisation, if possible and/or personalisation is performed in a

collaborative way, enabling all relevant stakeholders to contribute to the final configuration decision.

We believe this to be a key research challenge for home care system software, requiring a solution that

exploits the notion of dynamically reconfigurable self-describing components in a framework capable of

supporting structural evolution and incorporating sharable components for editing and monitoring system

status [e.g. 5].

5 References

[1] Barkhaus, L., & Dey, A.K. (2003). Is Context Aware Computing Taking Control Away From The User?

Three Levels of Interactivity Examined. In Proceedings of Ubicomp 2003, 159-166.

[2] Bellotti,V., & Edwards, K. (2001). Intelligibility and Accountability: Human Considerations in Context-

Aware Systems. Human-Computer Interaction, 16, 193-212.

[3] Dey, A.K. (2001). Understanding and Using Context. Personal and Ubiquitous Computing, 5(1), 4-7.

[4] Dey, A.K., Mankoff, J., Abowd, G.D. & Carter, S. (2002). Distributed Mediation of Ambiguous Context

in Aware Environments. UIST 2002, Paris, France.

[5] Dourish, P. (2004). What We Talk About When We Talk About Context. Personal and Ubiquitous

Computing, 8, 19-30.

[6] Dowdall, A. & Perry, M. (2001). The Millenium Home: Domestic Technology to Support Independent-

Living Older People. In Proceedings of the 1st Equator IRC Workshop 1-15; 2001, 13-14 Sept, Nottingham,

UK.

[7] Mozer, M. (1998). The Neural Network House. In Proceedings of AAAI Symposium on Intelligent

Environments, 110-114.

SEUC 2006 Workshop Programme

Session 6:
Engineering for Humans II

‘Palpability’ as an Architectural Quality

Klaus Marius Hansen
Department of Computer Science, University of Aarhus

Åbogade 34, 8200̊Arhus N, Denmark
Email: klaus.m.hansen@daimi.au.dk

Abstract

Arguably, a central challenge in engineering pervasive computing is that perva-
sive systems are pushing technical as well as use frontiers. Pervasive technology is
providing new means for users to work and play often enabling profound changes
in the practice of these users. On the other hand, pervasive technology is only
successful to the extents that it is actually used and usable.

In this position paper, we postulate that these challenges are best attacked by
pervasively applying use concepts as well as technical concepts at all levels of
pervasive computing systems; from platform to middleware to application. In par-
ticular, we introduce the quality of ‘palpability’ as a quality-in-use as well as an
architectural quality that needs to be addressed in a pervasive system.

1 Palpable Computing and Palpability

Pervasive computing1 has always been a good source for interesting and relevant tech-
nical challenges in creating software systems and architectures (e.g., [6]). This stems
from a complex interplay of requirements from particular applications and particular
use and from general properties of these kinds of computing systems such as resource
constraints, use of wireless connectivity, and mobility of devices and users. Taking
pervasive computing as its outset,

Palpable computing systemsare pervasive computing systems that are “graspable”
both mentally and physically2. Palpable computing subsumes pervasive computing
in that goals such as autonomy, invisibility, construction, and dynamism are comple-
mented with user control and deference, visibility, de-construction, and support for
stability [2]. Among the rationales for building and studying such systems are to be
able to understand complex, pervasive systems, to be able to (de-)construct them and
to handle partial failures of such systems. The PalCom IST project that explores pal-
pable computing, has as its major goals to 1) define an open architecture for palpable
computing, and 2) to create a conceptual framework for palpable computing.

Many of these concepts can be interpreted in a use as well as a technical sense, and
are, if interpreted in a technical sense, congruent with good (object-oriented) software
engineering practices.Invisibility of internals of objects is usually supported by in-
formation hiding and considered a major technique in managing dependencies in soft-
ware systems.Construction(or composition) is the raison d’être of component-based

1In the context of this position paper, we will regard the terms ’ubiquituous computing’ [5], ’pervasive
computing’ [3], and ’ambient intelligence’ [1] as equivalent

2http://www.ist-palcom.org/

1

http://www.ist-palcom.org/

architectures in which applications ideally may be composed from available software
components.

On the other hand, some of the complementary concepts in the challenges pairs
give rise to interesting issues in languages, middleware, and software architectureVis-
ibility , e.g., may be in conflict with information hiding so controlled ways of “opening
up” software systems are needed. In particular, if exceptions arise in the use of palpa-
ble computing systems, visibility of what has gone wrong and possibly why becomes
important. Actually, in a dynamic pervasive computing world, failure cannot really
be seen as exceptional. Andde-construction/de-composition– in particular when the
de-construction is not an exact inverse of a previous construction – emerges as a major
and radical new issue.

2 Palpability as an Architectural Quality

In short, the goal of palpable computing is to support ‘palpability’ as a quality of use
of pervasive computing systems built on top of the PalCom open architecture. Now
the issue is how this use quality translates into product/architectural qualities of the
systems and platform being constructed? As alluded to above, the characteristics of
palpability have parallels at use and at platform level.

Using the “visibility/invisibility” characteristic for a specific example, invisibility
on the use level may be a question of being able to access the Internet on one’s laptop
through a combination of Bluetooth radio (on the laptop and on a mobile phone) and
GSM radio (on a mobile phone) without noticing that it is actually the mobile phone
that brokers the Internet connection. Now, if this connection fails for some reason
(e.g., unavailability or lack of performance), there is a need for being able to inspect
the state/situation of devices, i.e., there is a need for visibility.

To realize this inspection, devices (and thus software) needs to fundamentally allow
for this inspection. Ideally, we will want to know what has failed, for what reasons,
what works correctly, and with which properties, etc., so that we, e.g., may choose a
reasonably priced WiFi connection and use that for Internet access. Now, this example
is a candidate for autonomous behavior of the pervasive system based on descriptions
of the available resources and a description of the users desired trade-offs between
speed and price. An example of where user control and deference would be preferable
– also in a failure situation – would be a use scenario where palpable devices are used at
an accident site and where the device to fail is a sensor connected to an injured person.

Again, this is an example in which the same characteristics of palpable computing
needs to be supported at both use and platform level. A further example would be
dynamism/stability in which the concept of ´assemblies’ are explored at both levels [4].
Indeed, one may make similar arguments for most aspects of palpability leading to a
speculative conclusion that palpability is a (central) concept in pervasive computing
needing support both at use and architectural levels. In particular, palpability needs
to be treated as an architectural quality of (palpable) systems and thus needs to be
designed for, analyzed for, and constructed for. As such, palpability is representative
of the more fundamental challenge of connecting design to use, here in the context of
systems where technical and use innovation is radical.

2

References

[1] E. Aarts, R. Harwig, and M. Schuurmans. Ambient intelligence. In B. Denning,
editor,The Invisible Future, pages 235–250. McGraw-Hill, 2001.

[2] P. Andersen, J. E. Bardram, H. B. Christensen, A. V. Corry, D. Greenwood, K. M.
Hansen, and R. Schmid. An open architecture for palpable computing. InECOOP
2005 Object Technology for Ambient Intelligence Workshop, Glasgow, U.K., July
2005.

[3] G. F. Hoffnagle. Preface to the issue on pervasive computing.IBM Systems Jour-
nal, 38(4):502–503, 1999.

[4] M. Ingstrup and K. M. Hansen. Palpable assemblies: Dynamic service compo-
sition for ubiquitous computing. InProceedings of the Seventeenth International
Conference on Software Engineering and Knowledge Engineering, 2005.

[5] M. Weiser. The computer for the 21st century.Scientific American, pages 94–110,
July 1991.

[6] M. Weiser. Some computer science issues in ubiquitous computing.Communica-
tions of the ACM, 36(7):75–84, 1993.

3

Human-Computer Interaction in Ubiquitous Computing Environments
David Benyon

The HCI group, School of Computing,
Napier University. Edinburgh

Human-Computer Interaction (HCI) has to respond to the demands of the new era of
ubiquitous, ambient and pervasive computing. It has to deal with the challenges of
large scale wireless sensor networks (Romer and Matten, 2004) and context aware
applications (Lieberman and Selker, 2000). We will refer to these new and emerging
computational environments as ‘information spaces’. These spaces mix the real and
the digital and are physically distributed across devices. They require a radical re-
think of HCI because traditionally HCI has been dominated by a view that
foregrounds a person interacting with a computer. Norman’s classic
conceptualisation of cognitive engineering and his theory of action (Norman, 1986) is
an early example, but even most of the theories in Carroll (2003) focus on one person
and one computer. By contrast information spaces are characterised by many people
and many (possibly thousands) of devices.

Lieberman and Selker (2000) argue that there is an abstraction-context trade-off that
is currently biased in favour of abstraction. Software engineering wants systems
designed for re-use and for ease of maintenance but this means that the ‘black box’ is
pitched at the wrong level. The benefits of higher levels of abstraction are outweighed
by the lack of context sensitivity. Lieberman and Selker offer three criticisms of the
simple input-processing-output model of HCI. User input is expensive and slow and
could be much more efficient and enjoyable if the system took more account of what
it knows about the user’s context. Second, explicit outputs are not always appropriate
or desirable. Here they point to ambient interaction that arises from work on tangible
user interfaces (Fitzmaurice, et al., 1995) and other more subtle forms of output such
as audio, gesture and bodily movement. Finally, the input-output feedback loop is not
sequential as the traditional software model of HCI would suggest. Modern interfaces
need to deal with multiple, multimodal and concurrent interactions. A single goal of a
person may be to ‘plan a trip’, but this involves moving between several applications,
and often having to re-enter information in different applications. This arises because
the applications do not share the context.

An information space is some combination of things that is used by someone to
provide information (Benyon, Turner and Turner, 2005). We distinguish three kinds of
entity that make up information space. Agents are goal-directed. People are agents and
we are increasingly developing artificial agents. Information Artefacts are objects that
organise and present information. They have both a conceptual side (the information
content in digital form) and a perceptual side (the interface in physical form).
Information space also contains devices that allow data to be transmitted and stored.
Information space is, thus, characterised by a mixture of physical and digital objects
that are networked together, can sense their environment, process that information,
operate and communicate with one another. Some of these networks will be
autonomic; configuring themselves and communicating autonomously.

The work builds on our previous work on information spaces which has led to the
notion that it is useful to see HCI as navigation of information space (Benyon and
Hook, 1997; Benyon, 1998; Benyon 2001; Benyon, 2005). In this characterisation of
HCI people are seen as moving through the network of agents, devices and
information artefacts that make up the information space in much the same way as
people move through the built environment (Benyon and Wilmes, 2003; Benyon,
2006). Information is distributed through the agents and information artefacts and
people interact with this information space by storing, retrieving and transforming
information. However, rarely does the information space does map 1:1 onto the
activities. People have to move through the network to accomplish an activity.

This notion that information is distributed in this way has resonances with a number
of other researchers such as the resources model (Wright, Fields and Harrison (2000),
distributed cognition (Perry, 2003) and situated cognition (Lave, 1988). There are also
similarities with Pirolli’s ‘information scent’ where people are seen as ‘informavores’;
utilising our evolved food-foraging mechanisms for information gathering (Pirolli,
2003).

In information spaces we are not designing for tasks and goals, but designing spaces
for interaction (Winograd, 1997). Designers can create information space sketches,
showing the devices, agents and information artefacts involved in some activities.
These can be more formally described using techniques such as ERMIA (Green and
Benyon, 1996).

The concept of information space also means that we need to augment the traditional
model of user interface architecture where the Model View Controller (MVC), or PAC
(presentation, abstraction, control) model (Coutaz, 1987) has already been rendered
lacking through work on tangible user interfaces (Ishii and Ullmer, 1997). They argue
that the PAC model needs a physical part in addition to the PAC. However, Ishii still
focuses just on the interface. With the notion of navigation in information space, the
focus moves to the whole interaction; across devices and across time. In a recent
review Dix (2003) laments that although there have been workshops addressing the
challenges to these traditional HCI models, little real progress has been made.

In conclusion, consideration of the characteristics of information spaces, by which we
intend to include pervasive computing environments, ubiquitous computing
environments, context aware environments, ambient intelligence and wireless sensor
networks, leads to a fundamental re-think of HCI. In particular we need software
architectures that allow the separation of the description of the interaction and the
device. We therefore require an ontology and taxonomy suitable for interaction design
in these distributed, multimedia, multimodal environments and suitable theory, tools
and methods to design for human interaction.

References

Benyon, D. R. (1998) Cognitive Ergonomics as Navigation in Information Space
Ergonomics 41 (2) Feb. 153 – 156
Benyon, D. R. (2005) Information Space. In Ghaoul, C. (ed.) The Encyclopedia of
Human-Computer Interaction
Benyon, D. R. (2006) Information Architecture and Navigation Design. In Human
Computer Interaction Research in Web Design and Evaluation, Zaphyris, P. and
Surinam, k. (eds.)

Benyon, D. R. and Wilmes, B. (2003) The Application of Urban Design Principles to
Navigation of Web Sites. In Proceedings of HCI 2003
Benyon, D., and Höök, K. (1997) Navigation in Information Spaces: supporting the
individual, In Human-Computer Interaction: INTERACT'97, S. Howard, J. Hammond
& G. Lindgaard (editors), pp. 39 - 46, Chapman & Hall, July
Carroll, J. (ed.) (2003) HCI Models, Theories and Frameworks. Morgan Kaufman,
Boston, MA
Coutaz, J. (1987) PAC, an object model for dialogue design. In Bullinger, H-J and
Shackel, B. (eds.) Proceedings of Inteact 87. North Holland, Amsterdam.
Dix, A. (2003) Upside-Down As and Algorithms- Computational Formalisms and
Theory. In Carroll, J. (ed.) HCI Models, Theories and Frameworks. Morgan Kaufman,
Boston, MA
Fitzmaurice, G. W., Ishii, H., Buxton, W. (1995). Bricks: Laying the Foundations for
Graspable User Interfaces. Published in the Proceedings of CHI 1995, May 7-11,
ACM Press.
Green, T. R. G. and Benyon, D. R. (1996) The skull beneath the skin; Entity-
relationship modelling of Information Artefacts. International Journal of Human-
Computer Studies 44(6) 801-828
Ishii, H. and Ullmer, B. (1997) Tangible bits: towards seamless interfaces between
people, bits and atoms. Proceedings of CHI 97 Conference, Atlanta, GA ACM press,
New York pp 234 – 241
Lieberman, H., Selker, T. (2000) Out of Context: Computer Systems that Learn
About, and Adapt to, Context. In IBM Systems Journal, Vol 39, Nos 3&4, pp.617-631
Norman, D. (1983) Cognitive Engineering. In Norman, D. and Draper, S. User
Centred Systems Design
Perry, M. (2003) Distributed Cognition. In Carroll, J. (ed.) HCI Models, Theories and
Frameworks. Morgan Kaufman, Boston, MA
Pirolli, P. (2003) Exploring and Finding Information In Carroll, J. (ed.) HCI Models,
Theories and Frameworks. Morgan Kaufman, Boston, MA
Romer, K. and Mattern, F. (2004). The Design Space of Wireless Sensor Networks.
Appeared in IEEE Wireless Communications, Vol. 11, No. 6, pp. 54-61, December
2004.
Winograd, T. (ed.) (1996) Bringing Design to Software. ACM Press. New York
Wright, P., Fields, R. E. and Harrison M. (2000) Analyzing Human-Computer
Interaction as distributed cognition: the resources model. Human-Computer
Interaction, 15(1), 1 – 42

User-Centered Task Modeling for Context-Aware Systems

Tobias Klug
Telecooperation Group

Technical University of Darmstadt
Hochschulstrasse 10
Darmstadt, Germany

lastname@tk.informatik.tu-darmstadt.de

1. INTRODUCTION
Ubiquitous computing envisions computers as such an inte-
gral part of our environment that we cease to notice them
as computers. One part of this vision are context aware ap-
plications that know about their user’s context and are able
to intelligently support him doing his work. However, actu-
ally achieving context awareness in computer systems is an
extremely complex matter.

Compared to traditional software, the context awareness
idea is relatively new. Therefore existing software engineer-
ing methodologies focus on WIMP (Windows, Icons, Mouse,
Pointer) interfaces. For these methodologies it is sufficient
to concentrate on the system itself, because there are few
if any external influences. As a result these applications
are always in control of what happens. With context aware
systems this is different. They focus on the real world and
the system is just an add-on. Therefore, the designer needs
some understanding of what is going on in the real world
that might influence the system. In other words s/he needs
to understand the user’s context. In most cases the relevant
context can be defined as the sum of all user’s tasks and
everything that influences their execution. In the following
we will refer to this as the user’s work environment.

Understanding a user’s work environment is one of the most
important steps when designing a context aware application.
Users need to be involved in this step to obtain authentic
data on how users perform their work, what their environ-
ment looks like and what their needs are. User centered
design [4] is a paradigm that fits naturally in this applica-
tion area as it increases the chances of user acceptance.

An important step towards understanding a user’s work en-
vironment is gathering knowledge about his task and goal
structures. This step is already common practice in the
HCI community. HCI practitioners use techniques of the
family of task analysis and modeling to analyze work pro-
cesses. The resulting models are used to communicate the
user’s needs to the design and development teams building
the application.

At runtime the system also needs to be aware of the user’s
environment, because it wants to support him/her in reach-
ing a goal. To achieve that, the system needs to anticipate
this goal and to know what needs to be done to achieve it.
But goals and the related task structures can be very com-
plex which makes it hard if not outright impossible to infer

a user’s goal without additional knowledge. Therefore, the
system needs a model of the relevant tasks and goals.

It is obvious that models of the user’s work environment are
of help or necessary during a number of development stages
from the initial concept development phase to the runtime
phase. The remainder of this paper shows why adapted task
models are interesting candidates for the above mentioned
purposes.

2. TASK MODELING
The introduction shows that task modeling can be a valuable
tool for the development of context aware systems. However
the requirements for a successful integration are difficult to
meet. The model must be powerful enough to be useful
at runtime and at the same time simple enough to be un-
derstood by non-technical stakeholders that use it during
development.

As task modeling has its origins in HCI, most existing meth-
ods originate in this discipline. Depending on their purpose
the models vary in their degree of formality. Rather infor-
mal models like Hierarchical Task Analysis (HTA) [1] are
used for analysis and concept development. These mod-
els are easy to understand and can be used as communi-
cation artifacts between different stakeholders during the
system design. Other models like GOMS [2] and CTT [3]
are more formal. These are often used for performance and
offline usability evaluations. They are machine readable,
but their formalisms make them unusable for any work with
non-experts in task modeling.

The latter models have also been used by the model based
user interface development community to (semi-)automatically
construct user interfaces based on task models. So far these
models have mostly been used to develop WIMP and mobile
applications. They only capture a user’s tasks and hardly
any information about the context they are executed in. In-
tegrating context into these models has been attempted, but
these approaches describe how the task model changes in a
specific context rather than describing why and how a task
is influenced by this context.

Both, usability and expressiveness have not yet been achieved
in one model because existing models have all been devel-
oped with a single purpose in mind. Theoretically it is pos-
sible to achieve both in a single model, because user and
system are dealing with different representations of a model.

Figure 1: Coffee machine example in CTT notation.

A human is only interested in its graphical representation,
whereas the system only understands the formal specifica-
tion. The challenge is to find suitable representations for
both parties and a mapping between these two.

3. PROPOSED MODEL
Task models and their associated context are hard to model
because they form a very complex system with many rela-
tionships and constraints. Previous approaches have tried
to integrate information about the task context into the
same representation as the task model itself. The results
are monolithic representations too bloated to be useful for
any human, especially if end users are concerned. These
kinds of models answer the question how tasks and context
are interrelated, but not why. Let’s consider the example of
getting a coffee:

Alice wants to get a coffee from the coffee machine. But
before she can get the coffee, she needs to fill in water and
coffee. Then she starts the coffee machine and waits until
the coffee is ready. If the machine was not clean before she
might also need to clean the machine first.

Using CTT to model this process might look like in Fig-
ure 1. The process actually involves two interacting parties,
Alice and the coffee machine. Although this model is sup-
posed to show Alice’s view on the coffee problem, it mixes
her tasks with details inherent to the way the coffee machine
works. This approach has several disadvantages. If the cof-
fee machine were to be exchanged with a new device, the
user process might have to be remodeled, although only the
interaction depending on the coffee machine changed. An-
other problem is the readability of the representation. The
only task Alice actually wants to perform is taking the cof-
fee from the machine. All other tasks are only necessary
because of the way the machine works.

In contrast splitting the model into one part for each entity
involved in the process offers many advantages. Figure 2
shows such a model using a notation similar to UML. The
upper part shows Alice’s workflow from her point of view.
The lower part shows a state machine modeling the behavior
of the coffee machine. If the coffee machine needs external
input to change state, this is indicated with the name of the
task at the transition arrow.

The only link between the two models is the association of
the ”take coffee” task in Alice’s workflow with the ”take cof-

Figure 2: Coffee machine example with separate
models for user and machine based on UML.

fee” transition in the coffee machine’s state machine. When
Alice wants to perform this task, the coffee machine needs
to be in the ”coffee ready” state. If this is not the case, Alice
needs to perform additional other steps like ”insert water”
to bring the machine into this state.

Using this approach logically separates the different entities
within the process. Now, if a new coffee machine were to
be purchased, only one part of the model would have to
be changed and the link between the parts might have to
be adapted. Additionally, the model is much more flexible,
because a variety of coffee machine states is handled trans-
parently. If the previous user forgot to clean the machine or
already filled in water, The model shows what to do.

This example clearly shows that a lot of dependencies within
one work environment can be deducted from its parts. As
Figure 2 shows, the only manual dependency that was spec-
ified is the dependency between the ”take coffee” task and
the respective state of the coffee machine. All other depen-
dencies can be derived from the combination of all parts.
Together with the separation of concerns within the model
the readability of the representation is improved while still
maintaining the complexity for the computing system.

4. REFERENCES
[1] J. Annett. Hierarchical Task Analysis, chapter 2, pages

17–35. Lawrence Erlbaum, 2003.

[2] B. E. John and D. E. Kieras. The goms family of user
interface analysis techniques: comparison and contrast.
ACM Trans. Comput.-Hum. Interact., 3(4):320–351,
1996.

[3] G. Mori, F. Paterno, and C. Santoro. CTTE: support
for developing and analyzing task models for interactive
system design. IEEE Trans. Softw. Eng.,
28(8):797–813, 2002.

[4] K. Vredenburg, S. Isensee, and C. Righi. User-Centered
Design: An Integrated Approach. Prentice Hall, 2001.

Task-Based Development of User Interfaces for Ambient Intelligent Environment

Tim Clerckx and Karin Coninx
Hasselt University, Expertise Centre for Digital Media,

and transnationale Universiteit Limburg
Wetenschapspark 2

3590 Diepenbeek, Belgium
{tim.clerckx,karin.coninx}@uhasselt.be

Abstract

The designer of user interfaces for ubiquitous systems
has to take into account the limited resources and changing
contexts of use. In this paper we report on our proposal for
a task-based development process for user interfaces that
takes into account changes in the context of use and can re-
act appropriately to the appearance and disappearance of
services in their environment. Model-transformations and
the generation and evaluation of prototypes are an impor-
tant part of this development process and are supported by
a custom-built tool.

1 Introduction

The shift to the increasing development of context-aware
systems brings along the question whether traditional user
interface development methodologies still result in systems
that are sufficiently usable. Context-aware systems are
more unpredictable than static systems because external
context information can change both the system’s and the
user interface’s state. This is why interactive context-aware
systems require a better insight in what may happen with the
user interface during the execution of the system in order to
keep the system usable when a significant change of context
occurs. We believe these problems can be reduced by tak-
ing two measurements: (1) restricting the possible influence
of external context and available services on the user inter-
face and (2) testing and evaluating context-changes causing
changes in the user interface at early design stages until the
actual deployment of the system.

Firstly, we were concentrating on how we could restrict
the influence of context on the user interface by constraining
influence in models. We developed a task-centred design
approach to model the interaction of a context-aware sys-
tem [2]. Furthermore, we developed a runtime architecture,

supporting the early prototyping of the specified user inter-
face models [3]. Afterwards, we generalized this runtime
architecture to a generic one, in order to build prototypes
of context-aware user interfaces during the whole develop-
ment cycle of a context-aware system. In this approach we
tried to reduce application specific code to be written in the
user interface part of the system. In this position paper, we
will give an overview of our development process, called
DynaMo-AID.

2 The DynaMo-AID Process

In this section, we describe the DynaMo-AID de-
velopment process supporting the development cycle for
context-aware and service-aware user interfaces in provid-
ing methodologies and tool support in the design, proto-
typing and deployment phase of the production of context-
aware and service-aware user interfaces.

The development process is prototype-driven consisting
of several iterations over a prototype until a final iteration
results in a deployable user interface. The process is pre-
sented in figure 1, inspired by the spiral model introduced
by Boehm [1].

The process consists of four iterations which on their
turn consist of four phases. Each iteration starts with the
specification of an artefact, i.e. specification of models
or code implementation (Artefact Construction). Subse-
quently a prototype is derived from this artefact and test
runs are performed with this prototype (Prototyping). Af-
terwards this prototype is evaluated (Evaluation) in order to
apply some changes to the basic artefact of the current iter-
ation (Artefact Reconsideration). The updated artefacts are
brought along to the next iteration.

The first iteration starts with the specification of mod-
els defining a user interface. Firstly, abstract models are
specified describing the interaction at a high level, such as
user tasks (task model). Afterwards, tools assist the user

Figure 1. The User Interface Development
Process

interface developer in transforming these abstract models
into more concrete models (dialog and abstract presentation
model) in order to make the models suitable for automated
prototype generation. Next a static prototype is generated
by the supporting design tool to perceive how the modelled
user interface actually works. Finally, the prototype is eval-
uated and possible changes to the modelled UI can be car-
ried out.

The next iteration is meant to introduce context-
awareness in the user interface. Because context is only
relevant when it has a direct influence on the user’s task [4],
we chose to attach the context model to a task model. Next a
new prototype is automatically generated by the design tool.
Afterwards the prototype is evaluated by the user interface
developer and possible changes to the context and user in-
terface models are allowed until the developer is satisfied
with the resulting prototype.

In the third iteration the user interface models are linked
to the functional core of the system. Furthermore the pre-
sentation of the user interface is altered in order to present
the data provided by the functional core of the system. Next
a new prototype can be rendered. This prototype is now op-
erational and can be used to test the user interface on top of
a working functional core and influenced by external con-
text information. The prototype is evaluated, and changes
can be applied.

The final iteration includes the actual implementation of
the final presentation layer of the user interface. This layer
can be very thin due to the architecture’s modular character-
istic and because the specified models are interpreted and
used to support the communication between the different

parts of the system. In this way, more attention can be paid
to the design of the presentation of the user interface in this
final iteration. The resulting operational user interface can
then be tested by means of a usability test with end users
in order to make final adjustments to the presentation layer.
Afterwards the user interface is ready for deployment.

3 Concluding Remarks

Traditional user interface development techniques did
not consider external context influence. This is why we have
constructed a new, prototype-based, tool supported develop-
ment process in order to model and test context influence on
the user interface of the system. We believe the evaluation
of prototypes throughout the whole development process is
necessary considering the development of ubiquitous sys-
tems to create usable end user systems. In our work, we
clearly focused on the development of context-aware and
services-aware user interfaces which play an important role
in ubiquitous systems.

Acknowledgements

The authors would like to thank Chris Vandervelpen and
Kris Luyten for their contributions to the work described
in this paper. Part of the research at EDM is funded by
EFRD, the Flemish Government and IBBT. The CoDAMoS
project IWT 030320 is directly funded by the IWT (Flemish
subsidy organization).

References

[1] Barry W. Boehm. A spiral model of software develop-
ment and enhancement. IEEE Computer, 21(5):61–72,
1988.

[2] Tim Clerckx, Kris Luyten, and Karin Coninx. Dynamo-
aid: A design process and a runtime architecture for
dynamic model-based user interface development. In
Engineering for Human-Computer Interaction/DSV-IS,
volume 3425 of Lecture Notes in Computer Science,
pages 77–95. Springer, 2004.

[3] Tim Clerckx, Kris Luyten, and Karin Coninx. De-
signing interactive systems in context: From prototype
to deployment. In People and Computers XIX - The
Bigger Picture, Proceedings of HCI 2005: The 19th
British HCI Group Annual Conference, September 5-
9 2005, Napier University, Edinburgh, UK, pages 85–
100. Springer, 2005.

[4] Anind K. Dey. Providing Architectural Support for
Building Context-Aware Applications. PhD thesis, Col-
lege of Computing, Georgia Institute of Technology,
December 2000.

SEUC 2006 Workshop Programme

Session 7: Platforms

Domino: Trust Me I’m An Expert
Malcolm Hall, Marek Bell, Matthew Chalmers
University of Glasgow

In ubicomp, the use of computers expands beyond work activities focused on pre-planned tasks into
leisure and domestic life. People’s activities, contexts and preferences are varied and dynamic, and so
system adaptation and evolution are especially important. It is difficult for the designer to foresee all
possible functions and modules; and their transitions, combinations and uses. Instead of relying on the
developer’s foresight, incremental adaptation and ongoing evolution under the control of the users may
be more appropriate.

In Domino, the software engineer specifies basic classes and dependencies, but then the system
changes its structure on the basis of the patterns of users’ activity. In this way, the architecture actively
supports incremental adaptation and ongoing evolution of ubicomp systems. It supports each user in
their discovery of new software modules through a context-specific collaborative filtering algorithm,
and it integrates and interconnects new modules by analysing data on past use. Domino allows software
modules to be automatically recommended, integrated and run, with user control over adaptation
maintained through acceptance of recommendations rather than through manual search, choice and
interconnection. One way of looking at Domino is to see it as a means of broadening access to and
lowering the skill threshold needed for users’ adaptation of the system. For software engineers, it
reduces or avoids the need to ‘see into the future’, i.e. to specify all of the contexts and permutations of
use in advance. More detail about Domino can be found in a forthcoming paper [1].

The current version of Domino runs on both desktop computers and mobile devices that support WiFi
and run Windows, Windows Mobile or PocketPC. Each instance of the Domino system consists of
three distinct parts: handling communication with peers; monitoring, logging and recommending
module use; and dynamically installing, loading and executing new modules. We refer to the items that
Domino exchanges with peers and dynamically loads and installs as modules. A module consists of a
group of .NET classes that are stored in a DLL (Dynamic Link Library) that provides a convenient
package for transporting the module from one system to another. Each Domino system continually
monitors and logs what combination of modules it is running. When one Domino system discovers
another, the two begin exchanging logs of usage history. This exchange allows each system to compare
its history with those of others, in order to create recommendations about which new modules a user
may be interested in. Recommended modules are then transferred in DLL format between the systems.
Recommendations accepted by the user are dynamically installed and executed by Domino. This
constant discovery and installation of new modules at runtime allows a Domino system to adapt and
grow continually around a user’s usage habits. The transfer of history data and modules when Domino
clients meet leads to controlled diffusion inspired by the epidemic algorithms of Demers et al. [2].
Popular modules are quickly spread throughout the community, while modules that fulfil more specific
needs spread more slowly but are likely eventually to locate a receptive audience because of history-
based context matching and the use of ‘wanted lists’ to find required modules.

Security is a serious problem for any system that uses mobile code that moves between different
devices, with threats such as viruses and spyware. Current solutions, such as signing and sandboxes,
are viable but can be computationally expensive or require a trusted third party. Instead, while we are
researching the use of epidemic algorithms to also spread information about malicious modules, we are
concentrating on implementing Domino in game systems. While this does not avoid problems of
viruses and malware (since ‘bad’ modules could destroy a user’s game, or be used as a way of
cheating) it does provide an environment for experimenting with module recommendation and the
broader security issues, avoiding potential damage to users’ devices.

Our work is also influenced by Treasure [3], which was a mobile game used to explore the exposure of
system infrastructure in a ‘seamful’ way, so that users might appropriate variations in the infrastructure.
To test the Domino architecture, we developed a mobile strategy game, Castles, that selectively
exposes software structure to users, so that they might be aware of and appropriate software modules.
The majority of the Castles game is played in a solo building mode, in which the player chooses which
buildings to construct and how many resources to use for each one. Each type of building is a Domino
module. The goal of this stage is for the player to create a building infrastructure that efficiently
constructs and maintains the player’s army units. In order to mimic the way that plug-ins and
components for many software systems continually appear over time, new modules are introduced
throughout the game, as upgrades and extensions that spread among players while they interact with
each other. When two players’ devices are within wireless range, one may choose to attack another.

Behind the scenes, Domino also initiates its history-sharing and module-sharing processes. When a
battle commences, both players select from their army the troops to enter into battle. Players receive
updates as the battle proceeds, and at any time can choose to retreat, i.e. concede defeat. At the same
time, players can talk about the game, or the modules they have recently collected, or modules they
have used and either found useful or discarded. With such a high number of buildings, adapters and
units, there is significant variation in the types of society (module configurations) that a player may
create. Selecting which buildings to construct next or where to apply building adapters can be a
confusing or daunting task. However, Domino helps by finding out about new modules as they become
available, recommending which modules to create next, and loading and integrating new modules that
the player accepts. When new buildings and units are available to be run but not yet instantiated, we
notify the user of the new additions by highlighting them in the menu of available buildings. Domino
does not fully automate the process. It presents modules in a way that lets the user see them as he or
she plays, find out something of their past use, and show this information to others when meeting and
talking with other players. Overall, Domino complements the conversation and discussion among
players about new and interesting modules, and eases the introduction of new modules into each
individual system and into the community.

We have run pilot tests and offer some initial evidence from the system’s use. We set up the game so
that four players sat in rooms distant from one another, and out of wireless network range. We
periodically moved the players between rooms, so that they passed by each other, and met up in pairs.
This meant that users spent most of the time alone but periodically met up to start battles and to talk
about the game and its modules, much as they might if they were walking with their phones during a
normal day. Each player started with the same core set of 54 modules, plus 5 items that were unique to
him or her. For example, amongst the additional items given to one player was the catapult factory. As
anticipated, when players met for battle, their Domino systems exchanged usage information and
transferred modules between phones so as to be able to satisfy recommendations. Thus, the catapult
factory and catapult unit began with one player, but were transferred, installed and run by two of the
three other players during the game. Several players who had been performing poorly because of, for
instance, a combination of buildings that was not efficient for constructing large armies, felt more
confident and seemed to improve their strategies after encountering other players. They started
constructing more useful buildings by following the recommendations. In each of these cases, this did
not appear to stem from players’ conversation, but directly from the information provided by the
system.

Overall, our initial experience is promising. Domino’s epidemic style of propagation of modules seems
to be well suited to mobile applications where users may potentially encounter others away from high-
bandwidth and freely (or cheaply) accessible networks. Domino can quickly and automatically
exchange log data and modules. We are preparing for a larger user trial involving non-computer
scientists in a less controlled environment than the one used for our pilot. We have begun to instrument
the code so as to create detailed logs of GUI activity and module handling, to feed into tools for
analysis and visualisation of patterns of use.

To summarise, the Domino architecture demonstrates dynamic adaptation to support users’ needs,
interests and activities. Domino identifies relationships between code modules beyond those specified
in code by programmers prior to system deployment, such as classes, interfaces and dependencies
between them. It uses those relationships, but it also takes advantage of the code modules’ patterns of
use and combination after they have been released into a user community. The Castles game
demonstrated its components and mechanisms, exemplifying its means of peer-to-peer communication,
recommendation based on patterns of module use, and adaptation based on both module dependencies
and history data. The openness and dynamism of Domino’s system architecture is applicable to a
variety of systems, but is especially appropriate for mobile systems because of their variety and
unpredictability of patterns of use, their frequent disconnection from fixed networks, and their
relatively limited amount of memory. As people visit new places, obtain new information and interact
with new peers, they are likely to be interested in new software, and novel methods of interacting with
and combining modules. We see this as appropriate to software engineering for ubiquitous computing,
where technology is seen not as standing apart from everyday life, but rather as deeply interwoven with
and affected by everyday life. In the long run, we hope to better understand how patterns of user
activity, often considered to be an issue more for HCI than software engineering, may be used to adapt
and improve the fundamental structures and mechanisms of systems design.

References

1 Bell, M. et al, Domino: Exploring Mobile Collaborative Software Adaptation, To Appear in Proc. Pervasive
2006

2 Demers A. et al, Epidemic algorithms for replicated database maintenance, Proc. 6th ACM Symposium on
Principles of Distributed Computing (PODC), 1987, 1-12

3 Barkhuus, L. et al., Picking Pockets on the Lawn: The Development of Tactics and Strategies in a Mobile
Game Proc. Ubicomp 2005, 358-374.

Ubiquitous Computing: Adaptability Requirements Supported by Middleware Platforms

Nelly Bencomo, Pete Sawyer, Paul Grace, and Gordon Blair
Computing Department, Lancaster University, Lancaster, UK

{nelly, sawyer, gracep, gordon}@comp.lancs.ac.uk

Introduction

We are increasingly surrounded by computation-empowered devices that need to be aware of changes
in their environment. They need to automatically adapt by taking actions based on environmental
changes to ensure the continued satisfaction of user requirements. This complexity, of how to handle
the requirements arising from different states of the environment, how to cope when the environment
changes to ensure that ubiquitous systems [1] fulfill their intended purpose poses a major challenge for
software engineering. One approach to handling this complexity at the architectural level is to augment
middleware platforms with adaptive capabilities using reflection [2,3,4]. These augmented middleware
platforms allow us to avoid building large monolithic systems that try to cover all the possible events, by
providing components enabled with adaptation capabilities. These components can then be configured
automatically and dynamically in response to changes in context.

Our current research is concerned with how adaptive middleware can be exploited by analysts handling
requirements for ubiquitous systems. The problem here is to identify the requirements for adaptability
from the user requirements, and map them onto the adaptive capabilities of the middleware in a way
that is traceable and verifiable.

Adaptive middleware

Requirements for systems to dynamically adapt to changes in their environment introduce substantial
complexity. In general, it is uneconomic and poor engineering practice to provide ad-hoc solutions to
complex problems that share commonalities encountered within particular domains. Adaptive
middleware solutions such as GridKit [5,6] or [7,8,9] mitigate this complexity in a structured way for
application developers by providing adaptation support within domains of adaptation.

Gridkit is an OpenCOM-based middleware [10] solution that is structured using a lightweight run-time
component model. This model enables appropriate policies to be defined and configured on a wide rage
of device types, and facilitates runtime reconfiguration (as required for reasons of adaptation to dynamic
environments). Gridkit supports an extensible set of middleware interaction types (e.g. RPC, publish-
subscribe, streaming, etc.), and handles network heterogeneity by layering itself over virtual overlay
networks which it manages and transparently instantiates on demand. GridKit exploits a set of
frameworks, each responsible for different types of middleware behavior. GridKit therefore provides the
basic capability for adaptation, while adaptability requirements are encoded as rules that are consulted
at run-time when a change in the underlying environment is detected [5]. By the specification of different
behaviors related to different adaptability requirements, the system can be adapted without changes to
the application. Although GridKit is targeted at a particular domain of application, we believe that the
same adaptability mechanism is capable of supporting adaptation required in other domains.

Adaptability requirements

While software architecture has provided a technology for explicitly separating concerns in adaptive
applications, requirements engineering (RE) has yet to address the problem of how to deal with
adaptability requirements. Our view, echoed by Berry et al. [11], is that adaptive systems introduce
conceptual levels of requirements that are orthogonal to the accepted levels of, for example, user and
system requirements. In particular, requirements for adaptation are concerned with understanding how a
system may either make a transition between satisfying different user requirements depending on
context, or continue to satisfy the same user requirements in the face of changing context. Hence, the
adaptability requirements are intimately related to, and derived from, the user requirements. Yet, they
represent requirements on the satisfaction of user requirements and therefore represent a kind of meta-
requirement.

We propose that RE echoes the approach taken by software architecture and imposes a clear
separation of concerns between application requirements and adaptability requirements. This should
have the advantage of maintaining clear traceability links between user requirements at the application
level and the adaptability requirements identified by analysis and refinement of the user requirements.
However, this top-down approach is insufficient since the satisfiability of the derived adaptability
requirements is contingent on the adaptive capabilities of the middleware.

Again, however, software architecture provides a model that can be exploited by RE. The GridKit
framework, for example, provides sets of components that can be configured for different applications
using policies. As noted by Keeney and Cahill [8]: “Policy specifications maintain a very clean separation
of concerns between adaptations available, the decision process that determines when these
adaptations are performed and the adaptation mechanism itself”. The policies used by GridKit are rules,
expressed in XML, and can be mapped cleanly onto adaptability requirements provided the
requirements are developed to the appropriate level of detail and constrained by the scope of GridKit’s
domains of adaptation.

Open issues

In summary, therefore: traceability can be maintained by the derivation of adaptability requirements from
user requirements; the requirements identified as adaptability requirements are refined and verified
against the capabilities of the middleware using the semantics of the policy language used to configure
the middleware component frameworks; and the verified adaptability requirements are finally encoded
as policy rules while the remaining application requirements are implemented conventionally.

While this provides a conceptual partitioning of requirements into adaptability and application
requirements, there is one outstanding problem for which a solution has not yet been identified. This is
that ‘traditional’ analysis methods that are (e.g.) use-case driven or viewpoint-oriented, provide ways of
partitioning the requirements that are poorly suited to identifying adaptability requirements. The need for
adaptation may span several use cases, for example, yet may not easily emerge as a requirement
common to the uses cases it spans. It is possible to treat adaptability as a soft goal in i* [12] but even
this is problematic because adaptation is not necessarily closely related to user intentionality.
Investigating this problem will form the next stage of our research.

References

1. Weiser M.: The Computer for the 21st Century. Scientific American, 265(3), pp. 94-104, September

1991
2. Maes, P.: Concepts and Experiments in Computational Reflection. Proc. OOPSLA'87, Vol. 22 of

ACM SIGPLAN Notices, pp147-155, ACM Press, 1987
3. Smith B.: Reflection and Semantics in a Procedural Language. PhD thesis, MIT Laboratory of Com-

puter Science, 1982
4. Kon, F., Costa, F., Blair, G.S., Campbell, R.: The Case for Reflective Middleware: Building

middleware that is flexible, reconfigurable, and yet simple to use. CACM Vol 45, No 6, 2002
5. Grace P., Coulson G., Blair G., Porter B.: Addressing Network Heterogeneity in Pervasive

Application Environments. Proceedings of the 1st International Conference on Integrated Internet
Ad-hoc and Sensor Networks (Intersense 2006), Nice, France, May 2006

6. Coulson G., Grace P., Blair G., Duce D., Cooper C., Sagar M.: A Middleware Approach for
Pervasive Grid Environments. UK-UbiNet/ UK e-Science Programme Workshop on Ubiquitous
Computing and e-Research, 22nd April 2005

7. Capra, L., W. Emmerich, W., C. Mascolo, C., CARISMA: Context-Aware middleware System for
Mobile Applications. IEEE Transactions on Software Engineering, Vol 29, No 10, pp929-945, Nov
2003

8. Keeney J, Cahill V., Chisel: A Policy-Driven, Context-Aware, Dynamic Adaptation Environment.
Proc. Fourth IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY'03), Lake Como, Italy, 2003

9. Efstratiou C., Coordinated Adaptation for Adaptive Context-aware Applications. Ph.D. Thesis,
Lancaster University, Computing Department, 2004

10. Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J.: OpenCOM v2: A Component
Model for Building Systems Software, Proceedings of IASTED Software Engineering and
Applications (SEA'04), Cambridge, MA, ESA, Nov 2004

11. Berry D.M., Cheng B.H.C., Zhang J., The Four Levels of Requirements Engineering for and in
Dynamic Adaptive Systems, Proc. 11th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ’05), 2005, Porto, Portugal

12. Yu E., Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering.
Proc. Third IEEE International Symposium on Requirements Engineering (RE’97), Annapolis, MD.
USA, 1997

wasp: a platform for prototyping ubiquitous computing devices

Steve Hodges and Shahram Izadi, Microsoft Research Cambridge
Simon Han, UCLA Networked & Embedded Systems Laboratory

{shodges, shahrami}@microsoft.com; simonhan@gmail.com

20th April 2006

The importance of prototyping

Prototyping is a powerful way of assessing the value of ubiquitous computing applications, deciding
if they warrant further development, and understanding how best to do this. Indeed, putting
prototypes in the hands of ‘real users’ is increasingly important in assessing their potential impact
and relevance. Prototypes can be developed to many different levels of sophistication, but typically
early prototypes are quite basic, and as the concept is refined so too is the prototype. Experience
shows that each successive level of refinement requires considerably more effort than the previous.
Unfortunately, today’s ‘real users’ have very high expectations of technology. This means that they
increasingly expect even prototypes to be refined and robust, and without this they often find it hard
to evaluate them fairly. Our experience shows that only when a prototype is sufficiently well
developed do users see past its prototypical nature, and only then do the real insights about how it
can be used become apparent. Of course, developing prototypes to this level of refinement is difficult
and time-consuming. This especially applies to the development of the embedded hardware which is
often integral to ubiquitous computing applications, due to the electronic and industrial design
requirements that accompany software development.

wasp, a new platform for prototyping ubiquitous computing devices

We are currently developing a new embedded system development platform, called wasp, which
facilitates the effective and efficient prototyping of both hardware and firmware for ubiquitous
computing applications. wasp (the wireless actuator and sensor platform) is specifically designed to
accelerate the development of reliable, compact, physically robust wireless prototypes with good
battery lifetime. There are many other prototyping tools for ubiquitous computing hardware, but in
the authors’ experience, these do not meet all of the above criteria, and the resulting prototypes are
typically unsuitable for full-scale user trials of the technology that they demonstrate.

From a hardware point of view, wasp is based around a series of small modules that can be connected
together physically and electrically (via a high-speed daisy-chained serial bus) to form a particular
complete embedded device. The ‘base’ module contains an ARM7 microcontroller1 with a USB
interface, real time clock, and power regulation (including a lithium-ion battery charger). Input,
output and communications devices are incorporated via additional ‘peripheral’ modules – this helps
manage the complexity of both the hardware and the firmware, because each peripheral to the main
processor has a simple and well-defined interface. Example peripherals under development are a
GSM/GPRS modem, Bluetooth, basic I/O for LEDs, servos, buzzers etc., GPS and a VGA camera.2
If a new type of peripheral is required for a specific application, then a suitable module must be
developed – but because the interface is well-defined this is a relatively simple, self-contained task.

In addition to hardware support, wasp also provides a powerful environment for development of
embedded firmware. The basis of this is a lightweight event-based (i.e. co-operative) kernel called
wasp-OS. In many ways, wasp-OS is similar to TinyOS, which has become very popular in the
wireless sensor network community, although it supports a number of additional features and is
written entirely in ANSI C. wasp-OS includes a tiered hardware abstraction layer which allows
performance-sensitive applications direct access to the hardware, but also provides a reasonably
high-level API to hardware such as timers and I2C, SPI and UART interfaces. Note that wasp-OS
does not directly support protocols such as TCP/IP or Bluetooth which keeps the kernel light-weight

1 We are currently concentrating on the ARM7, but wasp could be based around any microcontroller.

2 Each module is one of a number of different sizes, but they are designed to connect together physically in a
space-efficient manner.

and simple. Instead, these are supported through the use of peripherals that themselves have
processors embedded; for example the GPRS modem module contains a microcontroller that runs a
TCP/IP stack.

A prototype ubiquitous computing device built around wasp will therefore consist of a number of
hardware ‘peripheral’ modules connected to a ‘base’ processor module. The processor on the base
module runs an embedded C application in conjunction with wasp-OS.

Development and debugging using wasp

wasp also provides significant firmware development and debugging support. Since both wasp-OS
and the code for the application itself are written entirely in ANSI C, it is possible to compile them
for x86 (using Visual Studio, for example), and run them under Windows (as a single Windows
process). This makes it possible to leverage the range of powerful debugging capabilities available in
a PC development environment for embedded application development. Of course, a completely
different binary will eventually be deployed in the embedded hardware – so there are several aspects
of operation that cannot be tested in this manner (such as real-time performance). But in the authors’
experience, a large number of errors in embedded system development are of a much simpler nature,
and the ability to avoid a time-consuming compile-download-test cycle combined with virtually
unlimited use of tools such as breakpoints3 is incredibly powerful.

The other major issue when running a wasp application on the PC (rather than the embedded target)
is that the peripheral modules will not be directly available. To overcome this, a different HAL must
be used. The most straightforward approach is to use a HAL that re-directs peripheral access to a
simulator for each peripheral. These simulators can run on the PC as separate Windows applications,
or can be combined into a single Windows app. The simulation can have a UI (e.g. simulated LEDs
that ‘light up’, or simulated push-buttons that can be clicked on), or can be completely embedded
(e.g. a simulated flash memory). This approach allows embedded application development to proceed
before any hardware is available. However, since many embedded peripheral devices communicate
using RS232, I2C or SPI, it is possible to connect them directly to a PC.4 In this case, a modified
HAL is used to access the real hardware peripherals, which enables a further step of validation in the
debugging process.

Following migration of the application from a desktop to the embedded hardware, the wasp base
module may itself be connected to a PC via USB. This results in a serial port connection to the wasp
CPU. We plan to add a simple command-line interface to wasp-OS which will allow the real-time
operation of the embedded target to be monitored and controlled very simply using this serial
interface. It may be possible to extend this command-line interface to support simple scripting, which
would make it easier for non-experts to control various aspects of operation. We are also
investigating ways in which information may be communicated automatically between a wasp device
and desktop applications such as Macromedia Flash.

Summary

In summary, wasp is a complete platform for prototyping ubiquitous computing devices effectively
and efficiently. It supports a development process that naturally integrates hardware and firmware,
and leverages powerful, established debugging tools and practices common to desktop application
development. wasp is very-much work-in-progress, but we hope that over time it will prove valuable
in a wide range of ubiquitous computing applications.

3 Embedded microcontroller development environments often limit the number of simultaneous breakpoints.

4 Many devices to convert USB to RS232, I2C and SPI are readily commercially available.

SEUC 2006 Workshop Programme

Additional Papers

Development Tools for Mundo Smart Environments
Erwin Aitenbichler

Telecooperation Group
Darmstadt University of Technology

Hochschulstrasse 10
64289 Darmstadt, Germany

erwin@informatik.tu-darmstadt.de

1 Introduction

TheMundo project [2] at our group is concerned with gen-
eral models and architectures for ubiquitous computing
systems. The present paper describes the tools created in
this project to support the development of applications for
smart environments.

First, we give a brief description of the overall struc-
ture of such applications. The common software basis
is formed by the communication middlewareMundoCore
[1]. It is based on a microkernel design, supports dynamic
reconfiguration, and provides a common set of APIs for
different programming languages (Java, C++, Python) on
a wide range of different devices. The architectural model
addresses the need for proper language bindings, different
communication abstractions, peer-to-peer overlays, differ-
ent transport protocols, different invocation protocols,and
automatic peer discovery. Most importantly, MundoCore
serves as an integration platform that allows to build sys-
tems out of heterogeneousservices.

Applications consist of a set of common services and
application-specific services. Common services for smart
environments are offered, e.g., by ourContext Server [3]
and an application server [4]. The Context Server is re-
sponsible for transforming the readings received from sen-
sors into information that is meaningful to applications. It
builds on the notion of context widgets. To facilitate the
development of applications for smart environments, we
have created a number of tools in addition. In the fol-
lowing, we describe how these tools support the different
phases of software development (Figure 1).

2 Modeling Phase

WorldView is a versatile tool with functions to support
the modeling, implementation, and testing phases. In
the modeling phase, WorldView is used to create a spa-
tial model of the smart space. It supports 2D models as
well as detailed geometric 3D models. In the map win-
dow, the application shows the floor layout and provides
an overview of the available resources and their locations.
Resources include tags and sensors of different location
systems, wall displays, and smart doorplates. WorldView
provides an easy way to define the regions of interest that
should trigger spatial events for location-aware applica-
tions. The created maps can be uploaded to the Context
Server and then be accessed by context widgets in order
to derive higher-level context information.

3 Development Phase

A lot of research in ubiquitous computing is conducted
around possible application scenarios that can be put to
daily use. Many of these scenarios are quite simple and
straightforward to implement. However, many of these
applications never come to life, because the whole process
from development to deployment is still very complex. To
write a new application, the developer typically has to start
her IDE, install all required libraries, write and test code
and then deploy the application on a server. For that rea-
son, we wanted to make this development process as easy
and fast as possible. An aim was to enable a wide variety
of people with some basic technical background, but not
necessarily with knowledge of a programming language,
to create and alter applications. Simple-structured appli-
cations can be directly developed with the provided tools,
while more complex applications can be prototyped.

SYECAAD: The SYstem for Easy Context Aware Ap-
plication Development (SYECAAD) [4] facilitates the
rapid development of context-aware applications. Appli-
cations are built using a graphic-oriented block model.
The basic building blocks are calledfunctional units.
Functional units have input and output pins and are in-
terconnected to formfunctional assemblies.

Functional units come in three different flavors: sen-
sors, operations, and actors. A sensor unit either receives
data directly from a sensor or preprocessed data from the
Context Server. Operations perform logic or arithmetic
operations, implement dictionaries, render HTML pages,
etc. On the output side, actors can control the smart en-
vironment or send feedback to users. Actors can publish
MundoCore events or invoke methods. This way, an ap-
plication can e.g., control smart power plugs, control data
projectors, send emails, send SMSs, send instant messen-
ger messages, or display information on electronic door-
plates. An electronic doorplate is a 8-inch color TFT dis-
play with touchscreen that replaces an ordinary doorplate.

SYECAAD uses a client/server architecture. The
server hosts applications. Clients connect to the server
and permit to control, edit and test running applications.
TheApplication Logic Editor in WorldView is such a client
to edit applications. This system addresses all the devel-
opment steps described above. The first step, namely set-
ting up the development environment, is no longer neces-
sary, because all the application logic is centrally storedon
the application server. The development environment is a
client application that connects to this server. In this way,
an application can be loaded from the server, displayed,
edited and deployed with the click of a button.

Figure 1: Tool support for different phases of software development (multiple iterations of steps possible)

Eclipse plug-in: If the standard sensor, operation, and
actor blocks are not sufficient, the system can be extended
by programming new blocks in Java. A plug-in for the
Eclipse IDE supports the programmer with code templates
and help documents.

4 Testing Phase

Implementations of abstract data types and smaller units
of frameworks can be successfully tested withunit tests.
However, to verify the correct behavior of a distributed
system, it is also essential to run integration tests across
multiple computers.

Distributed Tests: To conduct such tests, we imple-
mented aDistributed Script Interpreter. Script server pro-
cesses are started on multiple hosts in the network. The
script servers and the master script interpreter also use
MundoCore for communication. This enables them to
automatically discover each other on startup. To run a
test, the name of an XML script file is passed to the mas-
ter interpreter. When the master interpreter encounters a
execRemote instruction, it starts a new process on a re-
mote script server and passes the text contained in the tag
to the standard input of the remote process. The standard
output of the remote process is passed back from the re-
mote script server to the master interpreter and written to a
log file. The shell return codes indicate if processes were
successful running their sub-tests.

Inspect: The MundoCore Inspect tool can connect to
an arbitrary remote node and manage the hosted services.
The program allows to view the routing tables, list the
imports and exports tables of message brokers, monitor
the messages passed over a channel, view service inter-
faces, dynamically call remote methods with a generic
client, view service configuration information and recon-
figure services.

Sensor Simulation: To test applications,WorldView
can be used to simulate certain tracking systems. In this
case, the user can move around the symbols on the map
and WorldView generates the same kind of events the
tracking system would.

5 Deployment Phase

Monitoring: WorldView can also be used to inspect the
running system by visualizing the events from certain
event sources, like tracking systems. If a tag is physically
moved around, the position of the corresponding symbol
in the map view is updated in real-time.

Quality Feedback: The MundoCore middleware im-
plements heap debugging, system resource tracking, dead-
lock detection, progress monitoring, and logging. Some
bugs are not discovered until the system is tested with the
real sensors. In this case, detailed logs provide important
information for developers to fix the problem.

6 Summary

The development process of distributed, loosely-coupled,
and context-aware applications raises the need for novel
tools. Such tools to support the different phases of soft-
ware development, i.e., modeling, implementation, test-
ing, and deployment have been presented.

Bibliography
[1] Erwin Aitenbichler, Jussi Kangasharju, and Max Mühlh¨auser. Ex-

periences with MundoCore. InThird IEEE Conference on Pervasive
Computing and Communications (PerCom’05) Workshops, pages
168–172. IEEE Computer Society, March 2005.

[2] Andreas Hartl, Erwin Aitenbichler, Gerhard Austaller,Andreas
Heinemann, Tobias Limberger, Elmar Braun, and Max Mühlhäuser.
Engineering Multimedia-Aware Personalized Ubiquitous Services.
In IEEE Fourth International Symposium on Multimedia Software
Engineering (MSE’02), pages 344–351. IEEE Computer Society,
December 2002.

[3] Marek Meyer. Context Server: Location Context Support for Ubiq-
uitous Computing. Master’s thesis, Darmstadt University of Tech-
nology, January 2005.

[4] Jean Schütz. SYECAAD: Ein System zur einfachen Erzeugung kon-
textsensitiver Applikationen. Master’s thesis, Technische Univer-
sität Darmstadt, 2005.

Engineering Trust in Ubiquitous Computing
Sebastian Ries

Telecooperation Group
Technical University of Darmstadt

Hochschulstrasse 10
64289 Darmstadt, Germany

ries@tk.informatik.tu-darmstadt.de

1 Introduction

In Weiser’s vision of ubiquitous computing (ubicomp),
computers, as they are common today, vanish more and
more [5]. Instead we will be surrounded by a multitude
of smart items. The smart items are developed for differ-
ent purposes, and therefore have different computational re-
sources and communication capabilities. This increases the
need for interaction with nearby devices. E.g., if it is not
possible for an item to connect directly to the internet to get
some information, it may receive this information form a
nearby item, or connect to the internet via another item.

Furthermore, ubicomp applications need to adapt their
configuration depending on the context information, like
time, location, or infrastructure. E.g., the available commu-
nication partners can change with the location, and therefore
some services are no longer available, but could be replaced
by others.

We expect the ubicomp world to offer redundant services
for all kinds of purposes. But those services may differ in
quality, availability, privacy statements, and billing. The
application developers will no longer be able to come up
with a standard configuration which is perfect for everybody
and we cannot expect the user to adapt the configuration of
dozens of smart items perhaps several times a day. We need
a dynamic concept which provides the user with a reason-
able feeling of safety, which adapts the applications to the
users preferences, and which takes advantage of the compu-
tational power available by interaction with other resources
in the infrastructure.

In the following part of the paper we will show that trust
is the appropriate foundation for interaction in ubicomp and
how it should be implemented in applications. We believe
that trust will become an important concept for applications
in ubicomp environments and therefore has to be considered
early in software engineering.

2 Concept of Trust

That we get up at all in the morning is a sign
of the trust we have in society and our environ-
ment. (Niklas Luhmann, 1979)

2.1 Social Trust

Trust is a well-known concept of everyday life, which sim-
plifies complex processes. Many processes are enabled by
trust and would not be operable without. Trust allows us to
delegate tasks and decisions to an appropriate person, and
trust facilitates efficient rating of information based on the
experience with communication partners and, if applicable,

on their reputation. Essential aspects of trust, besides per-
sonal experience and reputation, are the expected risk and
benefit associated with the engagement of concern [4].

Trust has several features on which most researchers on
this topic agree, and which are relevant if the concept is
applied to ubicomp. Trust is subjective and therefore asym-
metric. That is if Alice trusts Bob, we cannot make any
conclusion about Bob’s trust in Alice. Trust is context-
dependent: It is obvious that Alice may fully trust Bob in
driving her car, but not in signing contracts in her name.
Trust is also dynamic. It can increase with good experiences
and decrease with bad experiences, but it can also decrease
if too much time has passed without any experience.

Furthermore, trust has different levels [3]. We think that
it is not necessary to model trust continuous since people are
better in assigning discrete categories [2], but trust cannot
be modeled in a binary way.

Finally, there is the sensitive point of transitivity of trust.
If Alice does not know Charly, but Alice trusts Bob in a cer-
tain context, and Bob trusts Charly in the same context, Bob
can report the recommendation of Charly to Alice. She will
decide what to do with this recommendation based on her
trust in Bob’s ability to recommend other opinions in this
context and on the trust level assigned to Charly by Bob for
this context. Since it seems unnatural to build arbitrary long
chains, we point out that trust is not transitive in a mathe-
matical sense.

2.2 Trust in ubicomp

In computer science there is much research ongoing on trust
[1, 2]. Trust has been successfully applied to many areas,
e.g. security, eCommerce, virtual communities, and the se-
mantic web. Trust is a concept, which helps people to deal
with aspects like uncertainty, limited resources and inter-
action with others, and this way increases the efficiency of
many everyday process. Since these aspects are main issues
of ubiquitous computing, it is a very promising approach to
transfer the concept of trust to this area, in order to exploit
the potentials of the ubicomp environment. It will not be
sufficient to add some trust mechanism to ready-made ubi-
comp applications. The concept needs to be integrated early
in software engineering.

2.3 Definition

There is much work about the concept of trust in different
areas of computer science, but there is no coherent under-
standing of trust [2]. Although trust is a well-known con-
cept, it is hard to define. In our definition of trust we point
out the basic social foundations of trust:

Trust is the well-founded willingness for a po-
tential risky engagement in the presence of un-
certainty. Trust is based on experience, reputa-
tion as well as on the context of this engage-
ment, including especially the expected risk
and benefit.

The engagement will in general be the delegation of a task
or of some information (more technically speaking, the del-
egation of a function or some data) from the delegator to
the delegatee. For ubicomp, this means that trust is the ap-
propriate basis for interaction between known and unknown
devices described in the introduction.

3 Trust-aided computing

Our vision of trust-aided computing is about applications
which explicitly model trust and use trust as basis to make
decisions for risky engagements. Hence, it has direct impact
on many kinds of interaction between ubicomp applications.
Trust-aided applications are more than simple applications
which get trusted by their users with growing experience.
They model trust themselves. Therefore, they keep track of
the devices they are surrounded by, they collect their expe-
riences with those devices and information about the repu-
tation of them. This way they can adapt to changes in the
infrastructure and keep preferences for interaction with de-
vices which are already trusted, or are reported to be trust-
worthy by other trusted devices. Trust-aided applications
have to implement the following aspects.

3.1 Trust management

In trust management, we include the evaluation of the rele-
vant context (e.g., time constraints, location, minimum level
of expected quality of service), the evaluation of expected
risk and benefit of the engagement, and the collection of
opinions about the potential delegatees.

We do not want trust management to make a decision
due to the credentials or certificates which a potential dele-
gatee could present. The verification of a authentication of
a certificate does neither imply that the delegator trusts the
owner of the certificate, nor does it make a statement how
much the delegator trusts in the binding between the iden-
tity of the one presenting the certificate and identity stated
by the certificate. These parameters are not part of the trust
management but of the trust model.

3.2 Trust model

The trust model aggregates the collected opinions and de-
fines their representation. There are many different ap-
proaches to represent and aggregate opinions [2]. We iden-
tify two main requirements for opinion representation. At
first, the representation has to be readable for man and ma-
chine in an easy way. This enforces a mathematical or log-
ical model, which should be designed in a way that allows
an intuitive representation for humans. Secondly, man and
machine have to be able to update their own opinion accord-
ing to latest experiences and preferences. From our point of

view, trust depends on the overall number of experiences on
single subject, as well as on the number or ratio of posi-
tive and negative experiences. Therefore, we think that trust
cannot be expressed by a single value. An opinion should
at least express our rating of the subject (positive, negative,
or degrees inbetween) and the certainty of our rating, which
should increase with the number of experiences.

Since experience is an essential issue of trust, the collec-
tion of experience and feedback from the user becomes an
important aspect to be addressed by software engineering.

3.3 Decision making

The result of the decision making should obviously be the
decision whether to trust or not, that is, whether to carry out
the risky engagement or not. Since the user is not used to
this kind of autonomous decision making (he does not yet
have any trust in it, since he has no experience with it), the
computed decision can be presented to the user with the pos-
sibility of manual overwrite. This seems to be reasonable,
but will reduce the benefit of the automatization dramati-
cally. Therefore, we need a way to reduce the risk of the
user, without taking the benefit. The user should be able to
define a set of expected results, and if the decision is part
of this set, it will be carried out without any further user
interaction.

4 Conclusion

Trust provides an excellent basis for delegation, which helps
to cope with sparse resources and enables efficient evalua-
tion of data presented by trustees. Trust is a concept which
is able to adapt decisions to infrastructure changes, due to
its dynamic nature. Furthermore, the building of trust chains
seems to be the appropriate way to make interaction more
reliable. In our future work, we will develop a robust trust
model which can be applied to ubicomp applications and
includes the social aspects of trust, especially the aspects of
experience and risk. In the end, a framework should be de-
veloped which allows the explicit integration of trust in dif-
ferent kinds of software applications, as a first step towards
trust-aided computing.

Bibliography

[1] T. Grandison and M. Sloman. A survey of trust in in-
ternet applications. IEEE Communications Surveys and
Tutorials, 3(4), 2000.

[2] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust
and reputation systems for online service provision. In
Decision Support Systems, 2005.

[3] S. Marsh. Formalising Trust as a Computational Con-
cept. PhD thesis, 1994.

[4] M. Voss, A. Heinemann, and M. Mühlhäuser. A Privacy
Preserving Reputation System for Mobile Information
Dissemination Networks. In Proc. SECURECOMM’05,
pages 171–181. IEEE, 2005.

[5] M. Weiser. The computer for the twenty-first century.
SIGMOBILE Mob. Comput. Commun. Rev., 3(3):3–11,
July 1999.

Enhancing Mobile Applications with Context Awareness
Jens H. Jahnke

Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria B.C. V9E2A7, Canada
jens@uvic.ca

1 Introduction
Context is an important concept in ubiquitous computing applications. Context-awareness has the potential to deliver

the right information dialogues in the right situation, significantly minimizing the need for user interaction. Over the
last decade, there have been many reports on CA system prototypes developed in order to explore the concept of
context-awareness. While most of these systems were one-off proof-of-concepts solutions, recent research has focussed
on finding systematic ways of constructing CA systems. These approaches include middleware frameworks [6], a
predefined component building blocks [2], and dedicated programming languages [9] to be used for building CA
applications.

Our approach is different. Rather than creating a technology to engineer CA applications “from scratch”, we propose
a way to enhance existing mobile applications with CA features. In other words, the development of the CA features is
pushed down to some of the later stages (deployment) in the software development life-cycle. This approach follows a
general software engineering approach often referred to as product-line engineering or product-line practice [5]. This
approach increases re-usability of software products in deployment contexts with differing sets of contextual inputs.
For example, consider a mobile application that provides employees of electricity providers with functionality to input
the energy meter readings of their customers. The data to be captured includes the customer’s name, address, and the
current meter reading. A CA version of this application may be designed to utilize a localization service to
automatically infer the customer address. However, if the CA application depends on the availability of this type of
contextual information, it cannot easily be re-used in a rural area where the service is not available.

This simple example illustrates the importance of the principle of separation of concerns between the functional
design of an application and its CA features. If this principle is not followed, i.e., if CA features are part of the
functional design of an application, the application becomes dependent on the availability of certain contextual data
provided in its deployment environment. While this kind of dependency may not be avoidable in all cases, it can be
achieved in a large class of CA applications. We advocate that analysis, design and development of these applications
should follow primarily conventional processes, and CA features are injected only late in the software life cycle,
namely at deployment time, when the particular contextual information sources of the deployment environment are
known. Another benefit of this approach is that it simplifies equipping existing applications with CA features.

2 Architecture of mobile applications with Whiskers
Separation of concerns has been a leading principle in the design of our framework “Whiskers”. As a result, Whiskers
applications are basically developed like conventional mobile applications and CA features merely represent an add-on
that is added during deployment. This section describes the architecture of a Whiskers-based application.

The figure below shows a conceptual overview of this architecture. The component on the left-hand side symbolizes
the mobile application. The figure particularly highlights two parts of the mobile application that interact with the
Whiskers context manager, namely the Interface Information Model (IIM) and the Business Information Model (BIM).
The IIM denotes the (run-time) data structure used to manage information at the user interface of the application. The
BIM is the (typically persistent) data structure that contains all information maintained by the mobile application.

The introduction of the two concepts IIM and BIM indicates that we are targeting medium and thick client mobile
applications with Whiskers, rather than thin-client, browser based clients. This is in contrast to our previous research
[7], where the context management system is server-based. Server-side solutions are not suitable for a large class off
mobile applications, which are not always “online” but rather synchronize data with servers at certain times.

2.1 Context Actuators

The part of the Whiskers context management system that
interacts with the mobile application in order to automatically
set it to a particular context is called Context Actuators (CX

Actuators). They can be realized as aspects [3] advising the
mobile application to query the context fact base (CX Space in

Fig. 1) upon certain user-interface actions. If the CX Space contains relevant
information about the current usage context, the CX Actuator automatically updates the corresponding data element in

Fig. 1. Architecture of Whiskers applications

the application’s IIM. If the user interface of the mobile application utilizes the common model-view-controller (MVC)
paradigm (e.g., if it uses Java Swing), the CX Actuator will actuate a change to the corresponding model element, thus
triggering an update of all its views. Consequently, the user does not have to spend effort on entering the context
information herself. In the event that the system failed to determine the context correctly, the user retains her normal
ability to override any results of the context detection.

2.2 Context Space

The CX Space is a run-time data structure that implements an extension of the concept of a Linda Tuple Space [4].
Contextual facts are stored in terms of shaded tuples, i.e., each tuple is associated with a “shade”, a numerical value
ranging between 0 and 1, which expresses its degree of validity.

The kinds of tuples that are deposited to and are read from the Context Base are defined by serializing a concept
model called a Context Ontology. The figure below illustrates this with an excerpt of a Context Ontology that
expresses concepts for actors, physical positions (coordinates), semantic positions (logical locations), physical
proximity, and virtual proximity. The device user herself is contained as “self” in this model. Most of these concepts
are self-explanatory, except, perhaps, for the concept of virtual proximity. An example is an actor who calls in on the
phone; In this case, she would be considered to be in “virtual proximity“.

The concept of a shaded tuple space provides us with a
means of implementing a simple notion of context
history: Tuples in the CX Space “fade-out” rather than
being removed abruptly when sensor data changes. The
fading is realized by decreasing their shade over time
until it reaches a minimum threshold, at which time the
corresponding tuples are forgotten permanently.
Depending on the nature of the corresponding context
sensors, some tuples should fade faster than others. Thus,
each context inducer determines the fading speed.

2.3 Context Inducers

We refer to components that sense information about the usage context of a Whiskers-based mobile device as CX
Inducers. Bluetooth-based or RFID-based proximity sensors, GPS positioning sensors, map-based positioning
components such as Place Lab [1] are examples for CX Inducers. The instances of these components execute in a
separate thread concurrently to the mobile application. They deposit sensed context data in the CX Space as a shaded
tuple. As mentioned earlier, the initial shade of a tuple is chosen to express the necessity of its validity. For example,
higher shades may indicate actors in close proximity to the device user, lower shades indicate actors that are not so
close. Over time, tuples are “forgotten” by decreasing their shades until a minimum threshold is reached.

2.4 Context Tansducers

CX inducers may deliver data about the usage context that may be relevant but not directly usable for a given mobile
application. For instance, a context sensor may deliver a geographical position in terms of physical coordinates, but the
application requires the user to enter a semantic address. Another example is a context sensor that delivers the
telephone number of a caller on the phone (caller ID), but the user interface of the application requires the user to
identify a person by name. Context Transducers (CX Transducers) are software components that process current
context data and derive additional relevant context information. For this purpose, CX Transducers may use device-
internal or –external services. For example, a CX Transducer that translates geographical coordinates to addresses may
use an external mapping service – or an internal software service such as Place Lab [1]. Tuples in the CX Space that
were generated by CX Transducers are called derived tuples, in order to distinguish them from intrinsic tuples
generated by CX Inducers. Like intrinsic tuples, derived tuples are shaded. However, their shade is computed based on
the shades of the tuples they have been derived from.

Conclusions and current work
Many mobile applications could benefit from CA features. We have sketched a framework on how to upgrade such
applications. Rather than treating context-awareness as an inherent feature that is ingrained in the design of new
applications, we provide a way to add-on the CA aspect at a later stage in the software development life cycle. We are
currently at a stage where we have designed the Whiskers architecture and we have experimented with a case study.
Our current and future work is directed towards implementing a full evaluation prototype for a Whiskers-enabled
application.

References
1. Bill, N.S., Anthony, L., Gaetano, B., William, G.G., David, M., Edward, L., Anand, B., Jason, H. and Vaughn,

I. Challenge: ubiquitous location-aware computing and the "place lab" initiative Proceedings of the 1st ACM
international workshop on Wireless mobile applications and services on WLAN hotspots, ACM Press, San
Diego, CA, USA, 2003.

2. Dey, A. Understanding and Using Context. Personal and Ubiquitous Computing, 5 (1). 4-7.
3. Filman, R.E. Aspect-oriented software development. Addison-Wesley, Boston ; Toronto, 2005.
4. Gelernter, D. Generative Communication in Linda. ACM TOPLAS, 7 (1).
5. Jan, B. Software product lines: organizational alternatives Proceedings of the 23rd International Conference

on Software Engineering, IEEE Computer Society, Toronto, Ontario, Canada, 2001.
10. Oleg, D., Jukka, R., Ville-Mikko, R. and Junzhao, S. Context-aware middleware for mobile multimedia

applications Proceedings of the 3rd international conference on Mobile and ubiquitous multimedia, ACM
Press, College Park, Maryland, 2004.

MDA-BASED MANAGEMENT OF UBIQUITOUS SOFTWARE COMPONENTS

Franck Barbier & Fabien Romeo
PauWare Research Group – Université de Pau

Av. de l’université, BP 1155, 64013 Pau CEDEX – France
Franck.Barbier@FranckBarbier.com, Fabien.Romeo@univ-pau.fr

Introduction: the Model-Driven Architecture (MDA) [1] software engineering paradigm
aims at considering “models” as first-class products within a software development process.
More precisely, this new approach is based on model transformation in which the generated
code (in a fairly abstract or detailed form) is just an “implementation model”. Concretely,
MDA is strongly influenced by the Unified Modeling Language even if other modeling
techniques are acceptable. MDA advocates Platform-Independent Models (PIMs) and
Platform-Specific Models (PSMs), the later resulting from transformations of the former. In
this optic, it becomes natural to focus on PSMs which specifically target ubiquitous
applications (see for instance [2]).
In a MDA approach, the need for model checking is often based on “executability” [3]. So,
the modeling language used, if “executable”, enables model simulation. Such an activity
occurs at development time and encompasses, of course, model checking activities, but also
testing activities if models include technical details which closely refer to deployment
platform properties. In the area of ubiquitous computing, deployment platforms have special
features. A relevant research statement is therefore the look for MDA concepts, techniques
and tools that comply with the development and the inner nature of ubiquitous applications.
For instance, if one is able to provide different executable models which correspond to
distinct software component types, how then to deploy and run these models/components in
wireless and mobile devices? How to protect these models/components from instable
communication, a key characteristic of wireless and mobile platforms? How to endow these
models/components with autonomic features (self-managing, self-healing, dynamical
reconfiguration…) since controlling runtime conditions is more difficult in ubiquitous
systems compared to common distributed systems? Etc.
This experiment paper proposes a MDA-compliant execution engine called PauWare.
(www.PauWare.com/PauWare_software/). This tool is mainly composed of a Java library
which enables the simulation of UML 2 Sequence Diagrams (i.e., scenarios) and UML 2 State
Machine Diagrams, a variant of Harel’s Statecharts. The PauWare.Velcro sub-library is a
J2ME-compliant (Java 2 Mobile Edition) tool which supports the design of the inner workings
of software components by means of Statecharts.
We stress in this paper the problem of remote management of software components embedded
in wireless and mobile devices and, in certain cases, the possibility of equipping such
components with self-managing characteristics [4]. We think that ubiquitous software
components and applications require larger management capabilities. Management relies on
dedicated infrastructures like, for instance, Java Management eXtensions (JMX) [5]. Despite
the availability of management standards, there are few techniques that explain how to
instrument the dynamical reconfiguration of components running in remote devices. What
could mean self-healing and how one may implement it? Etc.
In PauWare, supporting dynamical reconfiguration leads to forcing the state of a component
to a well-known stable consistent “situation”. For instance, in the figure below, one may go
(or go back) to the Idle state in bypassing the “normal” behavior of the component. The stable
consistent nature of a statechart is a modeled state1, Idle here plus some invariants that can be

1 Several nested and/or parallel states are also possible in conformance with all of the power offered by the
Statecharts modeling technique.

checked at runtime (a port must be closed). States of components are modeled at development
time but are also explicit at deployment time since models persist at runtime. The execution
model of UML 2 is a run-to-completion model, meaning that component clients’ requests are
queued and cannot interrupt the current processing, if any, of a request.
Management services may therefore be incorporated into a configuration interface. For
concrete reasons, such a facility currently relies in PauWare on JMX and on the Wireless
Message API (WMA) for communication. Self-management is a more tricky problem. A
component may aim at itself deciding to launch a self-configuring operation, “reset” for
instance, namely in case of fault recovery: this is typically self-healing. We propose a
(parameterized) rudimentary mechanism which is a kind of “undo”. If the “autonomic” flag is
turned on, a component automatically tries to roll back the current transaction (a global
transition from the stable consistent context raising a problem to the immediately prior one) in
case of fault detection. Roll back may succeed but it may also fail because many internal
business operations (see for instance x, y, z and w in the figure below) are executed within a
run-to-completion cycle. Canceling the effect of such operations is not always possible. State
invariants therefore help to establish if roll back succeeded: all state invariants attached to all
nested and/or parallel states must be true when returning to these states.
Conclusion: we think that ubiquitous applications and components require self-adapting
capabilities. We nevertheless observe that a gap between theory and practice still remains.
While the notions of self-management, self-adaptation are evident and may have several
formal shapes, few means currently exist for supporting these concepts in ubiquitous
platforms. In the global world of software engineering, MDA put models forward. In such a
context, we exploit the power of reputable models like Statecharts to implement self-
adaptation.

request b

request g

S2

S21

S22
entry/

^self.request h

S3

S31 S32

Busy

request c

request f

entry/ w
exit/ x

entry/ y
exit/ z

PauWare component

S1

S11 S12

request d

request e

Idle
[port.isClosed()]

go

request c

request h/ a

1. Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled – Principles of Model-Driven
Architecture, Addison-Wesley (2004)

2. Grassi, V., Mirandola, R., Sabetta, A.: A UML Profile to Model Mobile Systems, Proc.
«UML» 2004, LNCS #3273, Springer, pp. 128-142, Lisbon, Portugal, October 11-15
(2004)

3. Mellor S., Balcer, S.: Executable UML – A Foundation for Model-Driven
Architecture, Addison-Wesley (2002)

4. Barbier, F., Romeo, F.: Administration of Wireless Software Components, Proc.
ETSI/MOCCA Open Source Middleware for Mobility Workshop, European
Telecommunications Standards Institute, Sophia-Antipolis, France, April 6 (2005)

5. Kreger, H., Harold, W., Williamson, L.: Java and JMX – Building Manageable
Systems, Addison-Wesley (2003)

New paradigms for ubiquitous and pervasive applications

J.Gaber
Laboratoire Systèmes et Transports

Université de Technlologie de Belfort-Montbéliard
90010 Belfort cedex, France
Tel : +33 (0)3 84 58 32 52

gaber@utbm.fr

The recent evolution of network connectivity from wired connection to wireless to mobile
access together with their crossing has engendered their widespread use with new network-
computing challenges. More precisely, network infrastructures are not only continuously growing
but their usage is also changing. They are now considered to be the foundation of other new
technologies. Related research area concerns ubiquitous and pervasive computing systems and
their applications. The design and development of ubiquitous and pervasive applications require
new operational models that will permit an efficient use of use resources and services and a
reduction of the need for the administration effort typical in client-server networks.

More precisely, to be able to develop and implement ubiquitous and pervasive

applications, new ways and techniques for resource and service discovery and composition need
to be developed. Indeed, most of research works to date are based on the traditional Client-Server
paradigm. This paradigm is impracticable in ubiquitous and pervasive environments and does no
meet their related needs and requirements.

Ubiquitous Computing (UC) deals with providing globally available services in a

network by giving users the ability to access services and resources all the time and irrespective
to their location [Wei93]. An appropriate model has been proposed in [Gab00] as an alternative to
the traditional Client/Server paradigm. The fundamental aspect of this model is the process of
service discovery and composition. In the traditional Client to Server paradigm, it is the user who
should initiates a request, should know a priori that the required service exists and should be able
to provide the location of a server holding that service. However, ubiquitous and pervasive
environments have the potential ability to integrate a continuously increasing number of services
and resources that can be nomadic mobiles and partially connected. A user can be mobile or
partially connected and its ability to use and access services will no longer be limited to those that
she/he has currently at hand or those statically located on a set of hosts known a priori. Therefore,
the ability to maintain, allocate and access a variety of continuously increasing number of
heterogeneous resources and services distributed over a mixed network (i.e., wired, wireless, and
mobile network) is difficult to achieve with the traditional Client-Server approaches. More
precisely, most Client-Server approaches are based on hierarchical architectures with centralized

 1

 2

repositories used to locate and to access required services. These architectures cannot meet the
requirements of scalability and adaptability simultaneously. The way in which they have typically
been constructed is often very inflexible due to the risk of bottlenecks and the difficulty of
repositories updating. This is particularly true for the cases where some services could be
disconnected from the network and new ones may join it at any time. The alternative paradigm
can be viewed as opposed to the Client/Server model and is denoted as Server to Client paradigm
(Server/Client). In this model, it is the service that comes to the user. In other words, in this
paradigm, a decentralized and self-organizing middleware should be able to provide services to
users according to their availability and the network status. As pointed out in [Gab00], such a
middleware can be inspired from biological systems like the natural immune system (IS). The
immune system has a set of organizing principles such as scalability, adaptability and availability
that are useful for developing a distributed networking model in highly a dynamic and instable
setting. The immune-based approach operates as follows: unlike the classical Client/Server
approach,, each user request is considered as an attack launched against the global network. The
immune networking middleware reacts like an immune system against pathogens that have
entered the body. It detects the infection (i.e., user request) and delivers a response to eliminate it
(i.e., satisfy the user request). This immune approach can therefore be considered as the opposed
approach to the Client-Server one.

Pervasive Computing (PC) often considered the same as ubiquitous computing in the

literature, is a related concept that can be distinguished from ubiquitous computing in terms of
environment conditions. We can consider that the aim in UC is to provide any mobile device an
access to available services in an existing network all the time and everywhere while the main
objective in PC is to provide emergent services constructed on the fly by mobiles that interact by
ad hoc connections [Gab00]. The alternative paradigm to the Client/Server one involves the
concept of emergence and is called the Service Emergence paradigm. This paradigm can be
carried out also by an inspired natural immune middleware that allows the emergence of ad hoc
services on the fly according to dynamically changing context environments such as computing
context and user context. In this model, ad hoc or composite services are represented by an
organization or group of autonomous agents. Agents correspond to the immune system B-cells.
Agents establish relationships based on affinities to form groups or communities of agents in
order to provide composite services. A community of agents corresponds to the Jerne idiotypic
network (in the immune system, B-cells are interconnected by affinity networks) [Jer74].

References
[Wei93] M. Weiser, “Hot topics: Ubiquitous computing”. IEEE Computer, October 1993.
[Jer74] N. Jerne, “Towards a network theory of the immune system”. Ann. Immunol. (Inst. Pasteur)
125C373, 1974
[Gab00] J. Gaber, “New paradigms for ubiquitous and pervasive computing”, research report RR-09,
Université de Technologies de Belfort-Montbéliard (UTBM), Septembre 2000.

A model-based approach for designing Ubiquitous Computing Systems
Mahesh U.Patil (maheshp@cdac.in)

Centre for Development of Advanced Computing

Keywords

Ubiquitous Computing, Model Based Design, Embedded Systems

Abstract:

Ubiquitous computing systems are environments with ample number of typically small-

networked embedded devices. At the same time these devices tend to be invisible from

the view of the user by providing user interfaces through physical world, which would

generally consist of a wireless infrastructure. Challenges involved in designing and

implementing such ubiquitous computing systems add up to the inherent complexities

present in the embedded systems thus consuming time in deploying such systems.

Moreover, ubiquitous computing system demands for heavy data transfer between these

embedded devices for providing the basic communication components like service

discovery, service mobility, event notification and context awareness. The basic

framework for such embedded devices can be generalized thus providing reusability of

the design and implementation across similar requirements. The issues of testability and

maintainability would be a major factor in deciding the time and cost involved in

deploying such systems and thus cannot be ignored.

Model based design has emerged as a solution for the difficulties and complexities

involved in the traditional method of design, implementation and verification of

embedded systems. Model Based Design encompasses development phases like: design,

simulation, code generation, verification and implementation. It has helped in minimizing

the design and requirement errors early in the development cycle thus reducing expensive

delays. Hierarchical models have allowed abstraction that hides the underlying

mailto:maheshp@cdac.in
mailto:maheshp@cdac.in

complexities in the system and also provides opportunity for reusability of models across

similar requirements and specifications. Model based design provides a facility of

integrating pre-tested and deployed legacy code with the new systems designed, thus

allowing the direct use of existing modules. Moreover, such a development methodology

makes it easy to distinguish between design errors and implementation errors.

To make the concept of Ubiquitous computing a reality requires a comprehensive design

methodology that enables short design cycles and reusability, not compromising on the

associated cost factor and maintainability. Many projects have taken the advantage of

model based design in deploying complex and high performance embedded systems on

time and at low cost. Model Based Design has thus become a necessity rather than a

facility. The above mentioned challenges in designing ubiquitous computing could be

efficiently handled using the model based design.

This position paper would thus focus on a model based approach in designing ubiquitous

computing systems that would allow faster design iterations that produce desired

performance, functionality and capabilities. We specifically consider a scenario of

Ubiquitous Computing System that employs Wireless Sensor Networks and propose a

model-based approach that would lead to rapid prototyping, reusability and

abstraction (by using hierarchical models).

	Frontpage
	Programme
	Session 1
	Paper 1
	Paper 2
	Paper 3

	Session 2
	Paper 4
	Paper 5
	Paper 6
	Paper 7

	Session 3
	Paper 8
	Paper 9
	Paper 10
	Paper 11

	Session 4
	Paper 12
	Paper 13
	Paper 14
	Paper 15

	Session 5
	Paper 16
	Paper 17
	Paper 18

	Session 6
	Paper 19
	Paper 20
	Paper 21
	Paper 22

	Session 7
	Paper 23
	Paper 24
	Paper 25

	Session 8
	Paper 26
	Paper 27
	Paper 28
	Paper 29
	Paper 30
	Paper 31

