
In proceedings of 2nd USENIX Symposium on Mobile and Location Independent Computing, Ann Arbor, U.S., April 1995.

A NETWORK EMULATOR TO SUPPORT THE DEVELOPMENT
OF ADAPTIVE APPLICATIONS

Nigel Davies, Gordon S. Blair, Keith Cheverst and Adrian Friday

Distributed Multimedia Research Group,
Department of Computing,

Lancaster University,
Bailrigg,

Lancaster,
LA1 4YR,

U.K.

telephone: +44 (0)524 65201
e-mail: nigel, gordon, kc, adrian@comp.lancs.ac.uk

Abstract
Mobile applications must operate in environments in
which the network connectivity, input/output devices,
power and contextual information available to them
may all vary. Applications which react to changes in
these parameters in order to ensure continuing service
to the user are termed adaptive applications and have
recently emerged as an area of intense research
activity. In this paper we describe the design and
implementation of a network emulator which
facilitates research in this field by allowing
applications to be exposed to user controlled
fluctuations in network service. The emulator can be
used with any application which uses UDP and
requires only minimal changes to the application or,
it may be used with applications written using the
ANSAware distributed systems platform in which
case no changes are necessary to the application. The
design and implementation of the emulator are
described in this paper as our experiences of using
the emulator to model three distinct types of wireless
network: GSM, an analogue cellular service and a
simple shared radio channel. The source code for the
emulator is freely available and instructions on
obtaining the code are also included.

1. Introduction
Mobile computing environments are

characterised by variation. In particular, during the
execution-time of a mobile application the network
connectivity, input/output devices, power and
contextual information available to the application
may all vary [Davies,94], [Duchamp,92], [Schilit,94].
In our research at Lancaster we are interested in

developing applications and system services which
are able to cope with wide fluctuations in these
parameters (termed adaptive applications [Katz,94])
and in particular with fluctuations in the first of these
parameters, i.e. network connectivity. This

work has been motivated by two beliefs: firstly, that
fluctuations in network connectivity are unavoidable
in a mobile environment and secondly, that such
fluctuations should become an accepted part of an
application's operation and not be treated as an error
or temporary 'glitch'.

The first of these statements is clearly true if we
assume that mobile computers will have multiple
network interfaces [Hager,93] and that users will be
able to dynamically switch between networks (for
example switching between a wired network and a
local area wireless network when un-docking a
portable PC). Determining the feasibility of the
second of these statements requires further research.
However, to conduct this research requires an
environment in which the level of network service
available to a mobile machine can be varied. This
paper reports on the development of such an
environment based not on hardware but on a software
network emulator which allows us to conduct
research into network variance without investing in
multiple network infrastructures.

Section 2 of this paper describes the overall
design and configuration of the network emulator.
Details are given of how the emulator may be
configured to emulate a number of different networks
with examples based on three wide-area wireless
networks with which we have practical experience:

GSM, a U.K. analogue cellular service and an
analogue private mobile radio (PMR) system. Section
3 then briefly describes a graphical user interface to
the emulator which enables users to control and
visualise the flow of information between mobile
computers. Section 4 presents details of the
modifications necessary to client applications to
enable them to exploit the emulator. Particular
emphasis is placed on the use of applications written
using the ANSAware distributed systems platform
which we have modified to operate with the
emulator. Section 5 then presents an analysis of the
performance of the emulator and highlights the
relationship between the network bandwidth to be
emulated and the average size of packets sent to the
emulator. Finally, section 6 contains some
concluding remarks.

2. Design and Implementation
2.1. Emulator Design

The network emulator is designed to provide an
approximate emulation of low-speed networks using
standard hardware and systems software. It should be
stressed that as researchers we are more concerned
with variance in network connectivity than precise
simulations of network characteristics and hence the
accuracy of the emulator is not considered to be of
critical importance (for example, we use standard
UNIX timing facilities). The basic approach used by
the emulator is to intercept UDP packets travelling
between sources and sinks and to introduce a delay
similar to that which would be incurred if the packets
were transmitted over a slower network. The
emulator mimics the workings of a slow speed
network and so delays are related to (for example)
network load and error rates. The most controversial
feature of the emulator's design is that it is structured
as a single, central point through which all messages
are routed and at which point network delays are
introduced. Thus for each node in the network to be
emulated the emulator maintains a queue of packets
waiting to be transmitted. This use of a central point
for the emulation is in contrast to systems such as
Ingham's Delayline network emulator [Ingham,94] in
which processing is carried out at both the sender and
recipient of messages with delays being implemented
at the receiver's end.

While implementing the emulator as a central
point clearly creates a bottleneck in the system there
are two key advantages to be gained from this
approach. Firstly, the emulator is able to adjust the
network characteristics experienced by applications

based on load. Hence, for example, if the network to
be emulated has a simple shared transmission
medium the emulator itself can detect potential
packet collisions and discard the appropriate packets.
The second advantage is that the semantics of sockets
are automatically preserved by the emulator: the
sender always believes that packets have been sent
properly since they always appear to reach their
destination (in practice of course they have only
reached the emulator) and the receiver receives
messages in the order in which they would arrive in a
real network (in contrast to the Delayline system in
which packets may arrive in the wrong order since
the delay is introduced at the receiver side of the
communication).

However, there are a number of disadvantages in
structuring the network emulator as a central process.
In particular, the design makes the following
assumptions:-
• The time the emulator takes to process a packet

is negligible compared to the delay incurred
during transmission over a slow network.

• The time taken to transmit a UDP packet over
the high speed network is negligible compared to
the delay incurred during transmission over a
slow network.

• The number of nodes that are to be
interconnected via the emulator is small (i.e. less
than sixteen) and only a subset of these are
transmitting at any one time.

Clearly, as the size of UDP packets decrease or
the speed of the network being emulated increases
then the first two of these assumptions introduce
increasing inaccuracies. However, in practice we
have found that these assumptions are valid for the
type of experimental work we wish to carry out (see
section 5).

2.2. Emulator Configuration

The network emulator can be configured in two
distinct ways. Firstly, new types of network may be
introduced, e.g. a connection oriented cellular service
or a connectionless shared medium network. This
requires modification to one of the emulator's source
files and re-compilation. In more detail, the user must
supply a function called new_network_name_send
(senderNodeId, dataPacket) which is called by the
emulator every time a packet is to be sent via the new
network. Within this function the user must
implement any delays which are associated with
attempting to send packets on the network. For
example, if the network has a high turn-around time

which occurs when the node switches from receiving
to transmitting information this can be modelled with
the new_network_name_send function. Error
characteristics can also be specified for the network
or the occurrence of errors may be modelled as part
of the throughput specified. Once a new network has
been introduced its behaviour can be tailored during
run-time using configuration files. A typical
configuration file is shown in figure 1.

Line 1 of the configuration file denotes the type
of the network to emulate - in this case a raw radio
channel. Line 2 specifies the number of nodes that
are connected to the network (in this case 3) and lines
3 to 5 provide information about each node.
Specifically, for each node its name, maximum buffer
size and internet address must be specified. The
buffer size is used to

1 raw <network to be emulated>
2 3 <no. of sources/sinks of data>
3 0 1044000 148 88 16 27 columbine <source no. 0>
4 1 1044000 148 88 16 25 sinbad < source no 1>
5 2 1044000 148 88 32 2 edc2 <source no. 2>
6 0 0 1 1200 3c < channel characteristics 0-1>
7 1 0 2 1200 3c < channel characteristics 0-2>
8 2 1 0 1200 33 < channel characteristics 1-0>
9 3 1 2 1200 33 < channel characteristics 1-2>
10 4 2 0 1200 0f < channel characteristics 2-0>
11 5 2 1 1200 0f < channel characteristics 2-1>

Figure 1 : A Typical Configuration File

prevent applications from running ahead of the
network; once a node's buffer is full all subsequent
send requests will be blocked.

columbine

sinbad

edc2
0

1

2

0

1

2 3

4

5

Figure 2 : Emulator Channel Connection Diagram

For the purposes of the emulator the network to
be emulated must be visualised as a series of uni-
directional channels interconnecting each of the
nodes (see figure 2). The characteristics of these
channels are specified in lines 6-11. For example,
line 6 of the configuration file specifies the
characteristics of channel 0, i.e. the channel between
nodes 0 and 1. The characteristics are that the
channel has a throughput of 1200 bps and that
messages transmitted on this channel collide with
messages transmitted simultaneously on any of the

other channels except channel 1, i.e. the other
outgoing channel from this node. This is expressed
using a bit map mask with a bit being set denoting
that collisions occur with messages on the
corresponding channel (channel 0 being the least
significant bit).

The network emulator supports dynamic updates
to the configuration file during operation so that the
effect of changing the quality-of-service of a network
can be easily demonstrated. For example, by simply
setting the throughput of a given node's output
channels to zero we can emulate disconnection. It
should be noted however that radical changes to the
network configuration may result in those packets
currently being queued at the emulator being delayed
longer than expected during the reconfiguration. This
is because when the emulator is re-configured it re-
calculates the dispatch time of all the waiting packets
without taking into account any time the packets have
already been delayed. Thus re-configurations
involving small changes to the throughput of slow-
speed networks are most susceptible to this problem
(particularly if the packets being queued are
relatively large). Re-configurations involving the
addition or removal of nodes are supported: the
emulator simply prints a warning if a previously
supported node is no-longer supported in the new
configuration file.

2.3. Example Configurations

We have used the emulator to emulate three
types of network: GSM, a U.K. analogue cellular
service and a simple shared radio channel. In the case
of GSM the network appears to have fairly
dependable characteristics with an average call set up
time of 3 seconds and a corrected throughput of 9600
bits/sec. In the case of the analogue cellular service
(using Motorola Cellect modems and MicroTac II
handsets) the call set up time is substantially longer,
taking about 20 seconds for the connection to be fully
established. Once the connection has been established
we are able to get a corrected throughput of around
3700 bits/sec on a theoretical 4800 link. Setting the
modems to run at higher speeds typically gives us a
lower corrected throughput due to the number of
retransmissions necessary to compensate for the high
error rate.

The emulator configuration for these two
networks is very similar. Two new send routines
were required (gsm_send () and analogue_send ())
which introduced the appropriate connection delay
for each network. For both networks packets sent by
a node to a new destination causes the emulator to
simulate the disconnection of the node from its
previous destination and connection to the new
destination node. The only difference between the
gsm_send and analogue_send routines is the length of
delay they introduce to emulate call connection. The
configuration files for these networks are both
straightforward with the collisions flags being set to
no collisions and the throughput being set at 9600
and 3700 for the GSM and analogue networks
respectively.

raw_send (int : sourceId, dataPacket *pkt)
{
 mapAddressToNodeId (dataPkt->
 destinationAddress, &sinkId);
 if (emptyQ(sourceId) {
 addToTxQ (sourceId, pkt);
 obtainChannelCharacteristics(sourceId,
 sinkId, &characteristics);
 /* insert any additional delays/errors here */
 calculateDispatchTime(pkt->length,
 characteristics->bandwidth);
 resetCollisionBits (characteristics);
 }
 else
 addToTxQ (sourceId, pkt);
}

Figure 3 : Pseudo Code for Emulator Send Routine
for a Raw Radio Channel

The emulation of the raw radio channel has a

much more straightforward send routine which
introduces no additional delays (see figure 3).
However, the configuration file for this type of
network is more complex. In particular, the collision
flags must be set such that data on any channel
collides with data on any other channel. For the
purposes of our work we have used a throughput of
1200 bits/sec to emulate the characteristics of a
simple analogue private mobile radio (PMR) system.
An example configuration file for this type of
network is given in figure 2.

3. A Graphical Interface to the
Network Emulator

At an early stage in the network emulator's
development it was realised that a graphical front-end
to the emulator could be used to enhance
demonstrations of adaptive applications. The
interface we have developed allows users to both
view and control the operation of the emulator.
During normal use the interface displays for each
node the number of packets waiting to be dispatched,
the last action that occurred with respect to that node
(e.g. packet arrived, packet dispatched etc.) and for
the packet at the head of the node's queue its
destination, size and dispatch time. Hence, if we have
a fast sender connected to its intended destination by
a slow network the queue size for the sending node

will build up steadily and we will see many more
packet arrival events than packet departures. The
interface to the emulator also allows users to control
the emulator by dynamically changing the

configuration file it uses. In this way we can, for
example, show the effect on applications of gradually
reducing the throughput available.

NodeId Name Q_Length Dest Event Send_Time

Emulator Time sec usec

Start

Stop

Quit

Update

0 columbine - - - -0

0 sinbad - - - -0

0 edc2 - - - -0

OK

9.6nocrashs
9.6crashs
4.8nocrashs
4.8crashs
2.4nocrashs

Cancel

Figure 4 : The Network Emulator Controller

The interface is implemented as an entirely
separate process which communicates with the
emulator using sockets. This communication takes
the form of well-defined packets sent from the
emulator whenever a relevant event occurs (see
figure 5). Control packets to, for example, force the
emulator to update its configuration file can be sent
from the monitor to the emulator.

struct monitorPacket {
 char header [2]; /* identifies emulator pkt */
 int type; /* type of pkt */
 struct timeval
 time_now; /* emulator's clock time */
 int nodeId; /* node to which msg relates
*/
 int qLength; /* length of q for this node */
 int event; /* event which has occurred
*/
 int size; /* size of data pkt involved
*/
 int dest; /* destination nodeId */
 struct timeval
 event_time; /* time relating to the event.
 Can be different for each
 event */
};

/* pkt has been discarded */
#define EVENT_PKT_DISCARD 0
/* pkt has been sent */
#define EVENT_PKT_SENT 1
/* pkt collided (and discarded) */
#define EVENT_PKT_COLLIDED 2
/* pkt has arrived at node */
#define EVENT_PKT_ARRIVED 3
/* pkt has been scheduled for tx */
#define EVENT_PKT_SCHEDULED 4

Figure 5 : Packet Format For Communications
Between the Emulator and its Interface

Implementing the emulator's user interface as a
separate process has the two distinct advantages.
Firstly, we can run the interface on a separate
machine and thus could implement processor
intensive graphics monitoring tools without affecting
the performance of the emulator. Secondly, we can
have a number of different interfaces implemented to
illustrate and control different aspects of the
emulator.

4. Emulator Client Code
4.1. Standard Distributed
Applications

We use the emulator with two types of
distributed application. The first are standard
distributed applications which communicate using
UDP. In order that these can use the emulator they
must use new versions of the sendto and recvfrom
system calls. These are currently implemented as new
functions emulator_sendto and emulator_recvfrom
which form wrappers around the standard calls in
order to add and remove additional header
information required by the emulator. Applications
must at present be re-compiled to use these new
functions. However, it would be a relatively
straightforward task to compile these functions as a
library which could be dynamically linked with
existing applications to allow them to transparently
use the emulator. The format of the packet headers
used by emulator_sendto and emulator_recvfrom is
shown in figure 6.

struct dataPacket {
 char header [2]; /* identifies em. pkt
*/
 int type; /* type of pkt */
 struct sockaddr_in toAddr; /* destination */
 struct sockaddr_in frAddr; /* source address */
 struct sockaddr_in ackAddr; /* address to ack.
 transmission */
 int bufLen; /* length of user data
*/
 char *buf; /* user data */
};

Figure 6 : Structure of an Emulator Data Packet

The header field identifies the packet as being
associated with the emulator. It is used by the
emulator to check that it is receiving valid packets
and by the emulator_recvfrom function to determine
whether or not to strip off the header before passing
the buffer up to the application. The type field is used
to distinguish between data and control packets. Data
packets are those which are passed to the emulator
for subsequent dispatch to a destination mode.
Control packets are used to control the emulator's
behaviour and typically originate from the emulator's
user interface. In addition data packets can be flagged
as those requiring an acknowledgement that the

packet has been queued for transmission, those that
require an acknowledgement of transmission and
those which require no acknowledgement at all. This
allows us to implement synchronous emulator_sendto
routines for those applications which would
otherwise 'run-away' or cause congestion when
operating over a low-speed link. If the packet
requires an acknowledgement the emulator sends this
to the address specified in the ackAddr field.

The first two address fields are used by the
emulator to ensure that the packet is transmitted to
the appropriate final destination and, at the
destination, to ensure that the application believes
that the packet originates from the initial source
rather than from the emulator. The ack_address is
used for flow control between the emulator and the
source application as described above.

4.2. ANSAware Applications

The second type of application we have used
with the emulator are those based on the ANSAware
distributed systems platform [APM,89]. This
software suite is itself based on the ANSA
architecture which has had a profound influence on
the RM-ODP [ISO,92]. Thus, the platform tackles the
problem of developing applications to operate in a
heterogeneous environment. The ANSA
programming model is based on a location-
independent object model where all interacting
entities are treated uniformly as encapsulated objects.
Objects are accessed through operational interfaces
which define named operations together with
constraints on their invocation. Objects are made
available for access by exporting interfaces to a
special object known as the trader. An object wishing
to interact with this interface must then import the
interface from the trader by specifying a set of
requirements in terms of a interface type and attribute
values. This will be matched against the available
services and a suitable candidate selected. At this
stage, an implicit binding is created to the object
supporting the interface, i.e. a communication path is
established to the object. Invocation of operations can
then proceed.

To provide a platform conformant with the
above programming model the ANSAware suite
augments a general purpose programming language
(usually C) with two additional languages. The first
of these is IDL (Interface Definition Language),
which allows interfaces to be precisely defined in
terms of operations, arguments and results. The
second language, DPL (Distributed Processing

Language) is embedded in a host language, such as
C, and allows interactions to be specified between
programs which implement the behaviour defined by
these interfaces. Specifically, DPL statements allow
the programmer to import and export interfaces, and
to invoke operations in those interfaces (see figure 7).

! {stack} <- traderRef$Import ("Stack",
"context", "properties")

! {result}<-stack$Push (value)

Figure 7 : Example DPL Statements

In the engineering infrastructure, the binding
necessary for invocations is provided by a remote
procedure call protocol known as REX (Remote
EXecution protocol) or a group execution protocol
know as GEX (Group EXecution Protocol). These are
layered on top of a generic transport layer interface
known as a message passing service (MPS). A
number of additional protocols may be included at
both the MPS and the execution protocol levels and
these may be combined in a number of different
configurations. The infrastructure also supports
lightweight threads within objects so that multiple
concurrent invocations can be dealt with.

All the above engineering functionality is
collected into a single library, and an instance of this
library is linked with application code to form a
capsule. Each capsule may implement one or more
computational objects. In the UNIX operating
system, a capsule corresponds to a single UNIX
process. Computational objects always communicate
via invocation at the conceptual level but, as may be
expected, invocation between objects in the same
capsule is actually implemented by straightforward
procedure calls rather than by execution protocols.

We have developed a modified version of the
ANSAware libraries which includes code to route
packets generated as a result of object invocations via
the emulator. By use of a single function call the
application can optionally enable one or other of the
synchronous transmission modes supported by the
emulator, i.e. application is blocked until messages
are queued or application is blocked until messages
are transmitted. Running ANSAware applications
over the emulator highlighted a number of
shortcomings in the ANSAware remote procedure
call protocol REX. More specifically, REX is tuned
to run on a moderately loaded Ethernet and does not
implement any form of congestion control. In
addition, the tuning parameters are specified at
compile time which makes it impossible for REX to

adapt to changes in network bandwidth.

We have implemented a new remote procedure
call package for ANSAware called QEX (Quality-of-
service remote EXecution protocol). QEX differs
from REX in that it is specifically designed to operate
over a wide range of network types adapting
seamlessly to changes in network quality-of-service.
This is achieved by analysing sequences of messages
to determine the round-trip time between client and
server. These round-trip times are smoothed to
eliminate network jitter (processing at the server end
ensures that application delays are eliminated from
the calculation) and then form the basis of tuning
parameters. In particular, retry rates are calculated to
avoid unnecessary network congestion while
ensuring that packet losses are detected as early as
possible. Quality-of-service information is
maintained on a per-session basis and hence the
protocol is able to accommodate simultaneous object
interactions over differing networks (e.g. if a client is
talking to two services one of which is located on a
mobile host while the other is on a high-bandwidth
fixed network).

In addition to using quality-of-service
information for tuning purposes QEX is also able to
provide feedback to applications on the state of the
underlying communications channels. To facilitate
this we have introduced the notion of explicit
bindings into the ANSAware platform. Explicit
bindings are established using a bind operation which
takes as parameters the source and sink interfaces to
be bound and a further set of parameters which
express the desired quality-of-service. Clients are
returned a binding control interface as a result of the
bind operation through which they can register for
call-backs if the specified quality-of-service is
violated. These call-backs are generated by QEX
based on the information it collects for tuning
purposes and allow applications to adapt to changes
in the network characteristics. In this way
applications can provide feedback to users on the
state of the network and congestion control strategies
can be adopted by applications and users in addition
to the underlying protocol.

QEX has been largely developed using the
network emulator which has allowed us to simulate
rapid fluctuations in network quality-of-service and
thus refine our algorithm for calculating retry rates.
More details on QEX can be found in [Davies,94].

5. Performance

We have tested the accuracy of the network

emulator over a range of different network speeds
and with varying numbers of clients transmitting
different packet sizes. The graphs in this section can
be used to ascertain the optimum configuration file
settings for a given combination of network speed
and average packet size. All of the figures were taken
using a network of Sun Sparx1 machines running
SunOS 4.1 and interconnected using Ethernet. The
emulator ran on a separate machine to the clients and
servers and all the machines and the network were
'lightly loaded' at the time of testing.

To obtain the figures we ran simple client/server
pairs in which the client repeatedly sent fixed size
buffers to the server. The server recorded the time
taken to receive a set number of these buffers and
from this timing information calculated the average
throughput. Standard Unix timing facilities were used
throughout.

0 200000 400000 600000 800000
0

200000

400000

600000

800000

theoretical

10 bytes
100 bytes

1000 bytes

Specified Bits/Sec

O
bs

er
ve

d
Bi

ts
/S

ec

Figure 8 : Network Emulator Performance For

Single Client/Server Pair in the Range 0-614400

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000
theoretical

10 bytes

100 bytes

1000 bytes

Specified Bits/Sec

O
bs

er
ve

d
Bi

ts
/S

ec

Figure 9 : Network Emulator Performance For
Single Client/Server Pair in the Range 0-9600

Figures 8 and 9 shows the emulator's
performance for a single client/server pair of
processes. Figure 9 is based on the same timings as
figure 8 but the graph shows a narrower range of
network bandwidths in order to improve the level of
detail which can be observed. In both graphs the x-
axis is the bandwidth as specified in the configuration
file and the y-axis is the observed bandwidth. The
different lines denote different packet sizes (10, 100
and 1000 bytes).

The key thing to note from these graphs is that
the accuracy with which the emulator models the
network bandwidth is heavily dependent on the
packet size. Moreover, for any given packet size
there is a maximum speed at which the emulator can
process and dispatch the packets. Increasing the
bandwidth in the configuration file has no effect on
the observed bandwidth above this cut-off point. In
our tests the cut-off points were as follows: the
maximum observable throughput with 10 byte
packets was 3998 bytes; the maximum observable
throughput with 100 byte packets was 39978 bytes
and the maximum observable throughput with 1000
byte packets was 399792 bytes.

0 200000 400000 600000 800000
0

200000

400000

600000

800000

10 bytes (1) 10 bytes (2)
100 bytes (1)100 bytes (2)

1000 bytes (1)
1000 bytes (2)

theoretical

Specified Bits/Sec

O
bs

er
ve

d
Bi

ts
/S

ec

Figure 10 : Network Emulator Performance For Two
Client/Server Pairs in the Range 0-614400

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

10 bytes (1)
10 bytes (2)

100 bytes (1)
100 bytes (2)

1000 bytes (1)
1000 bytes (2)

theoretical

Specified Bits/Sec

O
bs

er
ve

d
Bi

ts
/S

ec

Figure 11 : Network Emulator Performance For Two
Client/Server Pairs in the Range 0-9600

Figures 10 and 11 illustrate how the performance
of the emulator degrades with the addition of a new
client-server pair. For these figures the emulator was
driven by two clients, both sending fixed size packets
at their maximum rate. The graphs show the two
different traces (one for each client) for the same
packet sizes as above. Once again the cut-off points
are evident with the maximum observable throughput
with 10 byte packets being 2439 bytes; the maximum
observable throughput with 100 byte packets being
19985 bytes and the maximum observable throughput
with 1000 byte packets being 201000 bytes. As might
be expected while the addition of new client/server
pairs impacts on the performance of the emulator this
impact is evenly distributed between the client/server
pairs such that both see an almost identical (though
less accurate) throughput.

The frequency with which the situation depicted
in figures 10 and 11 occurs is clearly application

dependent. In our work at Lancaster we have been
focusing on the development of collaborative mobile
applications for use by field engineers in the utilities
industries. As a result, we have been mainly
interested in emulating the type of low-speed radio
networks suitable for wide-area use. In addition, the
collaborative applications we have written typically
have a fairly well-defined request-reply style
interaction based on packet sizes of around 100 bytes
and as a result we typically do not have multiple
processes transmitting large numbers of messages
concurrently. For this type of application the
emulator has proved more than adequate and enabled
us to make substantial progress in application
development prior to obtaining wide-area mobile
communications hardware. For more demanding
applications with multiple nodes transmitting
concurrently the emulator's performance can be
improved by replication. In the degenerate case a
separate network emulator can be used for each
source node. In this case however, the emulator is
only able to provide functionality equivalent to that
found in Delayline since there is currently no
mechanism defined for separate instances of the
emulator to communicate in order to support packet
collisions etc. Experimentation would be required to
determine if such a distributed co-ordination protocol
could be implemented while still allowing the
emulators to function at level significantly better than
a centralised version.

6. Concluding Remarks
This paper has described a network emulator

developed at Lancaster to enable research into
adaptive applications. It should be stressed that the
system described provides an emulation of low-speed
networks not a simulation, i.e. real applications can
be compiled and executed using the emulator and
these applications will experience a level of network
service similar to that which they would experience if
they were running over real low-speed networks. The
design and implementation of the emulator has been
described as has the design and implementation of a
separate graphical front-end and monitoring tool for
the emulator.

The performance of the emulator has been
evaluated and those applications for which the
emulator is best suited identified. In particular, the
impact of small message sizes on the emulator's
accuracy has been discussed.

 The emulator and its front end have been
successfully compiled and run on SUN Sparcs

running SunOS, SUN Sparcs running a soft real-time
version of SunOS 4.1 [Hagsand,94] and portable 486
PCs running SVR4. Sources for the emulator and the
front-end are available via anonymous ftp from
ftp.comp.lancs.ac.uk. In addition, the URL:

 http://www.comp.lancs.ac.uk

 /computing/users/nigel/emulator.html

provides more information on the network emulator
and access to the source code for both the emulator
and the interface described in this paper.

Acknowledgements
The work described in this paper was initiated by

one of the authors while a visiting researcher at the
Swedish Institute of Computer Science. The authors
would like to acknowledge the contribution of Olof
Hagsand who wrote the code to enable the emulator
to use SICS's soft real-time SunOS and Steve Pink
for discussions during the development of this
emulator.

References
[APM,89] A.P.M. Ltd. "The ANSA

Reference Manual Release 01.00",
APM Limited, UK. March 1989.

[Duchamp,92] Duchamp, D. "Issues in Wireless
Mobile Computing." Proc. Third
Workshop on Workstation
Operating Systems, Key Biscayne,
Florida, U.S., 1992. IEEE
Computer Society Press, Pages 2-
10.

[Davies,94] Davies, N., G.S. Blair., K. Cheverst
and A. Frdiay "Supporting
Adaptive Services in a
Heterogeneous Mobile
Environment." Proc. 1st
International Workshop on Mobile
Computing Systems and
Applications, Santa Cruz, U.S.,
December 1994.

[Hager,93] Hager, R., A. Klemets, G.Q.
Maguire, M.T. Smith, and F.
Reichert. "MINT - A Mobile
Internet Router." Proc. IEEE
VTC'93, Secaucus, NJ, U.S., 1993.

[Hagsand,94] Hagsand, O., and P. Sjödin.
"Workstation Support for Real-time
Multimedia Communications."
Proc. USENIX Winter 1994
Technical Conference, 1994.

[Ingham,94] Ingham, D. B. and G. D. Parrington
"Delayline: A Wide-Area Network
Emulation Tool." Technical Report,
Department of Computer Science,
University of Newcastle, Newcastle
upon Tyne, NE1 7RU, U.K.

[ISO,92] ISO. "Draft Recommendation
X.901: Basic Reference Model of
Open Distributed Processing -
Part1: Overview and Guide to
Use", Draft Report 1992.

[Katz,94] Katz, R.H. "Adaptation and
Mobility in Wireless Information
Systems." IEEE Personal
Communications Vol. 1 No. 1,
Pages 6-17.

[Schilit,94] Schilit, B., N. Adams and R. Want
"Context-Aware Computing
Applications" Proc. 1st
International Workshop on Mobile
Computing Systems and
Applications, Santa Cruz, U.S.,
December 1994.

