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Abstract 
Mobile applications must operate in environments in 
which the network connectivity, input/output devices, 
power and contextual information available to them 
may all vary. Applications which react to changes in 
these parameters in order to ensure continuing service 
to the user are termed adaptive applications and have 
recently emerged as an area of intense research 
activity. In this paper we describe the design and 
implementation of a network emulator which 
facilitates research in this field by allowing 
applications to be exposed to user controlled 
fluctuations in network service. The emulator can be 
used with any application which uses UDP and 
requires only minimal changes to the application or, 
it may be used with applications written using the 
ANSAware distributed systems platform in which 
case no changes are necessary to the application. The 
design and implementation of the emulator are 
described in this paper as our experiences of using 
the emulator to model three distinct types of wireless 
network: GSM, an analogue cellular service and a 
simple shared radio channel. The source code for the 
emulator is freely available and instructions on 
obtaining the code are also included. 

 

1. Introduction 
Mobile computing environments are 

characterised by variation. In particular, during the 
execution-time of a mobile application the network 
connectivity, input/output devices, power and 
contextual information available to the application 
may all vary [Davies,94], [Duchamp,92], [Schilit,94]. 
In our research at Lancaster we are interested in 

developing applications and system services which 
are able to cope with wide fluctuations in these 
parameters (termed adaptive applications [Katz,94]) 
and in particular with fluctuations in the first of these 
parameters, i.e. network connectivity. This  
 
 
work has been motivated by two beliefs: firstly, that  
fluctuations in network connectivity are unavoidable 
in a mobile environment and secondly, that such 
fluctuations should become an accepted part of an 
application's operation and not be treated as an error 
or temporary 'glitch'. 

The first of these statements is clearly true if we 
assume that mobile computers will have multiple 
network interfaces [Hager,93] and that users will be 
able to dynamically switch between networks (for 
example switching between a wired network and a 
local area wireless network when un-docking a 
portable PC). Determining the feasibility of the 
second of these statements requires further research. 
However, to conduct this research requires an 
environment in which the level of network service 
available to a mobile machine can be varied. This 
paper reports on the development of such an 
environment based not on hardware but on a software 
network emulator which allows us to conduct 
research into network variance without investing in 
multiple network infrastructures. 

Section 2 of this paper describes the overall 
design and configuration of the network emulator. 
Details are given of how the emulator may be 
configured to emulate a number of different networks 
with examples based on three wide-area wireless 
networks with which we have practical experience: 



 

GSM, a U.K. analogue cellular service and an 
analogue private mobile radio (PMR) system. Section 
3 then briefly describes a graphical user interface to 
the emulator which enables users to control and 
visualise the flow of information between mobile 
computers. Section 4 presents details of the 
modifications necessary to client applications to 
enable them to exploit the emulator. Particular 
emphasis is placed on the use of applications written 
using the ANSAware distributed systems platform 
which we have modified to operate with the 
emulator. Section 5 then presents an analysis of the 
performance of the emulator and highlights the 
relationship between the network bandwidth to be 
emulated and the average size of packets sent to the 
emulator. Finally, section 6 contains some 
concluding remarks. 

2. Design and Implementation 
2.1. Emulator Design 

The network emulator is designed to provide an 
approximate emulation of low-speed networks using 
standard hardware and systems software. It should be 
stressed that as researchers we are more concerned 
with variance in network connectivity than precise 
simulations of network characteristics and hence the 
accuracy of the emulator is not considered to be of 
critical importance (for example, we use standard 
UNIX timing facilities). The basic approach used by 
the emulator is to intercept UDP packets travelling 
between sources and sinks and to introduce a delay 
similar to that which would be incurred if the packets 
were transmitted over a slower network. The 
emulator mimics the workings of a slow speed 
network and so delays are related to (for example) 
network load and error rates. The most controversial 
feature of the emulator's design is that it is structured 
as a single, central point through which all messages 
are routed and at which point network delays are 
introduced. Thus for each node in the network to be 
emulated the emulator maintains a queue of packets 
waiting to be transmitted. This use of a central point 
for the emulation is in contrast to systems such as 
Ingham's Delayline network emulator [Ingham,94] in 
which processing is carried out at both the sender and 
recipient of messages with delays being implemented 
at the receiver's end. 

While implementing the emulator as a central 
point clearly creates a bottleneck in the system there 
are two key advantages to be gained from this 
approach. Firstly, the emulator is able to adjust the 
network characteristics experienced by applications 

based on load. Hence, for example, if the network to 
be emulated has a simple shared transmission 
medium the emulator itself can detect potential 
packet collisions and discard the appropriate packets. 
The second advantage is that the semantics of sockets 
are automatically preserved by the emulator: the 
sender always believes that packets have been sent 
properly since they always appear to reach their 
destination (in practice of course they have only 
reached the emulator) and the receiver receives 
messages in the order in which they would arrive in a 
real network (in contrast to the Delayline system in 
which packets may arrive in the wrong order since 
the delay is introduced at the receiver side of the 
communication).  

However, there are a number of disadvantages in 
structuring the network emulator as a central process. 
In particular, the design makes the following 
assumptions:- 
• The time the emulator takes to process a packet 

is negligible compared to the delay incurred 
during transmission over a slow network. 

• The time taken to transmit a UDP packet over 
the high speed network is negligible compared to 
the delay incurred during transmission over a 
slow network. 

• The number of nodes that are to be 
interconnected via the emulator is small (i.e. less 
than sixteen) and only a subset of these are 
transmitting at any one time. 

Clearly, as the size of UDP packets decrease or 
the speed of the network being emulated increases 
then the first two of these assumptions introduce 
increasing inaccuracies. However, in practice we 
have found that these assumptions are valid for the 
type of experimental work we wish to carry out (see 
section 5).  

2.2. Emulator Configuration 

The network emulator can be configured in two 
distinct ways. Firstly, new types of network may be 
introduced, e.g. a connection oriented cellular service 
or a connectionless shared medium network. This 
requires modification to one of the emulator's source 
files and re-compilation. In more detail, the user must 
supply a function called new_network_name_send 
(senderNodeId, dataPacket) which is called by the 
emulator every time a packet is to be sent via the new 
network. Within this function the user must 
implement any delays which are associated with 
attempting to send packets on the network. For 
example, if the network has a high turn-around time 



 

which occurs when the node switches from receiving 
to transmitting information this can be modelled with 
the new_network_name_send function. Error 
characteristics can also be specified for the network 
or the occurrence of errors may be modelled as part 
of the throughput specified. Once a new network has 
been introduced its behaviour can be tailored during 
run-time using configuration files. A typical 
configuration file is shown in figure 1. 

Line 1 of the configuration file denotes the type 
of the network to emulate - in this case a raw radio 
channel. Line 2 specifies the number of nodes that 
are connected to the network (in this case 3) and lines 
3 to 5 provide information about each node. 
Specifically, for each node its name, maximum buffer 
size and internet address must be specified. The 
buffer size is used to  
 

1 raw <network to be emulated> 
2 3 <no. of sources/sinks of data> 
3 0 1044000 148 88 16 27 columbine <source no. 0> 
4 1 1044000 148 88 16 25 sinbad < source no 1> 
5 2 1044000 148 88 32 2 edc2 <source no. 2> 
6 0 0 1 1200 3c < channel characteristics 0-1> 
7 1 0 2 1200 3c < channel characteristics 0-2> 
8 2 1 0 1200 33 < channel characteristics 1-0> 
9 3 1 2 1200 33 < channel characteristics 1-2> 
10 4 2 0 1200 0f < channel characteristics 2-0> 
11 5 2 1 1200 0f < channel characteristics 2-1> 

Figure 1 : A Typical Configuration File 

prevent applications from running ahead of the 
network; once a node's buffer is full all subsequent 
send requests will be blocked. 
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Figure 2 : Emulator Channel Connection Diagram 

For the purposes of the emulator the network to 
be emulated must be visualised as a series of uni-
directional channels interconnecting each of the 
nodes (see figure 2). The characteristics of these 
channels are specified in lines 6-11. For example, 
line 6 of the configuration file specifies the 
characteristics of channel 0, i.e. the channel between 
nodes 0 and 1. The characteristics are that the 
channel has a throughput of 1200 bps and that 
messages transmitted on this channel collide with 
messages transmitted simultaneously on any of the 

other channels except channel 1, i.e. the other 
outgoing channel from this node. This is expressed 
using a bit map mask with a bit being set denoting 
that collisions occur with messages on the 
corresponding channel (channel 0 being the least 
significant bit).  

The network emulator supports dynamic updates 
to the configuration file during operation so that the 
effect of changing the quality-of-service of a network 
can be easily demonstrated. For example, by simply 
setting the throughput of a given node's output 
channels to zero we can emulate disconnection. It 
should be noted however that radical changes to the 
network configuration may result in those packets 
currently being queued at the emulator being delayed 
longer than expected during the reconfiguration. This 
is because when the emulator is re-configured it re-
calculates the dispatch time of all the waiting packets 
without taking into account any time the packets have 
already been delayed. Thus re-configurations 
involving small changes to the throughput of slow-
speed networks are most susceptible to this problem 
(particularly if the packets being queued are 
relatively large). Re-configurations involving the 
addition or removal of nodes are supported: the 
emulator simply prints a warning if a previously 
supported node is no-longer supported in the new 
configuration file. 



 

2.3. Example Configurations 

We have used the emulator to emulate three 
types of network: GSM, a U.K. analogue cellular 
service and a simple shared radio channel. In the case 
of GSM the network appears to have fairly 
dependable characteristics with an average call set up 
time of 3 seconds and a corrected throughput of 9600 
bits/sec. In the case of the analogue cellular service 
(using Motorola Cellect modems and MicroTac II 
handsets) the call set up time is substantially longer, 
taking about 20 seconds for the connection to be fully 
established. Once the connection has been established 
we are able to get a corrected throughput of around 
3700 bits/sec on a theoretical 4800 link. Setting the 
modems to run at higher speeds typically gives us a 
lower corrected throughput due to the number of 
retransmissions necessary to compensate for the high 
error rate. 

The emulator configuration for these two 
networks is very similar. Two new send routines 
were required (gsm_send () and analogue_send ()) 
which introduced the appropriate connection delay 
for each network. For both networks packets sent by 
a node to a new destination causes the emulator to 
simulate the disconnection of the node from its 
previous destination and connection to the new 
destination node. The only difference between the 
gsm_send and analogue_send routines is the length of 
delay they introduce to emulate call connection. The 
configuration files for these networks are both 
straightforward with the collisions flags being set to 
no collisions and the throughput being set at 9600 
and 3700 for the GSM and analogue networks 
respectively. 

raw_send ( int : sourceId, dataPacket *pkt) 
{ 
 mapAddressToNodeId (dataPkt->   
   destinationAddress, &sinkId); 
 if (emptyQ(sourceId) { 
  addToTxQ (sourceId, pkt); 
  obtainChannelCharacteristics(sourceId, 
   sinkId, &characteristics); 
  /* insert any additional delays/errors here */ 
  calculateDispatchTime(pkt->length,  
  characteristics->bandwidth); 
  resetCollisionBits (characteristics); 
 } 
 else 
  addToTxQ (sourceId, pkt); 
} 

Figure 3 : Pseudo Code for Emulator Send Routine 
for a Raw Radio Channel 

 
The emulation of the raw radio channel has a 

much more straightforward send routine which 
introduces no additional delays (see figure 3). 
However, the configuration file for this type of 
network is more complex. In particular, the collision 
flags must be set such that data on any channel 
collides with data on any other channel. For the 
purposes of our work we have used a throughput of 
1200 bits/sec to emulate the characteristics of a 
simple analogue private mobile radio (PMR) system. 
An example configuration file for this type of 
network is given in figure 2. 

3. A Graphical Interface to the 
Network Emulator 

At an early stage in the network emulator's 
development it was realised that a graphical front-end 
to the emulator could be used to enhance 
demonstrations of adaptive applications. The 
interface we have developed allows users to both 
view and control the operation of the emulator. 
During normal use the interface displays for each 
node the number of packets waiting to be dispatched, 
the last action that occurred with respect to that node 
(e.g. packet arrived, packet dispatched etc.) and for 
the packet at the head of the node's queue its 
destination, size and dispatch time. Hence, if we have 
a fast sender connected to its intended destination by 
a slow network the queue size for the sending node 



 

will build up steadily and we will see many more 
packet arrival events than packet departures. The 
interface to the emulator also allows users to control 
the emulator by dynamically changing the 

configuration file it uses. In this way we can, for 
example, show the effect on applications of gradually 
reducing the throughput available.  

NodeId Name Q_Length Dest Event Send_Time

Emulator Time sec usec

Start

Stop

Quit

Update

0 columbine - - - -0

0 sinbad - - - -0

0 edc2 - - - -0

OK

9.6nocrashs
9.6crashs
4.8nocrashs
4.8crashs
2.4nocrashs

Cancel

 
Figure 4 : The Network Emulator Controller 

The interface is implemented as an entirely 
separate process which communicates with the 
emulator using sockets. This communication takes 
the form of well-defined packets sent from the 
emulator whenever a relevant event occurs (see 
figure 5). Control packets to, for example, force the 
emulator to update its configuration file can be sent 
from the monitor to the emulator. 



 

struct monitorPacket { 
 char header [2];  /* identifies emulator pkt */ 
 int type; /* type of pkt */ 
  struct timeval  
  time_now; /* emulator's clock time */ 
 int nodeId; /* node to which msg relates 
*/ 
 int qLength; /* length of q for this node */ 
 int event; /* event which has occurred 
*/ 
 int size; /* size of data pkt involved 
*/ 
 int dest; /* destination nodeId */ 
 struct timeval  
  event_time; /* time relating to the event.  
   Can be different for each  
    event */ 
}; 

/* pkt has been discarded */ 
#define EVENT_PKT_DISCARD 0  
/* pkt has been sent */ 
#define EVENT_PKT_SENT 1  
/* pkt collided (and discarded) */ 
#define EVENT_PKT_COLLIDED 2  
/* pkt has arrived at node */ 
#define EVENT_PKT_ARRIVED 3  
/* pkt has been scheduled for tx */ 
#define EVENT_PKT_SCHEDULED 4  

Figure 5 : Packet Format For Communications 
Between the Emulator and its Interface 

Implementing the emulator's user interface as a 
separate process has the two distinct advantages. 
Firstly, we can run the interface on a separate 
machine and thus could implement processor 
intensive graphics monitoring tools without affecting 
the performance of the emulator. Secondly, we can 
have a number of different interfaces implemented to 
illustrate and control different aspects of the 
emulator. 

4. Emulator Client Code 
4.1. Standard Distributed 
Applications 

We use the emulator with two types of 
distributed application. The first are standard 
distributed applications which communicate using 
UDP. In order that these can use the emulator they 
must use new versions of the sendto and recvfrom 
system calls. These are currently implemented as new 
functions emulator_sendto and emulator_recvfrom 
which form wrappers around the standard calls in 
order to add and remove additional header 
information required by the emulator. Applications 
must at present be re-compiled to use these new 
functions. However, it would be a relatively 
straightforward task to compile these functions as a 
library which could be dynamically linked with 
existing applications to allow them to transparently 
use the emulator. The format of the packet headers 
used by emulator_sendto and emulator_recvfrom is 
shown in figure 6. 

struct dataPacket { 
 char header [2];  /* identifies em. pkt 
*/ 
 int type; /* type of pkt */ 
 struct sockaddr_in toAddr; /* destination */ 
 struct sockaddr_in frAddr; /* source address */ 
 struct sockaddr_in ackAddr; /* address to ack.  
       transmission */ 
 int bufLen; /* length of user data 
*/ 
 char *buf; /* user data */ 
}; 

Figure 6 : Structure of an Emulator Data Packet 

The header field identifies the packet as being 
associated with the emulator. It is used by the 
emulator to check that it is receiving valid packets 
and by the emulator_recvfrom function to determine 
whether or not to strip off the header before passing 
the buffer up to the application. The type field is used 
to distinguish between data and control packets. Data 
packets are those which are passed to the emulator 
for subsequent dispatch to a destination mode. 
Control packets are used to control the emulator's 
behaviour and typically originate from the emulator's 
user interface. In addition data packets can be flagged 
as those requiring an acknowledgement that the 



 

packet has been queued for transmission, those that 
require an acknowledgement of transmission and 
those which require no acknowledgement at all. This 
allows us to implement synchronous emulator_sendto 
routines for those applications which would 
otherwise 'run-away' or cause congestion when 
operating over a low-speed link. If the packet 
requires an acknowledgement the emulator sends this 
to the address specified in the ackAddr field. 

The first two address fields are used by the 
emulator to ensure that the packet is transmitted to 
the appropriate final destination and, at the 
destination, to ensure that the application believes 
that the packet originates from the initial source 
rather than from the emulator. The ack_address is 
used for flow control between the emulator and the 
source application as described above. 

4.2. ANSAware Applications 

The second type of application we have used 
with the emulator are those based on the ANSAware 
distributed systems platform [APM,89]. This 
software suite is itself based on the ANSA 
architecture which has had a profound influence on 
the RM-ODP [ISO,92]. Thus, the platform tackles the 
problem of developing applications to operate in a 
heterogeneous environment. The ANSA 
programming model is based on a location-
independent object model where all interacting 
entities are treated uniformly as encapsulated objects. 
Objects are accessed through operational interfaces 
which define named operations together with 
constraints on their invocation. Objects are made 
available for access by exporting interfaces to a 
special object known as the trader. An object wishing 
to interact with this interface must then import the 
interface from the trader by specifying a set of 
requirements in terms of a interface type and attribute 
values. This will be matched against the available 
services and a suitable candidate selected. At this 
stage, an implicit binding is created to the object 
supporting the interface, i.e. a communication path is 
established to the object. Invocation of operations can 
then proceed. 

To provide a platform conformant with the 
above programming model the ANSAware suite 
augments a general purpose programming language 
(usually C) with two additional languages. The first 
of these is IDL (Interface Definition Language), 
which allows interfaces to be precisely defined in 
terms of operations, arguments and results. The 
second language, DPL (Distributed Processing 

Language) is embedded in a host language, such as 
C, and allows interactions to be specified between 
programs which implement the behaviour defined by 
these interfaces. Specifically, DPL statements allow 
the programmer to import and export interfaces, and 
to invoke operations in those interfaces (see figure 7). 

! {stack} <- traderRef$Import ("Stack",  
"context", "properties") 

! {result}<-stack$Push (value)  

Figure 7 : Example DPL Statements 

In the engineering infrastructure, the binding 
necessary for invocations is provided by a remote 
procedure call protocol known as REX (Remote 
EXecution protocol) or a group execution protocol 
know as GEX (Group EXecution Protocol). These are 
layered on top of a generic transport layer interface 
known as a message passing service (MPS). A 
number of additional protocols may be included at 
both the MPS and the execution protocol levels and 
these may be combined in a number of different 
configurations. The infrastructure also supports 
lightweight threads within objects so that multiple 
concurrent invocations can be dealt with. 

All the above engineering functionality is 
collected into a single library, and an instance of this 
library is linked with application code to form a 
capsule. Each capsule may implement one or more 
computational objects. In the UNIX operating 
system, a capsule corresponds to a single UNIX 
process. Computational objects always communicate 
via invocation at the conceptual level but, as may be 
expected, invocation between objects in the same 
capsule is actually implemented by straightforward 
procedure calls rather than by execution protocols. 

We have developed a modified version of the 
ANSAware libraries which includes code to route 
packets generated as a result of object invocations via 
the emulator. By use of a single function call the 
application can optionally enable one or other of the 
synchronous transmission modes supported by the 
emulator, i.e. application is blocked until messages 
are queued or application is blocked until messages 
are transmitted. Running ANSAware applications 
over the emulator highlighted a number of 
shortcomings in the ANSAware remote procedure 
call protocol REX. More specifically, REX is tuned 
to run on a moderately loaded Ethernet and does not 
implement any form of congestion control. In 
addition, the tuning parameters are specified at 
compile time which makes it impossible for REX to 



 

adapt to changes in network bandwidth. 

We have implemented a new remote procedure 
call package for ANSAware called QEX (Quality-of-
service remote EXecution protocol). QEX differs 
from REX in that it is specifically designed to operate 
over a wide range of network types adapting 
seamlessly to changes in network quality-of-service. 
This is achieved by analysing sequences of messages 
to determine the round-trip time between client and 
server. These round-trip times are smoothed to 
eliminate network jitter (processing at the server end 
ensures that application delays are eliminated from 
the calculation) and then form the basis of tuning 
parameters. In particular, retry rates are calculated to 
avoid unnecessary network congestion while 
ensuring that packet losses are detected as early as 
possible. Quality-of-service information is 
maintained on a per-session basis and hence the 
protocol is able to accommodate simultaneous object 
interactions over differing networks (e.g. if a client is 
talking to two services one of which is located on a 
mobile host while the other is on a high-bandwidth 
fixed network).  

In addition to using quality-of-service 
information for tuning purposes QEX is also able to 
provide feedback to applications on the state of the 
underlying communications channels. To facilitate 
this we have introduced the notion of explicit 
bindings into the ANSAware platform. Explicit 
bindings are established using a bind operation which 
takes as parameters the source and sink interfaces to 
be bound and a further set of parameters which 
express the desired quality-of-service. Clients are 
returned a binding control interface as a result of the 
bind operation through which they can register for 
call-backs if the specified quality-of-service is 
violated. These call-backs are generated by QEX 
based on the information it collects for tuning 
purposes and allow applications to adapt to changes 
in the network characteristics. In this way 
applications can provide feedback to users on the 
state of the network and congestion control strategies 
can be adopted by applications and users in addition 
to the underlying protocol.  

QEX has been largely developed using the 
network emulator which has allowed us to simulate 
rapid fluctuations in network quality-of-service and 
thus refine our algorithm for calculating retry rates. 
More details on QEX can be found in [Davies,94]. 

5. Performance 

We have tested the accuracy of the network 

emulator over a range of different network speeds 
and with varying numbers of clients transmitting 
different packet sizes. The graphs in this section can 
be used to ascertain the optimum configuration file 
settings for a given combination of network speed 
and average packet size. All of the figures were taken 
using a network of Sun Sparx1 machines running 
SunOS 4.1 and interconnected using Ethernet. The 
emulator ran on a separate machine to the clients and 
servers and all the machines and the network were 
'lightly loaded' at the time of testing. 

To obtain the figures we ran simple client/server 
pairs in which the client repeatedly sent fixed size 
buffers to the server. The server recorded the time 
taken to receive a set number of these buffers and 
from this timing information calculated the average 
throughput. Standard Unix timing facilities were used 
throughout. 
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Figure 8 : Network Emulator Performance For 

Single Client/Server Pair in the Range 0-614400 
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Figure 9 : Network Emulator Performance For 
Single Client/Server Pair in the Range 0-9600 

Figures 8 and 9 shows the emulator's 
performance for a single client/server pair of 
processes. Figure 9 is based on the same timings as 
figure 8 but the graph shows a narrower range of 
network bandwidths in order to improve the level of 
detail which can be observed. In both graphs the x-
axis is the bandwidth as specified in the configuration 
file and the y-axis is the observed bandwidth. The 
different lines denote different packet sizes (10, 100 
and 1000 bytes).  

The key thing to note from these graphs is that 
the accuracy with which the emulator models the 
network bandwidth is heavily dependent on the 
packet size. Moreover, for any given packet size 
there is a maximum speed at which the emulator can 
process and dispatch the packets. Increasing the 
bandwidth in the configuration file has no effect on 
the observed bandwidth above this cut-off point. In 
our tests the cut-off points were as follows: the 
maximum observable throughput with 10 byte 
packets was 3998 bytes; the maximum observable 
throughput with 100 byte packets was 39978 bytes 
and the maximum observable throughput with 1000 
byte packets was 399792 bytes. 
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Figure 10 : Network Emulator Performance For Two 
Client/Server Pairs in the Range 0-614400 
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Figure 11 : Network Emulator Performance For Two 
Client/Server Pairs in the Range 0-9600 

Figures 10 and 11 illustrate how the performance 
of the emulator degrades with the addition of a new 
client-server pair. For these figures the emulator was 
driven by two clients, both sending fixed size packets 
at their maximum rate. The graphs show the two 
different traces (one for each client) for the same 
packet sizes as above. Once again the cut-off points 
are evident with the maximum observable throughput 
with 10 byte packets being 2439 bytes; the maximum 
observable throughput with 100 byte packets being 
19985 bytes and the maximum observable throughput 
with 1000 byte packets being 201000 bytes. As might 
be expected while the addition of new client/server 
pairs impacts on the performance of the emulator this 
impact is evenly distributed between the client/server 
pairs such that both see an almost identical (though 
less accurate) throughput. 

The frequency with which the situation depicted 
in figures 10 and 11 occurs is clearly application 



 

dependent. In our work at Lancaster we have been 
focusing on the development of collaborative mobile 
applications for use by field engineers in the utilities 
industries. As a result, we have been mainly 
interested in emulating the type of low-speed radio 
networks suitable for wide-area use. In addition, the 
collaborative applications we have written typically 
have a fairly well-defined request-reply style 
interaction based on packet sizes of around 100 bytes 
and as a result we typically do not have multiple 
processes transmitting large numbers of messages 
concurrently. For this type of application the 
emulator has proved more than adequate and enabled 
us to make substantial progress in application 
development prior to obtaining wide-area mobile 
communications hardware. For more demanding 
applications with multiple nodes transmitting 
concurrently the emulator's performance can be 
improved by replication. In the degenerate case a 
separate network emulator can be used for each 
source node. In this case however, the emulator is 
only able to provide functionality equivalent to that 
found in Delayline since there is currently no 
mechanism defined for separate instances of the 
emulator to communicate in order to support packet 
collisions etc. Experimentation would be required to 
determine if such a distributed co-ordination protocol 
could be implemented while still allowing the 
emulators to function at level significantly better than 
a centralised version. 

6. Concluding Remarks 
This paper has described a network emulator 

developed at Lancaster to enable research into 
adaptive applications. It should be stressed that the 
system described provides an emulation of low-speed 
networks not a simulation, i.e. real applications can 
be compiled and executed using the emulator and 
these applications will experience a level of network 
service similar to that which they would experience if 
they were running over real low-speed networks. The 
design and implementation of the emulator has been 
described as has the design and implementation of a 
separate graphical front-end and monitoring tool for 
the emulator.  

The performance of the emulator has been 
evaluated and those applications for which the 
emulator is best suited identified. In particular, the 
impact of small message sizes on the emulator's 
accuracy has been discussed. 

 The emulator and its front end have been 
successfully compiled and run on SUN Sparcs 

running SunOS, SUN Sparcs running a soft real-time 
version of SunOS 4.1 [Hagsand,94] and portable 486 
PCs running SVR4. Sources for the emulator and the 
front-end are available via anonymous ftp from 
ftp.comp.lancs.ac.uk. In addition, the URL: 

 http://www.comp.lancs.ac.uk 
 
 /computing/users/nigel/emulator.html 

provides more information on the network emulator 
and access to the source code for both the emulator 
and the interface described in this paper. 
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