Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems

Piñol, J. and Beven, K. and Viegas, D. X. (2005) Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecological Modelling, 183 (4). pp. 397-409. ISSN 0304-3800

Full text not available from this repository.

Abstract

There is a debate on which factor, fuel accumulation or meteorological variability, is the fundamental control of the occurrence of large fires in Mediterranean-type ecosystems. Its resolution has important management implications, because if the fuel hypothesis proves to be right, then fire-exclusion would enhance the occurrence of large wildfires, and prescribed-fires would be a useful tool to fight them. On the other hand, if large fires were just a direct consequence of some extreme weather situations, neither fire-exclusion nor prescribed fire would have any influence on the size of wildfires. Here we present a simple model of vegetation dynamics and fire spread over homogeneous areas intended to treat quantitatively this issue. In particular, we wanted to address the following questions: (1) What is the effect that different fire fighting capacities have on the total area burnt and, especially, on large fires? (2) What is the effect that different levels of prescribed fire have on the area burnt in wildfires and, especially, in large fires? The model incorporates meteorological variability, different rates of fuel accumulation, number of ignitions per year, fire-fighting capacity, and prescribed burning. The model was calibrated with fire regime data (mean fire size, annual area burnt, and fire size distribution) of Tarragona (NE Spain) and Coimbra (Central Portugal), and it accurately reproduced both data sets, while allowing for multiple behavioural models and prediction uncertainties within the GLUE methodology. Results showed that for a given region, with its particular characteristics of climate, number of ignitions, and vegetation flammability, there was a fairly constant annual area burnt for different fire-fighting capacities. However, higher fire-fighting capacities resulted in a slightly higher proportion of large fires. There was also a quite constant annual area burnt (prescribed and wild fires together) for different prescribed fire intensities in each region. However, the total amount and proportion of large fires decreased as the prescribed burning intensity increased. So, according to the model, it seems that the total area burnt will be more or less the same despite any effort to reduce it by extinguishing fires or by using prescribed burning. Nevertheless, the effect of the fire exclusion policy slightly enhances the dominance of large fires, whereas the use of prescribed fires greatly reduces the importance of large fires.

Item Type:
Journal Article
Journal or Publication Title:
Ecological Modelling
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300/2302
Subjects:
?? FIRE EXTINCTIONFIRE REGIMEFUEL DYNAMICSGLUEVEGETATION DYNAMICSECOLOGICAL MODELLING ??
ID Code:
129635
Deposited By:
Deposited On:
11 Dec 2018 13:28
Refereed?:
Yes
Published?:
Published
Last Modified:
19 Sep 2023 02:04