
Shake Well Before Use: Authentication Based on
Accelerometer Data

Rene Mayrhofer and Hans Gellersen

Lancaster University, Computing Department, South Drive, Lancaster LA1 4WA, UK
{rene,hwg}@comp.lancs.ac.uk

Abstract. Small, mobile devices without user interfaces, such as Blue-
tooth headsets, often need to communicate securely over wireless net-
works. Active attacks can only be prevented by authenticating wireless
communication, which is problematic when devices do not have any a
priori information about each other. We introduce a new method for
device-to-device authentication by shaking devices together. This paper
describes two protocols for combining cryptographic authentication tech-
niques with known methods of accelerometer data analysis to the effect
of generating authenticated, secret keys. The protocols differ in their de-
sign, one being more conservative from a security point of view, while
the other allows more dynamic interactions. Three experiments are used
to optimize and validate our proposed authentication method.

1 Introduction

Applications envisioned for ubiquitous computing build upon spontaneous inter-
action of devices, such that a device can make serendipitous use of the services
provided by peer devices that may not be known a priori. In many scenarios,
it will be desirable to verify and secure spontaneous interactions in order to as-
certain that devices become paired as intended and protected against attacks
on their wireless link. In a managed network environment, device-to-device au-
thentication would be based on prior knowledge of each other or access to a
trusted third party, but neither can be assumed to be available in wireless ad
hoc networks for ubiquitous computing. As a consequence, secure device pairing
requires the user to be in the loop, for example to enter a shared secret such
as a PIN code into both devices. A challenge is to find mechanisms for users to
pair devices that are not only secure but also scale well for use in ubiquitous
computing. Specific challenges are that devices will, in many cases, be too small
to reasonably include key pads and displays, and that required user attention
must be minimal to be acceptable for spontaneous and short-lived interactions.

Pairing of a mobile phone with a headset for interaction over a wireless chan-
nel is a familiar example: we would like to achieve such interaction in a spon-
taneous manner (i.e. not requiring pre-configuration of phone and headset for
each other) but also ensure that it is secure. The wireless communication chan-
nel between the devices is susceptible to attacks ranging from eavesdropping to

A. LaMarca et al. (Eds.): Pervasive 2007, LNCS 4480, pp. 144–161, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Shake Well Before Use: Authentication Based on Accelerometer Data 145

man-in-the-middle (MITM). If an attacker were successful in establishing them-
selves between, in this case, phone and headset, during the pairing process, then
they would obtain complete control over all phone calls. To safeguard against
such attacks, a so-called out-of-band channel is used during pairing in order to
authenticate communication over the primary channel. The out-of-band channel
must be limited such that it is user-controllable that only the intended devices
can communicate over it for the purposes of authentication. Note that authen-
tication and the subsequent pairing can be anonymous or “ephemeral” [1], i.e.
based on information only shared over the out-of-band-channel rather than ac-
tual device identities.

In this paper we contribute a method for device-to-device authentication that
is based on shared movement patterns which a user can simply generate by
shaking devices together. Using embedded accelerometers, devices can recognize
correlation of their movement and use movement patterns for authentication.
From a user perspective, jointly shaking is a simple technique for associating
devices [2]. In our method, it simultaneously serves as out-of-band mechanism.
Shaking has a number of characteristics on which we can build for our purposes:

– It is intuitive. People are familiar with shaking objects as manual interaction
that does not require learning, for instance from shaking of medicine, or
musical instruments. This means that shaking is unobtrusive in the sense
that it does not require the user’s full attention while being performed.

– It is vigorous. While there are many motion patterns that could be per-
formed with two devices, shaking tends to produce the highest continuous
acceleration values. While bouncing will produce larger accelerations, they
only occur as short spikes. Shaking provides acceleration larger than most
activities – and can thus be detected by simple thresholding – for as long as
necessary to pair devices (and as long as the user will not get tired).

– It is varying. As we will show below in our first experiment (in section 7.1),
the activity of shaking can be surprisingly different for different people. We
do not use shaking patterns as identification, but still benefit from large
differences in acceleration values, because this generates high entropy from
an attacker’s point of view.

It is important to note that users do not have to follow a particular pattern of
shaking but that they can shake as they like; we do not attempt to identify people
by their shaking patterns, but use it as a source of shared device movement.

We contribute two protocols that combine cryptographic primitives with ac-
celerometer data analysis to establish secure wireless channels by creating au-
thenticated secret keys. The two protocols achieve this aim differently: the first
is based on Diffie-Hellman key agreement and authentication of this key, uses a
conservative and better known design, provides better security and allows more
flexibility in comparing accelerometer time series; the second generates crypto-
graphic key material directly out of accelerometer data streams, is computation-
ally less expensive and thus easier to implement on resource limited devices, and
allows more dynamic interactions and group authentication.

146 R. Mayrhofer and H. Gellersen

Both protocols use standard techniques of sensor data processing and time
series analysis: sampling, alignment, and feature extraction. After extracting
appropriate features, our cryptographic protocols ensure that authentication is
only possible if both devices have access to the same feature values. Specifi-
cally, they protect against MITM attacks on the wireless communication chan-
nel by using additional information gathered from the extracted features. This
approach is general, so that other sensors than accelerometers can be used with
similar methods, apart from changes in domain-specific heuristics. Sensor-based
authentication offers potential benefits to small, mobile devices that communi-
cate wirelessly and do not have traditional user interfaces. Examples are mobile
phones, smarts cards, key fobs, and generally accessories like headsets, watches,
or glasses.

2 Related Work

First concepts on secure device pairing suggested direct electrical contact [3],
while other suggestions to implement an out-of-band channel include a “physical
interlock” and the “Harmony” protocol [4], ultrasound [5], visual markers and
cameras [6], audio messages [7], the GSM short message service (SMS) [8], key
comparison, distance bounding and integrity codes [9], or manual input [10,1].
The DH-DB protocol proposed in [9] might also be applicable to an interac-
tive challenge-response scheme based on sensor data such as accelerometer data.
These approaches, with the exception of using camera phones, have in common
that they scale poorly from a user point of view. That is, they tend to be ob-
trusive and require the user’s attention. In our approach, we implement a low
bandwidth private channel over similar accelerometer readings, and use it for
authenticating a device pairing.

The idea of shaking two (or multiple) devices together to pair them has first
been described as “Smart-Its Friends” [2]. We use the same interaction technique
but extend it to include secure authentication. Castelluccia and Mutaf presented
a protocol for pairing CPU-constrained wireless devices under the assumption
of anonymous broadcast channels [11]. To achieve this property of source indis-
tinguishability, they argue that devices engaging in this authentication protocol
should be shaken and rotated randomly around each other. This shaking serves
to prevent signal strength analysis, but is, in contrast to our work, not used
directly as input to the authentication protocol. Hinckley presented an imple-
mentation of “synchronous gestures” [12] as a means of user interaction. By
correlating accelerometer time series on devices connected via WLAN, bumping
them together or tilting them can be detected and used as user input. Bumping
is one possible user interaction for starting the pairing process, i.e. a trigger
for our authentication method. Another closely related work was presented by
Lester et al. [13] and describes how to determine if two devices are carried by
the same person.

Shake Well Before Use: Authentication Based on Accelerometer Data 147

3 Design of the Acceleration-Based Pairing Method

Figure 1 shows our architecture for authenticating device pairings with shaking
patterns. Both protocols make use of the same three pre-processing tasks 1 to 3.
They are executed locally on each device and result in “active” time series seg-
ments of equidistant samples. Our two protocols differ in tasks 4 and 5, which
can both be interactive, i.e. communicate with the remote device to which the
pairing is in process.

For protocol 1, tasks 4.1 and 5.1 are actually executed in parallel: after gen-
erating a secret key with standard Diffie-Hellman (DH) key agreement (which is
the first phase of task 5.1), the devices exchange their time series segments via an
interlock protocol. Then they compare their locally generated segment with the
one received from the remote device to check if they are similar enough. If they
pass this check, the second phase of task 5.1 derives the secret session key that
will be used for consecutive secure communication. This design is conservative
from a security point of view and, due to the non-interactive feature extraction
and comparison, allows the devices to use different means of verification. The
disadvantage of splitting task 5.1 into two phases is potentially a larger delay for
authentication, and the disadvantage of using DH is higher computational load.

Protocol 2 executes its tasks 4.2 and 5.2 in order: discrete (in contrast to
the real-valued samples) feature vectors are extracted in task 4.2, which act as
input to the interactive key agreement in task 5.2. This is an iterative process.
In each time step, feature vectors generated by 4.2 are checked for matches in
task 5.2. After sufficient iterations, a secret shared key can be generated out of
the collected matching feature vectors in task 5.2. This design has the advantages
of more dynamic key agreement, with devices being able to “tune into” other
device’s key streams, and of being less computationally expensive. On the other
hand, it does not provide forward secrecy and protection against offline attacks
as protocol 1 does, and is more unconventional and thus less well studied from
a security point of view.

For both protocols, there is a trade-off between usability and security that can
be exploited by applications and users depending on their requirements. Tasks 4
and 5 are described in more detail in sections 5 and 6, respectively.

sensor data
acquisition

temporal

alignment

spatial

alignment

local processing

feature

extraction

key

generation

interactive

authenticated

shared

secret key

remote device

key

generation

feature

extractiontask 1 task 2 task 3

task 4.2 task 5.2

task 4.1 task 5.1

Fig. 1. Architecture for both authentication protocols

148 R. Mayrhofer and H. Gellersen

4 Pre-processing of Accelerometer Data

The three pre-processing tasks, executed as consecutive steps, are used to sample
and segment the sensor data so that feature extraction can build on normalized
time series.

Task 1: Sensor data acquisition. This first task is conceptually straight forward,
but requires careful implementation. Sensor data is assumed to be available in
the form of time series of acceleration values in all three dimensions, sampled at
equidistant time steps. These must be taken locally and not be communicated
wirelessly — for security purposes, it is critical not to leak any of this raw data,
which can be difficult considering the possibility of powerful side-channel attacks
(see e.g. [14]). Our practical experience shows a sample rate between 100 and
600 Hz to be appropriate.

Task 2: Temporal alignment. As the two devices sample accelerometer time
series independently in task 1, we require temporal synchronization for compar-
ison. We assume that devices are equipped with sufficiently accurate real-time
clocks, so that differences in sampling rates and drift will not be issues. This
reduces temporal alignment from an arbitrarily complex problem to triggering
the authentication procedure and to synchronizing the starting points for time
series comparison.

Triggering can be explicit by direct user input, e.g. pressing an “authenticate
now” button on both devices within a short time frame or bumping both devices
against the table or each other, or implicit, simply by starting to shake both
devices. We prefer the second protocol due to its ease of use, although it is more
difficult to implement. Synchronization can be at a sample level, i.e. within less
than half the sample width, or at an event level, i.e. based on the onset of detected
(explicit or implicit) events with the respective device. We use the latter, because
it does not require time synchronization between the devices — shaking events
can be detected locally at each device without communication, which is beneficial
from a security point of view.

For both triggering and synchronization, we detect motion and align those
parts of the time series where shaking is detected, which we call active segments,
by their start times. Segments are considered active when the variance of a sliding
window exceeds a threshold. Practical experiments show good results at a sample
rate between f = [128; 512] Hz with a sliding window of v = f/2 samples, i.e.
1/2 second, and a variance threshold around Tσ = 750.

Task 3: Spatial alignment. Shaking is inherently a three-dimensional movement.
In addition to the need to capture all three dimensions, the alignment between the
two devices is unknown. This means that the three dimensions recorded by the two
devices will not be aligned, which is a hard problem in itself. Lukowicz et al. de-
scribe how to calibrate three-dimensional accelerometers without user interaction
during stable periods [15]. However, since we are interested in the active phases and

Shake Well Before Use: Authentication Based on Accelerometer Data 149

have to assume that the alignment of the devices changes during the transition,1
we can not directly apply this result. Instead, we reduce the three dimensions to a
single: by taking only the magnitude over all normalized dimensions, i.e. the length
of the vector, we solve the alignment problem. This approach requires considerably
less resources than other methods such as principal component analysis (PCA) or
modeling using domain-specific knowledge.

The result of these steps is that, when shaken together, both devices will
extract active segments of one-dimensional acceleration magnitude vectors. Even
without synchronized clocks, the start times of these independent time series are
typically synchronized within a few samples (on the event level).

5 Feature Extraction for Authentication Purposes

Two devices that are shaken together will experience similar, but not exactly
the same movement patterns. Even assuming noise-free sampling of accelera-
tions, the two accelerometers must have physically separate centers. Whenever
rotation is part of the movement, these separate centers will necessarily experi-
ence different accelerations, thus causing different sensor time series even if the
devices remain fixed in relation to each other. The problem of verifying that two
devices are shaken, or more generally, moved together therefore becomes a classi-
fication problem. Figure 2 shows examples of spatially aligned sensor time series
used as input to feature extraction with detected borders of active segments.

0

0.5

1

1.5

2

D
ev

ic
e

1

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

D
ev

ic
e

2

Samples [ms]

(a) Two devices shaken by one person in
the same hand

0

0.5

1

1.5

2

D
ev

ic
e

1

4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

D
ev

ic
e

2

Samples [ms]

(b) Two devices shaken by two people, one
each

Fig. 2. Example time series after spatial alignment with detected active segments

In deciding if time series are similar enough for authentication, the aim of the
feature extraction task is twofold: a) to extract feature values that are robust to
small variations in the shaking patterns and to sampling noise and b) to extract
1 When a user picks up the two devices to shake them, they will most probably be aligned

differently in their hand than they were before picking them up.

150 R. Mayrhofer and H. Gellersen

a sufficiently large feature vector for use in the authentication protocol. In our
approach, the feature vector will be used to authenticate a key or to directly
generate a key, and thus it needs to be of high entropy from an attacker’s point
of view, i.e. involve a large amount of uncertainty.2 As indicated in section 1, we
argue that shaking is an appropriate movement for creating entropy: it creates
varying sensor readings, because it is one of the human movement patterns that
includes the highest frequency components. Slower movements will intuitively
not generate as much entropy.

There is an extensive body of literature on feature extraction from accelerom-
eter data. Particularly relevant to our problem are the described uses of the co-
herence measure by Lester et al. [13] and cross-covariance by Aylward et al. [16].
Both suggest sliding, windowed variances on each device for activity detection,
as used in our current implementation for task 2. Huynh and Schiele compare
different features for activity recognition and suggest the use of quantized FFT
coefficients [17]. For task 4, we select the most promising of the recently sug-
gested features: coherence and quantized FFT coefficients.

5.1 Coherence

We adopt the approach that was previously used by Lester et al. to distinguish
between two devices worn by the same person (on different parts of the body) and
two devices worn by two people walking in-step. They used coherence averages
and showed that simple, non-calibrated, cheap accelerometers are suitable for
analyzing human motion. Coherence is approximated by the magnitude squared
coherence (MSC) as

Cxy (f) =
Pxy (f)

Pxx (f) · Pyy (f)

with (cross-) power spectra

Pxy (f) =
1
n

n−1∑

k=0

xk (f) · ȳk (f)

computed over FFT coefficients xk (f) = FFT (ak (t) · h (t)) and yk (f) =
FFT (bk (t) · h (t)) using the standard von-Hann window h (t) = 1−cos(2πt/w)

2
That is, it is computed as the power spectrum correlation between two signals
split into n (optionally overlapping) averaged slices ak and bk of the signals a
and b, respectively, normalized by the signal power spectra. Note that, although
the signals a and b in time domain are real, their FFT coefficients x and y are
complex. By using squared magnitudes, Cxy is also real-valued. By x̄ we refer to
the conjugate complex of x. Because the significance of coherence values depends
on the number of averaged slices n – the more slices, the lower the coherence

2 The authentication protocol is said to be computationally secure if an attacker’s
entropy of the key approaches the key length, which is typically 128 bits.

Shake Well Before Use: Authentication Based on Accelerometer Data 151

values are for the same signals –, we reduce longer time series to a maximum
length of 3 seconds. This is a compromise between sufficient variability for robust
classification and quick user interaction. The final value is computed simply by
averaging up to a cut-off frequency fmax

Cxy =
1

fmax

∫ fmax

0
Cxy (f) df

With this heuristic, we threshold Cxy to create a binary decision of similarity for
our authentication protocol. As explained below, our experiments have shown
that, with a sampling rate of r = 256 Hz and windows of w = 256 samples with an
overlap of 7/8 and a cut-off frequency of fmax = 40 Hz, coherence provides good
distinction between two devices being shaken by one person from two devices
being shaken by two people, one each.

5.2 Quantized FFT Coefficients

Coherence is a powerful measure of similarity, but, due to its use of continuous
values, does not lend itself to directly creating cryptographic key material out of
its results. Keys must be bit-for-bit equal, and thus be based on discrete instead
of continuous values. By retaining basic features of the coherence measure and
condensing them into discrete feature vectors, we can use those for a different
way of comparing two accelerometer time series. Coherence is based on FFT
coefficients, so it seems logical to quantize them into discrete values.

Huynh and Schiele compared different features with different window sizes
and found that pairwise adding of neighboring FFT coefficients and grouping
into exponential bands performed best in recognizing activities with moderate
to high intensity levels, while other features like pairwise correlation or spectral
energy were worse [17]. They also reported that the highest FFT peaks could
generally be found up to the tenth coefficient, which backs our own findings that
coefficients above 20 Hz do not contribute significantly.

We compared four variants of FFT-based feature vectors: linearly or exponen-
tially quantized coefficients used either directly of added pairwise. Our experi-
ments have shown that pairwise added, exponentially quantized FFT coefficients
performed best, as also suggested in [17]. When aiming for equivalence of feature
vectors, there is however an additional complication: small differences of values
near the boundaries of quantization bands can lead to different feature values,
although the FFT coefficients are only marginally different. Our solution is to
quantize each FFT vector into multiple candidate feature vectors with differ-
ent offsets. These offsets range from 0 to the value of the smallest quantization
band. The similarity criteria in this case is simply the percentage of matching
candidate feature vectors out of all vectors sent to another device. Thresholding
this percentage produces a binary decision for the authentication protocol. We
achieved best results for distinguishing shaking by one person from shaking by
two people, one device each, with b = 6 exponentially scaled bands for quanti-
zation, k = 4 candidates, and a cut-off frequency of fmax = 20 Hz at a sampling
rate of r = 512 Hz with FFT windows of w = 512 samples, overlapping by 50%.

152 R. Mayrhofer and H. Gellersen

6 Authentication Protocols

The two feature vectors generated in task 4 constitute, if equivalent, a shared
secret password. This shared string is not directly suitable to act as a secret key
for cryptographic primitives, because it is neither of defined length (e.g. 128 bits)
nor distributed uniformly. But it is possible to create a cryptographically secure
secret key via interactive protocols, authenticated by the feature vectors.

The choice of features directly influences requirements on the cryptographic
protocols. To compute the coherence measure, both vectors need to be available
completely to both devices.3 Therefore, the time series must be exchanged during
the interactive protocol — in a way that does not reveal them to an attacker.
Our first authentication protocol uses asymmetric cryptography to achieve this.

Feature vectors composed of quantized FFT coefficients, on the other hand, do
not allow for additional differences — authentication should only proceed if both
vectors are bit-for-bit equal. The advantage is that cryptographic key material
can be created using only symmetric cryptography, which is more suitable for
embedded devices.

For the formal descriptions of our protocols, we use the following notation: c =
E(K, m) describes the encryption of plain text m under key K with a symmetric
cipher, m = D(K, c) the corresponding decryption, H(m) describes the hashing
of message m with some secure hash, and m|n the concatenation of strings m
and n. The notation M [a : b] is used to describe the substring of a message M
starting at bit a and ending at bit b. The symbol ⊕ describes bit-wise XOR and
|S| the number of elements in a set S. If a message M is transmitted over an
insecure channel, we denote the received message M̃ to point out that it may
have been modified in transit, by noise or attack. C refers to some publicly known
constant. We use AES as a block cipher for E and D and SHADBL-256 as a secure
hash for H , which is a double execution of the standard SHA-256 message digest
to safeguard against length extension and partial-message collision attacks [18]
and is defined as SHADBL-256 = SHA-256 ((SHA-256 (m)) |m).

6.1 Protocol 1: Diffie-Hellman and Interlock*

Fig. 3 shows our first authentication protocol, which is based on a standard
Diffie-Hellman (DH) key agreement (introduced in their seminal article [19])
followed by an exchange of the condensed time series and comparison locally at
each device.

Using DH key agreement, devices A and B generate two – supposedly – shared
keys KAuth and KSess, where it is impossible to infer one from the other (under
the assumption that the hash function does not allow to find a pre-image).
Creating two keys, one for authentication, one as session key, provides forward
secrecy. Because DH is susceptible to MITM, the devices need to verify that
their keys are equivalent. The unique key property of DH guarantees with a
3 For security reasons, both devices should independently decide if authentication was

successful, and thus both need to compute the coherence.

Shake Well Before Use: Authentication Based on Accelerometer Data 153

A Message B

Choose DH key

x ∈ {1 . . . q − 1} X := gx y ∈ {1 . . . q − 1}
KSess

a :=
�

KSess
b

:=
H(Y x) Y := gy H(Xy)

KAuth
a :=

�
KAuth

b
:=

H(Y x|C) H(Xy |C)

Split and encrypt signal

(i = 0 : n − 1, j = 1 : n): A1 = c0[0 : 63]| . . . |cn[0 : 63] (i = 0 : m − 1, j = 1 : m):
ai := a[128i : 128i + 127]

�
bi := b[128i : 128i + 127]

c0 ∈ {0, ..., 2128 − 1} B1 = d0[0 : 63]| . . . |dm[0 : 63] d0 ∈ {0, ..., 2128 − 1}
cj := E(KAuth

a , cj−1 ⊕ aj−1)
�

dj := E(KAuth
b

, dj−1 ⊕ bj−1)

Interlock and reassemable

(i = 0 : m − 1): A2 = c0[64 : 127]| . . . |cn[64 : 127] (i = 0 : n − 1):
d̃i := B̃1[128i : 128i + 63]|

�
c̃i := Ã1[128i : 128i + 63]|

B̃2[128i : 128i + 63] B2 = d0[64 : 127]| . . . |dn[64 : 127] Ã2[128i : 128i + 63]
b̃i := D(KAuth

a , d̃i+1) ⊕ d̃i
�

ãi := D(KAuth
b

, c̃i+1) ⊕ c̃i
b̃ := b̃0| . . . |b̃m ã := ã0| . . . |ãn

Compare

if a ∼ b̃ if b ∼ ã

then K := KSess
a then K := KSess

b
else K := null else K := null

Fig. 3. Protocol 1: Diffie-Hellman key agreement followed by exchange of the complete
time series via interlock*

very high probability, that, if KAuth
a = KAuth

b , there can be no attacker E with
KAuth

e1 = KAuth
a and KAuth

e2 = KAuth
b , and subsequently, no KSess

e1 = KSess
a and

KSess
e2 = KSess

b .
This verification is done with an extended interlock protocol. Interlock [20] is

not used widely, but is an efficient (in terms of message length) method to verify
that two parties share the same key. By using this key as an input to a block
cipher and splitting packets in halves, a MITM can only decrypt these packets
after having received both halves. The interlock protocol then demands that A
and B will only send their second halves after they have received the first halves
from the respective other side. This has the effect that both sides must commit
themselves to their values, by sending the first halves of the encrypted blocks,
before they can receive, and subsequently decrypt, the other side’s message.
Thus, interlock can be seen as a commitment scheme (see e.g. [21] for a definition)
based on block ciphers. An attacker E is now left with only two options: either
to forward the original packets, or to create packets on its own. In the former
case, A and B will be unable to decrypt the messages properly, because they
do not share the same key. In the latter case, E must guess the contents of the
messages, and encrypt them with the appropriate keys, before it has access to
the actual messages. When the messages sent by A and B have an entropy of
e bits. this leaves E with a single 2−e chance of remaining undetected.

The original version of interlock is suitable for messages the size of the cipher
block length. Because in our case the vectors of the accelerometer sensor data,
condensed into a time series of magnitudes, have arbitrary length, we introduce
a slightly extended protocol that we call interlock*. In this variant, A and B
encrypt their complete messages, i.e. the (zero-padded) vectors a and b with
lengths of n and m blocks, respectively, with any of the well-known block cipher
modes. For our motion authentication protocol, we simply use the cipher block
chaining (CBC) mode with a random initialization vector (IV). The resulting

154 R. Mayrhofer and H. Gellersen

cipher texts c and d with lengths of n + 1 and m + 1 blocks are then split into
two messages by concatenating the first halves of all cipher blocks into the first
messages A1 and B1 and the second halves of all cipher blocks into the second
messages A2 and B2. This ensures that E can not decrypt any of the blocks, and
can therefore not even learn parts of the plain text messages.

After exchanging their messages a and b, A and B verify that a ∼ b, that is,
that they are similar enough under their chosen criteria. We use coherence as
described in section 5, but other suitable features can be used without changes to
the protocol. Because of this possibility, we do not try to minimize the message
lengths as e.g. suggested in [13]. In fact, A and B could use completely different
similarity criteria, and could still authenticate using the same protocol. This is
important for practical implementations, because different generations of devices
will need to be compatible with each other.

The MANA III scheme described in [10] serves a similar purpose as this pro-
tocol, but using different cryptographic primitives. While we employ a block
cipher, the MANA III scheme uses a MAC. Both constructions build on a mu-
tual commitment to an authenticator string before transmitting parts of it.

6.2 Protocol 2: Candidate Key Protocol

In our second protocol, which we call the candidate key protocol (CKP), the
shared secret key is generated from sensor data instead of by DH. As depicted
in Fig. 4, feature vectors v are hashed to generate candidate key parts h. If the
feature extraction task produces multiple “parallel” feature vectors vi for each
time window, as suggested above in section 5, then these yield multiple candidate

A Message B

s
ra
a ∈ {0, . . . , 2128 − 1} C

ra
a :=< ra, s

ra
a , h1

a, h2
a, . . . > s

rb
b

∈ {0, . . . , 2128 − 1}

For each vector vi
a:

�
For each vector v

j
b
:

hi
a := H(sa|vi

a) C
rb
b

:=< rb, s
rb
b

, h1
b

, h2
b

, . . . > h
j
b

:= H(sb|vj
b
)

add < ra, vi
a > to LHa

�
add < rb, v

j
b

> to LHb
ra := ra + 1 rb := rb + 1

For each hash h̃
j
b
: For each hash h̃i

a:

if ∃ < r̂a, v̂i
a >∈ LHa if ∃ < r̂b, v̂

j
b

>∈ LHb

s.t. h̃
j
b

= H(s̃
rb
b

|v̂i
a) s.t. h̃i

a = H(s̃ra
a |v̂j

b
)

then add < r̂a, v̂i
a > to MCa,b then add < r̂b, v̂

j
b

> to MCb,a

if |MCa,b| >= Na Ka :=< Na, s
ra
a , kha > if |MCb,a| >= Nb

then kha := H(sra
a |lastNa

(MCa,b))
�

then khb := H(s
rb
b

|lastNb
(MCb,a))

and ka := H(sra
a |lastNa

(MCa,b)|C) Kb :=< Nb, s
rb
b

, khb > and kb := H(s
rb
b

|lastNb
(MCb,a)|C)�

if ∃ĉa ⊆ MCa,b ACK khb if ∃ĉb ⊆ MCb,a

s.t. H(s̃
rb
b

|ĉa) =�khb
�

s.t. H(s̃ra
a |ĉb) =�kha

then k′
b

:= H(s̃
rb
b

|ĉa|C) ACK kha then k′
a := H(s̃ra

a |ĉb|C)�
if ka is not set k := k′

b
if kb is not set k := k′

a
if k′

b
is not set k := ka if k′

a is not set k := kb

if kha =�khb if khb =�kha
then k := ka then k := kb
else k := ka ⊕ k′

b
else k := kb ⊕ k′

a

Fig. 4. Protocol 2: candidate key protocol for directly creating a secret key from com-
mon feature vector hashes

Shake Well Before Use: Authentication Based on Accelerometer Data 155

key parts hi. The one-way hashes are a simple way to communicate that a device
has generated a certain feature vector without revealing it. To make dictionary
attacks harder, we use the standard method of prepending random salt values s
before hashing. When B receives such candidate key parts from A, it can check its
own history of recently generated feature vectors LH to check for equals. When
B has generated the same feature vector, it is stored in a list of matching key
parts MC specific to each communication partner. As soon as enough entropy
has been collected in this list, B concatenates all feature vectors, appends C,
hashes the resulting string, and sends a candidate key K to A. If no messages
have been lost in transit, A should be able to generate a key with the same hash,
and thus the same secret key, which it acknowledges to B. If messages have been
lost, A can simply ignore a candidate key and create its own later on.

CKP is again a general protocol and can be used with any feature vectors.
Here we apply it to quantized FFT coefficients, which work well for accelerometer
data. A more thorough analysis of CKP itself will be provided separately.

7 Experimental Evaluation

We conducted three experiments, two to optimize parameters for the feature
extraction tasks described in section 5, and one to validate our assumption of
ease of use. All three experiments used four simple ADXL202JE accelerometers,
two on each device, mounted at an angle of 90◦ so that all three dimensions could
be measured with a maximum acceleration of 2 g. The accelerometers are fixed
with compressed foam inside ping-pong balls (see Fig 5), and sampled at roughly
600 Hz. By choosing balls as “device” shapes and orienting the accelerometers
randomly inside the balls, each data set has different orientations. The subjects
were also asked to pick the devices up at the start of each sample, so that
orientations change between samples. Although the accelerometers were wired
to enable higher sampling rates, the attached cables were lightweight, flexible,
and long enough so as not to disturb movements of subjects.

Fig. 5. Experimental setup: devices with accelerometers and subject during data col-
lection

156 R. Mayrhofer and H. Gellersen

7.1 Experiment 1: Single Subjects Data Collection

The first experiment was explorative and aimed to discover how people typically
shake small, lightweight objects. 51 people, 19 female aged between 20 and 55,
32 male aged between 20 and 58, of different professions, including cafeteria staff
and other non-office workers, were asked to shake both ping-pong balls, explicitly
without further instructions. For each subject, 30 samples of roughly 5 seconds
were taken: 5 each with both balls in the left, both in the right hand, one ball in
each hand, and while either standing or sitting. This extensive data set of 1530
samples shows surprisingly large differences in style, frequency, and vigor of the
shaking patterns. Samples with both balls in one hand serve as our “positive”
data set where authentication should be successful. The cases where one ball
was shaken in each hand are “neutral”: because a single person is performing the
motion, authentication could, but does not have to succeed.

7.2 Experiment 2: Pairs Trying to “hack” Authentication

The second experiment served to establish our “negative” data set of cases where
authentication should not be successful. It was organized as a competition with
a small prize to motivate participants to try harder. The goal was for a pair
of subjects to produce shaking patterns as similar as possible to each other.
8 different pairs contributed 8 complete data sets of 20 samples each and 4
incomplete sets with less samples: 5 samples each for both subjects using their
left hands, both their right, one subject left, the other right, and vice versa. Each
sample has roughly 15 seconds, because some time was allowed for starting the
motion and synchronization. For more flexibility in moving together, the pairs
were only standing but not sitting. Immediate feedback after each sample was
provided to the pairs in the form of the similarity values for both protocols, so
that they could adapt their shaking patterns appropriately for highest values.

Data from these two experiments was used to find parameters for detecting
active segments for the temporal alignment task, and to optimize parameter
combinations for the feature extraction task. The parameters for feature extrac-
tion reported in section 5 have been found by a full parameter search using
this extensive data set. For coherence, we use the parameter combination that
generates the maximum difference of coherence averages between all positive
and negative samples. Due to the larger parameter search space with higher
dimensionality, for the second protocol we use the combination that minimizes
4eP + eN . eP is the percentage of false positives, i.e. the number of successful
authentications for pairs, and eN is the percentage of false negatives, i.e. the
number of authentication errors for both balls shaken in one hand. That is, false
positives were weighted higher than false negatives. The values listed above in
the respective sections produced optimal results on this data set. An explorative
analysis of the results depending on these parameters shows that most of them
are robust w.r.t. the difference in coherence averages. This suggests that even
with suboptimal parameter combinations, which may be the case when using
these values with different data sets, results should not deteriorate significantly.

Shake Well Before Use: Authentication Based on Accelerometer Data 157

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coherence threshold

P
ro

po
rt

io
n

of
 fa

ls
e

po
si

tiv
es

/fa
ls

e
ne

ga
tiv

es

false positives (two subjects, but above threshold)
false negatives (one subject, but below threshold)

(a) Protocol 1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Matching feature vectors threshold

P
ro

po
rt

io
n

of
 fa

ls
e

po
si

tiv
es

/fa
ls

e
ne

ga
tiv

es

false positives (two subjects, but above threshold)
false negatives (one subject, but below threshold)

(b) Protocol 2

Fig. 6. Thresholds for coherence and the number of matching FFT slices control the
trade-off between false positives and false negatives w.r.t. all positive/negative samples

Figure 6 shows the trade-off between false positives and false negatives, de-
pending on the thresholds. Unsurprisingly, the percentage of false positives de-
creases with increasing thresholds for both protocols. For protocol 1, shown in
Fig. 6a, false negatives begin to increase noticeably at a threshold of around 0.6,
while for protocol 2, shown in Fig. 6b, they remain nearly constant. The thresh-
old, either for coherence or for the percentage of matching candidate feature
vectors, can be set by the application, or possibly even by the user. From a secu-
rity point of view, we obviously prefer to restrict the number of false positives to
zero. With a coherence threshold of 0.72 and a threshold of 84% matching parts,
we achieve false negatives rates of 10.24% and 11.96%, respectively, with no
false positives. These false negatives are sufficiently low to provide user friendly
interaction, as also shown by our third experiment. The feedback of a failed
authentication is immediate, and users just need to shake the devices again.

There is room for improving the results for our first protocol using coherence.
As explained in section 5, we only use 3 seconds for comparing the time series.
If active segments are longer than this, we can choose freely which parts to
use. Figure 7 shows the average coherence values for our “negative” data sets,
depending on the offset of the compared time series parts. Number 1 corresponds
to the first 3 seconds, number 2 to the time series between 3 and 6 seconds, etc.
The graph shows that two people tend to loose synchronization the longer the
common movement needs to be sustained. We could exploit this fact by skipping
the first few seconds and comparing later parts, at the expense of forcing users
to shake devices longer. The results given above were generated by taking the
beginning of the active segments, and thus with the most difficult parts.

Data from the first experiment was also used to estimate the entropy of fea-
ture vectors used for our second protocol. Using the parameters found with the
first two data sets but 256 Hz instead of 512 Hz sample rate, quantized FFT
coefficient vectors were computed over all 1530 samples. This parameter combi-
nation generates feature vectors of 21 discrete values from 0 to 5. Each subject

158 R. Mayrhofer and H. Gellersen

1 2 3 4 5
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Offset in 3 seconds increments

A
ve

ra
ge

 c
oh

er
en

ce
 v

al
ue

s

Fig. 7. Average coherence values depending on the segment offset show that people tend
to synchronize their movements better at the beginning of their coordinated motions

generated on average 526.86 different feature vectors, with a minimum of 140 and
a maximum of 1037. Aggregated over all subjects, there were 5595 different vec-
tors for the left hands, 4883 for the right, and 7988 and 7770 for device 1 and 2,
respectively. Overall, 12220 different feature vectors were generated during the
first experiment, corresponding to an entropy of 13.58 bits per feature vector. If
we assume an attacker to know which device, person, and hand are involved in
a protocol run, this entropy decreases to around 7 to 10 bits, depending on the
person. Overlapping feature vectors will have even less entropy, but we can still
assume to generate at least 7 bits entropy per second using our second protocol.

7.3 Experiment 3: Single Subjects Live Usability Validation

The third experiment was run in “live” mode instead of data collection with batch
processing, and used the same parameters. 30 subjects were asked to shake both
devices in their dominant hand, with the aim of achieving successful authen-
tication for both protocols. A simple GUI showed the status of both devices
(active/quiescent) and the similarity values for both protocols, with green back-
ground if it was higher than the respective threshold and red for lower values.
Subjects were asked to read a short list of tips for improving the similarity values
(to align the devices roughly along the movement axis, to keep the wrist stiff,
to shake quickly and vigorously, and to keep the elbow steady) and then to use
interactive trial&error for achieving successful authentication. 8 of the subjects
could immediately and reproducibly achieve this for both protocols starting with
their first try, 8 subjects after at most 5, and 2 subjects after at most 10 tries.
The remaining 12 subjects had more difficulty, but 7 could reproducibly achieve
authentication after being shown once how others did it, and then within at
most 3 further tries. 5 subjects only achieved authentication with either of the
protocols, but not with both at the same time. This experiment shows that,
even though the average rate of false negatives is low for the extensive data set
from the first experiment, some people have more trouble to generate strong
but similar movement patterns than others. Nonetheless, it also shows that the

Shake Well Before Use: Authentication Based on Accelerometer Data 159

method is easy enough to learn within a few minutes from printed instructions
and trial&error, and that it can be used intuitively after this brief learning pe-
riod. The fact that a few subjects performed significantly better after being
shown suggests that the printed instructions need to be improved.

8 Conclusions

We have proposed two protocols for authentication based on accelerometer data
that generate secret keys between two devices when they are shaken together.
Although using similar techniques for accelerometer data analysis, it is evident
that the protocols achieve their aim very differently, from a security as well
as from a protocol point of view. We consider the first protocol more secure,
but the second to be more scalable. That is, if a large number of devices are
in range of the wireless network, a device using protocol 1 may need to run
Diffie-Hellman key agreement with a considerable number of other devices to
find that which it is shaken together with. For the second protocol, it only needs
to broadcast its candidate key parts stream, and the matching device can “tune
in”, i.e. synchronize, to this key stream. On the other hand, the security level of
our CKP-based protocol 2 is limited to the entropy of the feature vectors, and is
susceptible to offline attacks. When (pessimistically) estimating the entropy rate
at around 7 bits per second, 20 seconds of shaking should be sufficient to achieve
a security level of 128 bits. Users or applications may choose lower security levels.

Another potential issue in terms of security of protocol 2 is that secure hash
functions, the cornerstone of our design, have been subjected to considerably
less theoretical analysis than the DH construction or block ciphers which are
used in protocol 1. New attacks on hash functions are being discovered [22],
although the SHA-256 family of hashes, including the even more conservative
SHADBL-256, is still considered secure. Additionally, protocol 1 utilizes these
well-studied cryptographic primitives within a conservative design. An attacker
has a one-off chance for an online attack – to guess the whole time series –
and is thus significantly less likely to be successful than an offline attack on
protocol 2. Although we can not currently quantify the security level against
such unlikely online attacks, the security level of protocol 1 against offline attacks
is 128 bits even after only 3 seconds of shaking (assuming DH to be secure). By
introducing two protocols with different design, application developers can decide
on this well-known trade-off between security and performance according to their
requirements. Protocol 2 offers benefits for devices with limited resources, large
wireless networks, and quick interaction, while we recommend using protocol 1
for higher security demands.

Feature extraction and cryptographic protocols are mostly independent of
each other. Improvements in feature extraction to generate higher entropy and/or
be more robust against off-center rotational effects in the movements can be
used without modifying the cryptographic protocols, with the potential to sig-
nificantly increase the entropy rate and thus decrease shaking time. For proto-
col 1, such improvements can even be distributed independently while remaining

160 R. Mayrhofer and H. Gellersen

compatible to older devices. We note that our cryptographic protocols are also
suitable for use with other types of sensors, while pre-processing and feature
extraction tasks would most likely need to be modified.

Potential applications for our pairing protocols are manifold; coupling a mo-
bile phone with a Bluetooth headset, establishing a transient secure connection
between two smart cards for exchanging digital money, or passing access rights
between key chains are prominent examples. 3D accelerometers are now being
embedded into off-the-shelf mobile devices like the “Nokia 5550 Sport” and can
immediately be used for authentication with our protocols. In our experiments
described in section 7, we intentionally used simple, cheap accelerometers that
are suitable for mass deployment.

The user interaction for authenticating devices is limited to just shaking them
together for a few seconds, and is thus unobtrusive. By combining the explicit
user interaction – taking two devices into one hand and shaking them as an
indication that they should pair – with implicit authentication, we limit the
burden placed on users. Connections are secured by default, not only as an
option.

Full source code of our implementation including a demonstration application
as well as our data sets are available as open source at http://www.openuat.org.

Acknowledgments

We gratefully acknowledge support by the Commission of the European Union
under the FP6 Marie Curie Intra-European Fellowship program contract MEIF-
CT-2006-042194 “CAPER”, and especially thank Kristof van Laerhoven for in-
sightful discussions on analyzing accelerometer data and providing sensor boards.

References

1. Hoepman, J.H.: The emphemeral pairing problem. In: Proc. 8th Int. Conf. Finan-
cial Cryptography, Springer-Verlag (2004) 212–226

2. Holmquist, L.E., Mattern, F., Schiele, B., A., P., Beigl, M., Gellersen, H.W.: Smart-
its friends: A technique for users to easily establish connections between smart
artefacts. In: Proc. UbiComp 2001, Springer-Verlag (2001) 116–122

3. Stajano, F., Anderson, R.: The resurrecting duckling: Security issues for ad-hoc
wireless networks. In: Proc. 7th Int. Workshop on Security Protocols, Springer-
Verlag (1999) 172–194

4. Kindberg, T., Zhang, K., Im, S.H.: Evidently secure device associations. Technical
Report HPL-2005-40, HP Laboratories Bristol (2005)

5. Kindberg, T., Zhang, K.: Validating and securing spontaneous associations between
wireless devices. In: Proc. ISC’03: 6th Information Security Conf., Springer-Verlag
(2003) 44–53

6. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones
for human-verifiable authentication. In: Proc. IEEE Symp. on Security and Privacy,
IEEE CS Press (2005) 110–124

7. Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: Loud and clear:
Human verifiable authentication based on audio. In: Proc. ICDCS 2006: 26th Conf.
on Distributed Computing Systems, IEEE CS Press (2006) 10

http://www.openuat.org

Shake Well Before Use: Authentication Based on Accelerometer Data 161

8. Nicholson, A.J., Smith, I.E., Hughes, J., Noble, B.D.: LoKey: Leveraging the sms
network in decentralized, end-to-end trust establishment. In: Proc. Pervasive 2006,
Springer-Verlag (2006) 202–219

9. Čagalj, M., Čapkun, S., Hubaux, J.P.: Key agreement in peer-to-peer wireless
networks. IEEE (Special Issue on Cryptography and Security) 94 (2006) 467–478

10. Gehrmann, C., Mitchell, C.J., Nyberg, K.: Manual authentication for wireless
devices. RSA Cryptobytes 7 (2004) 29–37

11. Castelluccia, C., Mutaf, P.: Shake them up! In: Proc. MobiSys 2005: 3rd Int. Conf.
on Mobile Systems, Applications, and Services, ACM Press (2005) 51–64

12. Hinckley, K.: Synchronous gestures for multiple persons and computers. In: Proc.
UIST ’03: 16th ACM Symp. on User Interface Software and Technology, ACM
Press (2003) 149–158

13. Lester, J., Hannaford, B., Borriello, G.: “Are you with me?” – Using accelerometers
to determine if two devices are carried by the same person. In: Proc. Pervasive
2004, Springer-Verlag (2004) 33–50

14. Batina, L., Mentens, N., Verbauwhede, I.: Side-channel issues for designing secure
hardware implementations. In: Proc. IOLTS: IEEE Online Testing Symp. (2005)

15. Lukowicz, P., Junker, H., Tröster, G.: Automatic calibration of body worn accel-
eration sensors. In: Proc. Pervasive 2004, Springer-Verlag (2004) 176–181

16. Aylward, R., Lovell, S.D., Paradiso, J.A.: A compact, wireless, wearable sensor
network for interactive dance ensembles. In: Proc. BSN 2006: Int. Workshop on
Wearable and Implantable Body Sensor Networks, IEEE CS Press (2006) 65–68

17. Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proc. Soc-
EUSAI 2005. ACM Int. Conf. Proceeding Series, ACM Press (2005) 159–163

18. Ferguson, N., Schneier, B.: Practical Cryptography. Wiley Publishing (2003)
19. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Infor-

mation Theory IT-22 (1976) 644–654
20. Rivest, R.L., Shamir, A.: How to expose an eavesdropper. Commununications of

ACM 27 (1984) 393–394
21. Vaudenay, S.: Secure communications over insecure channels based on short au-

thenticated strings. In: Proc. CRYPTO 2005, Springer-Verlag (2005)
22. Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA-1. In: Proc. CRYPTO

2005, Springer-Verlag (2005)

	Introduction
	Related Work
	Design of the Acceleration-Based Pairing Method
	Pre-processing of Accelerometer Data
	Feature Extraction for Authentication Purposes
	Coherence
	Quantized FFT Coefficients

	Authentication Protocols
	Protocol 1: Diffie-Hellman and Interlock*
	Protocol 2: Candidate Key Protocol

	Experimental Evaluation
	Experiment 1: Single Subjects Data Collection
	Experiment 2: Pairs Trying to ``hack'' Authentication
	Experiment 3: Single Subjects Live Usability Validation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

