
 

  
Abstract—we have analysed unidirectional delay traces of a di-

verse set of IPv6 microflows routed over W-LAN and W-WAN 
environments. Using a number of time-domain and frequency-
domain estimators we have examined the existence and intensity of 
long-range dependence in packet delay when viewed as time-series 
data. The correlation structures of packet delay on bulk TCP data 
path and UDP flows follow asymptotic decay while Hurst exponent 
estimates suggest from moderate to strong intensity ( 1)H → . 
 

Index Terms—Long-range dependence, unidirectional delay, 
ACF, Hurst exponent 

I. INTRODUCTION 
Fractal analysis focuses on the temporal and spatial evolution 

properties of data series and on their correlation structure. One 
of the properties of fractal series is self-similarity. A stochastic 
process is self-similar (statistically fractal in nature) when the 
statistical properties of segments within the corresponding time 
series are similar, irrespective of the time scale of observation. 
A characteristic of self-similar processes is that they exhibit 
long memory, or Long-Range Dependence (LRD), signifying 
that their current state has significant influence on their subse-
quent states far into the future. Consequently, values at a par-
ticular time are related not just to immediately preceding values, 
but also to fluctuations in the remote past. Hence, high variabil-
ity on the behaviour of self-similar processes is preserved over 
multiple time scales. 

During the last decade, pioneering work has demonstrated the 
presence of LRD and self-similarity in various facets of (in-
ter)network behaviour (e.g. [9][13][4]), and immensely influ-
enced research mainly on network and traffic modelling, design 
and performance evaluation. However, the bulk of the work has 
focused on the “burstiness” preservation characteristics (their 
causes and implications) of long-term aggregate traffic origi-
nated at or destined to a single point of the network. The pres-
ence (or otherwise) of self-similar behaviour and LRD has not 
been investigated for long-lived microflow performance proper-
ties at a finer level of granularity, partly due to the absence of 
appropriate instrumentation mechanisms. The ability to charac-
terise the long-term behaviour of intraflow performance metrics 
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such as one-way delay is important, since not only it exposes 
the variability properties and burstiness preservation in the per-
formance between segments of the same flow for modelling 
purposes, it also provides valuable insights for resource man-
agement and traffic control algorithms which assume radically 
different enforcement between the per-flow and aggregate 
modes of operation. End-system application and transport soft-
ware can also take such burstiness preservation properties into 
consideration when enforcing transmission and system-local 
resource control optimisations, especially while operating over 
media with known high delay variability such as IEEE 802.11 
[7] and GPRS [3]. Performance measurement systems can take 
advantage of scale-invariance properties in reducing their intru-
siveness through employment of adequately engineered sam-
pling mechanisms. 

In this paper we have employed four LRD estimators [16] to 
investigate the presence and the intensity of LRD in unidirec-
tional packet delay experienced by a diverse set of IPv6 traffic 
flows as these were routed over two different wireless network 
technologies. The main contribution of this paper is twofold. 
First, evidence of LRD existence in unidirectional delay is pre-
sented for certain IPv6 flow types, as this is manifested by the 
four estimators and verified by the power-law decay of the cor-
relation structure (ACF) of the corresponding time series. Sec-
ond, the relevance between the LRD values produced by each 
estimator, as well as between estimator-based LRD manifesta-
tion and actual LRD existence is empirically evaluated. 

In section II we provide the mathematical formulation of 
LRD and a very brief description of the LRD estimators used 
for this study. The measurement methodology and the calibra-
tion mechanisms employed in order to avoid known LRD esti-
mation pitfalls are documented in section III. Section IV dis-
cusses the presence and intensity of LRD in the unidirectional 
delay experienced over the two wireless networks. Finally, sec-
tion V concludes the paper. 

II. LONG-RANGE DEPENDENCE: PHENOMENON AND 
ESTIMATORS 

Long-Range Dependence (LRD) is a property that describes 
the memory of a process. A stationary process tX  has a long 
memory or is long-range dependent if there exists a real number 

(0,1)β ∈  and a constant 0cρ >  such that 

 ( )lim /[ ] 1
k

k c k β
ρρ −

→∞
=  

where ( )kρ are the sample correlations [1]. Hence, the autocor-
relation function of LRD processes not only decays hyperboli-
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cally as the lag k increases, it is also non-summable, i.e. 

1
( )

k
kρ∞

=
= ∞∑ , implying that, the individually small high-

lag correlations have an important cumulative effect. This is in 
contrast to conventional short-range dependent processes which 
are characterised by an exponential decay of the autocorrela-
tions. The intensity of LRD is measured by the Hurst parameter 

1 / 2,  0.5 1.H Hβ= − < <  LRD implies asymptotic second-
order self-similarity -and vice versa-, which describes the prop-
erty that the correlation structure of a time series is asymptoti-
cally preserved irrespective of time aggregation [12]. A station-
ary process tX  is asymptotically second order self-similar with 
Hurst parameter H if 
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A number of estimators [16][9] have been extensively used 
for LRD detection and quantification by estimating the value of 
the Hurst exponent; as 1H → the dependence is stronger. They 
are classified in time-domain and frequency-domain estimators, 
depending on the methodology they employ to estimate H. 
Time-domain estimators investigate the evolution of a statistical 
property of the time series at different time-aggregation levels. 
Frequency-domain estimators focus on the behaviour of the 
power spectral density of the time series. 

In this paper, we have employed four most commonly used 
LRD estimators, two from each domain. The aggregated vari-
ance method examines the decay of the variance at increasing 
time aggregation levels. For LRD time series decays more 
slowly than the reciprocal of the sample size. The rescaled ad-
justed range (R/S) method examines the growth in the rescaled 
range of partial sums of deviations of the time series from its 
mean, as a function of the number of points in the time-
aggregated series. For LRD series, the R/S statistic grows ac-
cording to a power law with exponent H. The periodogram 
method is based on the discrete Fourier transform and is an es-
timate of the power spectral density of a discrete process, which 
should exhibit power-law behaviour for frequencies close to the 
origin. The Whittle estimator is a maximum likelihood type es-
timate which is applied to the periodogram of the time series.  

LRD estimators evaluate different statistics of the time series 
to estimate the Hurst exponent and hence their estimates can 
vary even in synthesised self-similar processes with known 
Hurst exponent value. The accuracy and robustness of the esti-
mators can be influenced by processes such as periodicity, 
trend, time series’ length and short-range correlations which 
have different effects on different estimators [10][2][8][5] and 
can lead to erroneous estimation of the LRD intensity or even to 
reporting LRD on non-LRD series. No single LRD estimator 
has been proved to produce more accurate estimates than the 
rest. Frequency-based estimators are considered more accurate 
when applied to series which have already been shown to be 
LRD by some other (time-domain) estimator. Hence, intuitive 
data inspection and pre-processing, as well as the simultaneous 
employment of a mixture of time and frequency-domain estima-
tors to assess LRD behaviour need to be considered.   

III. MEASUREMENT METHODOLOGY 
In-line measurement [14] has been employed to instrument a 

representative set of IPv6 traffic flows as these were routed over 
wireless LAN (IEEE 802.11b) and WAN (Orange, UK 
GPRS/GSM) topologies during different hours of the day and 
different days of the week, in November 2005 [15]. Instru-
mented traffic consisted of moderate-size bulk TCP transfers 
and CBR UDP video streaming flows. End-to-end unidirec-
tional delay has been measured using the appropriate in-line 
measurement Type-Length-Value (TLV) encoded structures to 
piggyback 32-bit Linux kernel timestamps within an IPv6 desti-
nation options extension header. Unidirectional packet delay 
has been measured as the difference D = TB – TA between the 
packet’s arrival time (TB) at the destination node’s OS kernel 
and the departure time (TA) before it was serialised at the source 
node’s NIC. 

A. Measurement calibration, data inspection and pre-
processing 

The two end-systems synchronised using the Network Time 
Protocol (NTP) with a common stratum 1 server through addi-
tional high-speed wired network interfaces, in order to avoid 
NTP messages competing with the instrumented traffic over the 
bottleneck wireless links. The NTP daemon was allowed suffi-
cient time to synchronise prior to the experiments until it 
reached a large polling interval. The offset reported by NTP was 
always at least one order of magnitude smaller with respect to 
the minimum one-way delay observed. All the delay traces were 
empirically examined against negative values as well as against 
linear alterations (trend) of the minimum delay over time. None 
of these offset/skew-related phenomena were experienced [11]. 

Delay measurements were taken upon arrival of each packet 
to its destination, hence at irregular time instants. In order to 
covert the traces to time series data, they were discretised into 
equally-sized bins based on the packet arrival time. Unidirec-
tional delays of multiple packets arriving within each bin were 
averaged, and the mean delay was considered for the particular 
bin. Although this process inevitably smooths out short-term 
variations in packet delay, bin size was carefully selected for 
each flow to contain as few packets as possible, while at the 
same time avoiding empty bins. The time series’ lengths varied 
from 29 to 212 which has been reported sufficient for Hurst ex-
ponent estimates with less than 0.05 bias and standard deviation 
[2]. Periodicity and short-term correlations in the time series 
have been removed by employing the randomised buckets 
method [6][8] to perform internal randomisation on the signal. 

  
 

 
Figure 1: Randomised buckets with internal randomisation. Items are random-
ised within the same fixed-size bucket, but not across bucket boundaries. Classi-
fication depends on the fixed bucket boundaries, not just the separation between 
two items in the time series. 
 



 

This involves partitioning the time series into a set of buckets 
of the same size and randomising the contents of each bucket, 
while the order of the buckets remains unchanged (Figure 1). 
Hence, correlations among inbucket pairs are equalised while 
correlations among outbucket pairs are preserved. Figure 2 
shows how LRD is preserved after internal bucket randomisa-
tion. 
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Figure 2: Autocorrelation function (ACF) for the delay time series of the TCP 
data path over W-LAN after internal bucket randomization for different bucket 
sizes. Bucket size 1 represents the unrandomised series. It can be seen that in-
creasing the bucket size lowers and flatters the ACF for small values of the lag, 
however, for larger lag values the ACF is preserved. 
 

IV. ON THE PRESENCE AND INTENSITY OF LONG-RANGE 
DEPENDENCE IN UNIDIRECTIONAL DELAY TIME SERIES DATA 
The four LRD/Hurst exponent estimators have been applied 

to the unidirectional delay time series data collected over the 
two diverse wireless network technologies. The aggregated 
variance, the R/S and the periodogram are graphical estimation 
methods; an example of their output is shown in Figure 3. Whit-
tle estimator, on the other hand, does not produce a graphical 
output, but it allows for the computation of a confidence inter-
val for the Hurst exponent estimation. Whittle assumes a priori 
consistency of the data set with a specific process. Hence, for 
Hurst estimation purposes, it is advised that it is not used for 
LRD detection. Rather, it should be used to estimate the inten-
sity of the phenomenon in time series that have already been 
shown to be LRD [9]. 

Flows have been classified into three types, bulk TCP data, 
TCP reverse, and UDP. There have been more similarities in the 
correlation structure (ACF) of the unidirectional delay time se-
ries between flows of the same type than between flows routed 
over the same wireless technology. Table 1 shows estimated H 
values produced by the four estimators for flows falling under 
each type for the two different wireless networks. It is worth 
highlighting that on a first sight the three detection estimators 
all report (even a slight, in some cases) existence of LRD on the 
delays of all traffic flows. Between the two time-domain estima-
tors, the R/S method produces in general more conservative 
Hurst exponent estimates than the aggregated variance method. 
Two exceptions in this trend concern the unidirectional delays 

of the TCP reverse path over the 802.11b network and the UDP 
streaming flow over the GPRS/GSM network. The strongest 
LRD (~1) has been reported by the periodogram estimator for 
the TCP data path over the W-LAN and for the UDP flows over 
both wireless networks. After LRD detection, the Whittle esti-
mator was employed to quantify LRD intensity and produce 
95% Confidence Intervals (C.I.)s. With the single exception of 
the UDP flow streamed over the W-WAN in which the C.I. is 
relatively large, Whittle reports the most conservative LRD in-
tensity estimates than all the other methods.  

 
TABLE 1: HURST EXPONENT ESTIMATES  

Microflow 

Aggregated Variance 
 

Normal / Oversam-
pling 

R/S 
 

Normal / 
Oversampling 

Periodogram 
Whittle  

 
[95% C.I.] 

TCP data path 
[W-LAN] 0.875 / 0.840 0.815 / 0.792 0.948 0.739 

[0.726-0.751] 
TCP data path 

[W-WAN] 0.817 / 0.721 0.732 / 0.750 0.745 0.599 
[0.527-0.672] 

TCP reverse path 
[W-LAN] 0.591 / 0.532 0.688 / 0.764 0.592 0.552 

[0.549-0.556] 
TCP reverse path 

[W-WAN] 0.665 / 0.530 0.566 / 0.705 0.619 0.528 
[0.521-0.535] 

CBR UDP @1Mb/s 
[W-LAN] 0.909 / 0.865 0.719 / 0.781 0.976 0.687 

[0.685-0.688] 

CBR UDP @20Kb/s 
[W-WAN] 0.666 / 0.665 0.901 / 0.879 0.957 0.742 

[0.644-0.840] 

 
In order to further refine time-domain LRD estimators by in-

creasing the number of samples at large time-aggregated scales, 
we have employed oversampling with digital low-pass filtering 
on the delay time series and re-estimated LRD using the aggre-
gated variance and the R/S methods [8]. The original time series 
was decomposed down to D interleaved sub-series in round-
robin ordering. Each sub-series was expanded using D-times 
oversampling via duplicate insertion, and then smoothed using a 
Gaussian filter. The expanded and smoothed sub-series were 
then separately processed with the aggregated variance and R/S 
methods, and the results were averaged. The resulting Hurst 
exponent estimates are shown in the relevant entries of Table 1. 
For the aggregated variance method, oversampling resulted in 
more conservative H estimates with respect to when applied at 
the original series for all flows. Oversampling had a less deter-
ministic effect on the R/S method, resulting in either lower or 
higher LRD intensity estimates for different flows. 

A number of studies have examined the accuracy of LRD es-
timators for more refined data analysis to suggest that they often 
overestimate or underestimate the value of the Hurst exponent 
under different circumstances [1][2][5][8][10]. After inspecting 
the correlation structures (ACF) of the delay time series for the 
different flows, it appears that LRD is unlikely to be present in 
the packet delay of the TCP reverse (ack) path flows over both 
wireless networks, for which the majority of the estimators re-
port small H values (<0.65). Figure 4 shows that their ACFs 
eventually fall within the 95% C.I. of zero. Absence of such 
correlations implies a link between LRD behaviour and packet 
size, since ack packets are triggered by data packets. For the rest 
of the studied flows over both wireless networks, the correlation 
structures of their unidirectional delay time series followed as-
ymptotic power-law behaviour, visually similar to the one 
shown in Figure 2 for TCP the data path over W-LAN. 
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Figure 3: The three graphical LRD estimation methods applied to the unidirectional delay time series of a TCP data flow over 802.11b. (Left): The aggregated vari-
ance method plots the normalised variance over the time aggregation level on a log-log scale. The slope of the linear regression of the data points is 2 2.Hβ = −  
For LRD, 1 0β− ≤ ≤ should hold. (Middle): The rescaled range method plots the R/S statistic versus the number of points of the aggregated time series on a log-log 
scale. The slope of the linear regression of the data points is a direct estimate of H. (Right): The periodogram plots the logarithm of the spectral density versus the 
logarithm of the frequency. Linear regression for the lowest (~10%) frequencies should give a slope of 1 2 ,H− also avoiding the inherently noisy high frequencies. 
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Figure 4: Correlation structures of the unidirectional delay time series for the 
TCP reverse path flows over the W-LAN (left) and the W-WAN (right) net-
works. 

V. CONCLUSION 
We have provided evidence of LRD in the unidirectional 

packet delay experienced by certain types of IPv6 traffic flows 
as these were routed over two different wireless network tech-
nologies. A variety of LRD estimators have been used which all 
agreed on LRD existence albeit their estimates varied regarding 
the intensity of the phenomenon. Through inspection of the time 
series’ correlation structure, we argue that LRD cannot be safely 
assumed when the majority of the detection estimators does not 
agree on a Hurst exponent value greater than 0.65. Similar be-
haviour is expected for IPv4 traffic, since both protocols assume 
the same packetisation mechanisms at their transport and appli-
cation layers. Whether intermediate routers actually handle both 
IPv4 and IPv6 traffic identically and how this can influence the 
end-to-end packet delay, deserves further experimental investi-
gation. The presence of a limited number of fractal analyses 
studies focusing on intraflow unidirectional packet delay time 
series constitutes it a promising area of further research with 
respect to the end-to-end performance experienced by long-
lived flows. Performance differences between flows routed over 
wireless technologies with known high delay variability and 
their wired counterparts are to be further studied. 
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