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Abstract—Smart grid provides an opportunity for 

customers as well as for utility companies to reduce 

electricity costs and regulate generation capacity. The 

success of scheduling algorithms mainly depends upon 

accurate information exchange between main grids 

and smart meters. On the other hand, customers are 

required to schedule loads, respond to energy demand 

signals, participate in energy bidding and actively 

monitor energy prices generated by the utility 

company. Strengthening communication 

infrastructure between the utility company and 

consumers can serve the purpose of consumer 

satisfaction. We propose a heuristic demand side 

management model for scheduling smart home 

appliances in an automated manner, to maximise the 

satisfaction of the consumers associated with it. 

Simulation results confirm that the proposed hybrid 

approach has the ability to reduce peak-to-average 

ratio of the total energy demand and reduce the total 

cost of the energy without compromising user comfort. 

Keywords: Demand side management, appliance scheduling, 

critical peak pricing, household energy management. 

I. INTRODUCTION 

Demand side management (DSM) usually refers to those 

decisions, which are taken by utility companies at user’s 

premises [1]. DSM programs are initiated to use available 

energy in a more efficient way without developing new 

infrastructure for generation, transmission and 

distribution. DSM programs usually encompass demand 

response programs, fuel substitution programs, efficient 

conservation of energy programs and above all 

commercial or residential load management programs [2]-

[4]. Reducing and shifting consumption is one of the main 

key design features of the residential load management 

program [5]. This can only be achieved if users are 

encouraged to build energy efficient buildings and to be 

well aware of their energy consumption patterns. A part 

from this practical initiative needs to be taken, including 

high power appliances shifting from peak hours to off-

peak hours for measurable reduction in peak-to-average 

ratio (PAR) in load demand. Load shifting is expected to 

be even more important because of high penetration of the 

plug-in hybrid electrical vehicles (PHEVs). Usually 

PHEVs require 0.2-0.3 kWh charging power for one mile 

driving [6]. This significantly enhances new load on the 

existing distribution system. Particularly during charging 

hours, it doubles average household demand, thus 

worsening the existing high PAR. In absence of properly 

reinforced system, a high PHEVs penetration can create 

unbalanced condition, thus compromising power quality 

standards, voltage regulation issues and even prospective 

damage to utility and consumer equipment. 

   Direct load control (DLC) is another useful approach for 

residential load management [7]-[9]. By applying DLC 

programs, utility company remotely controls energy 

consumption and operations of certain household 

appliances. For instance, thermal comfort equipment 

including heating, ventilating and air conditioning 

(HVAC), refrigerators, pumps and light control are well-

known examples of DLC programs. When considering 

home automation and residential load control specifically, 

users’ comfort is on the top priority and considered as a 

hurdle in DLC programs execution [10]. 

   Today dynamic pricing replaces DLC programs features. 

In dynamic pricing mechanism, users are motivated to 

manage their loads individually on a voluntary basis, e.g., 

shutting and shifting heavy loads from peak hours to off-

peak hours [11]-[13]. Most popular and frequently used 

schemes of dynamic pricing includes critical-peak pricing 

(CPP), real-time pricing (RTP), inclined block rate (IBR), 

time of use pricing (ToUP) and day ahead pricing (DAP) 

schemes, etc. With the help of these schemes users are 

encouraged to shift appliances from peak hour to off-peak 

hours. This helps to achieve a lower PAR and reduces 

consumer costs [14]. 

II. RELATED WORK 

   Researchers have recently developed and implemented 

different state of the art algorithms in smart grid (SG). 

These algorithms successfully analyzed commercial, 

residential and industrial buildings in terms of their load 

consumption profile. Researchers have focused on 

optimizing energy controller and scheduler in such a way 

that energy cost is brought to an optimum level for utility 

companies and customers. Maximum attention is given to 

balancing the supply-demand ratio and reducing customer 

cost to a minimum level. Multiple factors are considered 

while developing these algorithms: appliance rating, 
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pricing schemes, utility company priorities and consumer 

demand in order to get maximum benefit for all 

stakeholders.  

   In reference [9], dynamic price RTP is used for optimally 

scheduling smart home appliances. They mainly focus on 

reducing unconventional electricity usage, minimizing 

cost and maximizing benefits from energy storage. 

Electricity cost is reduced to 22.6% and peak price is 

reduced to 11.7% as compared to the normal pricing 

scheme. However, authors do not pay attention towards 

optimizing scheme in their work. While architecting the 

DSM model, authors purchase the energy during off-peak 

hours and store it in storage bank for peak hours use. Their 

main focus is cost minimization and energy storage in 

battery bank. Linear programming based optimal 

scheduling model is proposed; however, goals remain 

unachieved.  

   Non-deterministic polynomial-time (NP) hardness based 

optimal scheduling model is discussed in [12]. The authors 

use greedy iterative algorithms to meet the home 

scheduling goal.  In their work, optimization is achieved 

by using linear programming and artificial intelligence 

optimization approaches.  Lower peak load and lower peak 

fluctuation phenomenon is also discussed. Problem 

formulation is made not only based on user’s load demand 

but also on the generation cost. 

   In references [11]-[15], authors propose a mixed integer 

linear programming based algorithm for scheduling home 

appliances in a fascinate way. The real price tariff is used 

for scheduling home appliances to reduce cost as well as 

peak reduction. In [16], multiple types of users in the 

proposed model are evaluated. These users are categorized 

as commercial, industrial and residential users. From 

simulation results, it can be concluded that the proposed 

algorithm contributes significantly to minimization of 

PAR and electricity cost.  

   Genetic Algorithm (GA) based cost minimization 

method is used in references [12]-[14]. In these papers, 

renewable energy sources (RESs) and battery storage are 

integrated into the existing system. RESs are supposed to 

charge battery bank for later use, when electricity prices 

are high during high demand of energy. For battery 

efficiency and life, a controller is developed to monitor the 

charging and discharging thresholds associated with the 

battery bank. Furthermore, when electricity prices are low, 

batteries are supposed to fully charge. Later, when prices 

are high then certain high priority appliances are handled 

from battery source to save user cost. 

   In this paper, we propose meta-heuristic optimization 

models based on genetic algorithm, grey wolf optimization 

(GWO) and a hybrid grey wolf and genetic algorithm 

(hybrid G2) for scheduling 12 home appliances. Each day 

is divided into 96 time slots (each 15 minutes) instead of 

one-hour time slot for appliance operation. This is 

necessary because in many cases an appliance requires less 

than an hour to complete its operation such as the electric 

cattle and dish washer. In this way, users have much 

freedom and opportunities to reduce cost, PAR and total 

energy demand. Finally, simulation results of the 

unscheduled, GA schedule, GWO and hybrid �� are 

presented to show the effectiveness of the proposed 

hybrid	�� model for appliance scheduling in DSM. 

 

III. PROPOSED ARCHITECTURE 

   In this work, a smart home with multiple smart 

appliances is considered. Length of operation time (LoTs) 

and power rating (PR) information of all appliances are 

already taken from end consumers. The whole system is 

divided into three sub-layers, including supply side 

management layer (SSML), communication management 

layer (CML) and demand side management layer (DSML). 

SSML contains all information related to energy 

generation. DSML uses energy management controller 

(EMC) and appliance scheduler (AS), and schedules  
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Fig. 1 The proposed system architecture 

smart appliances on the basis of LOTs defined by the end 

users. Purpose of load balancer (LB) is used to delay 

appliance operation to minimize demand-supply gap and 

not to allow consumer demand to exceed the limit. 

Through CML, energy forecaster (EF) and demand 

response manger (DRM) exchange real-time demand-

supply information with SSML and DSML.  Home Area 

Network (HAN) conducts effective communication 

between EMC through Wi-Fi, Z-wave and Zig-Bee 

communication protocols. Furthermore, smart appliances 

are further categorized into base line loads, regular loads 

and controllable loads depending upon whether their 

operation can be interrupted or not when activated. EMC 

uses appliance interface (AI) which controls on/off 

operation tasks of all smart appliances associated with the 

system. It is pertinent to mention here that EMC through 

AS, stops all scheduling operation of the appliances if the 

interrupt is generated by the consumer to enhance the 

comfort.  

   Three meta-heuristic techniques are adopted in this 

paper, including GA, GWO and hybrid ��	 in order to 

schedule these smart appliances in home energy 

management system (HEMS). Scheduling is performed to 

save electricity utilization cost for end users. Knapsack 

problem is formulated to establish coordination among 

smart appliances at run-time. This gives autonomy to each 

consumer for managing appliance operation according to 

the comfort. 

 

 

 



 

 

IV. APPLIANCE CATEGORIZATION 

   Home appliances are classified into three sub-categories 

based on their operational behavior. Interruptible 

appliances are those whose operation can be interrupted or 

delayed during operation but their operational time is 

unchangeable. Similarly, uninterruptible appliances are 

those whose operation cannot be delayed or interrupted 

once they are in operating mode. However, these 

appliances can be shifted to other time slots before their 

operations start. 

   It is important to shift interruptible and uninterruptible 

appliances to other time slots to maintain overall energy 

consumption up to an allowed level. It is beneficial to use 

the interruptible appliances at low peak hours for saving 

electricity cost. On contrary, base appliances are those 

which can neither be interrupted nor deferred in home 

energy management system (HEMS). For example, 

refrigerator, air conditioning, lightening and microwave 

oven are such devices whose operation pattern remains 

unchanged. All appliances along with their length of 

operation time (LOT), power rating and category used in 

this study are listed in Table 1. 

   In this section, we will analytically describe power 

system, energy cost and load control model for residential 

purpose. Based on these descriptions, we will formulate 

three design optimization problems in next section. 

 

A. Power System 

   We consider a smart power system with various load 

consumers and a single energy source which may be a 

generator or connection to the main grid through a step 

down transformer. Furthermore, we assume that each 

consumer is equipped with EMC that is capable of 

scheduling different appliances (12 in our model) during 

different intervals of time (96 intervals in a complete day, 

i.e., 15 minutes each). By making use of appropriate 

communication protocol, different smart meters are 

interconnected, not only with the grid but also with each 

other by sharing the updated information. 

   Let �	be the set of users, where for each user �,		let	��
	  

denotes the total load at time slot 
	 ∈ � {1,…….T}, where 

T = 96. Daily consumed load by a specific user �	is 

denoted by �� 	 ∈ [��
 , ………… . ��

�]. This leads us to 

calculate the total load of all users in a single time slot 

across the whole day	
	 ∈ �. It is represented as 

 

�	 = ∑ ��
	

�∈� 																																															      (1) 

Similarly, daily peak load and average load can be 

calculated as 

�������� = �������	∈��	                      (2) 

and  

������� �!� =


�
∑ �		∈�                              (3) 

 

From equations (2) and (3), PAR can be calculated as 

below 

PAR=
"#$%&'()

"#$%	(*'+(,'
	=	

-	.$/0.1.2∈3	"2

∑ "22∈3
              (4) 

 

B. Energy Cost Model 

   For each time slot 
	 ∈ � energy cost for electricity 

generation or distribution is represented by 4	(�	). 
Generally, for the same load, cost may differ in different 

time slot of a day. It mostly depends upon electrical price 

maintained by the utility at generation site. It is worth 

mentioning here that cost function being considered in this 

paper can represent either the original cost of thermal 

generators or artificial cost tariffs maintained by the utility 

for proper execution of the load control programs. Actual 

energy cost function can be represented in terms of a 

quadratic function in equation (5). 

 

4	(�	) = �	�	
� + 8	�	 + 9	                             (5) 

where �	 , 8	 	�:�	9	 ≥ 0	at each time slot t	∈ � 

 

C. Residential Load Control 

For an individual user u ∈ U, let �=	denotes the different 

set of appliances, including base, interruptible and 

uninterruptible appliances in a home. For scheduling 

purposes, we initially define a schedule vector for each 

appliance a ∈ 	>? of individual user, where n is the number 

of the appliances. 

 

@�,� = [@�,�
 , …………… .@�,�

� ]                        (6) 

where	@�,�
	  represents scheduled energy consumption in 

one time-slot for appliance � by user	�. We can then 

calculate the total load by �
ℎ user. 

 

��
	 = ∑ D�,�

	
�∈=E

  , t ∈T                              (7)  

   In our proposed model, main task of AS is to determine 

an optimum time slot in �
ℎ user’s smart meter for the 

individual appliance	�. In this way, user � can shape its 

daily load profile by making use of equation (7). It is 

important to mention here that energy scheduler does not 

aim to reduce power consumption of different appliances 

rather it shifts to other different time slots for minimization 

of PAR and energy cost. Initially, a user needs to initiate 

start and end time slot in which a particular appliance � is 

supposed to complete its task. Let beginning time slot be 

represented by F�,� ∈ � and end time slot is represented 

by G�,� ∈ � and F�,� < G�,�.  

 
Table 1. Appliance parameters 

Appliances Lot 

(slots) 

Power 

rating 

(kWh) 

Category 

Washing machine  20 1.0 Uninterruptible 

Clothes dryer  16 1.6 Uninterruptible 

Electric vehicle  36 2.0 Interruptible 

Water pump 32 2.0 Interruptible 

Humidifier 12 0.5 Interruptible 

Vacuum cleaner 24 1.5 Interruptible 

Water heater 48 2.0 Interruptible 

Dish washer  16 1.2 Interruptible 

Refrigerator  96 1.4 Base 

Air conditioner 40 1.5 Base 

Light 52 0.8 Base 

Microwave oven 16 2.0 Base 

 



 

 

   For example, an electrical vehicle (EV) having I�,� =

2	DKℎ needs 4 hours to complete its charging cycle for 50 

km driving range in a single day.  For compiling task, a 

user must select a larger time slot because in case of any 

interruption, scheduler completes the task by its end time. 

For example, the user may select F�,� =

12	�.�.	and	G�,� = 8	�.�.. Mathematically, it is 

represented as 

 

∑ ��,�
	NO,P

	QRO,P
= I�,�                    (8) 

where ��,�
	  represents energy consumption vector of 

appliance a during t time slot by u. Also, from equation 

(8), it is concluded that appliance a schedules balances 

according to daily consumption requirement. Similarly, 

total energy consumption by all appliances and by all users 

can be summed up.  

 

∑ �		∈� = ∑ ∑ I�,��∈=E�∈�         (9) 

Since electronic devices are divided into base, interruptible 

and uninterruptible smart appliances, so in case of 

uninterruptible appliances strict energy consumption 

needs to be adopted. In our case, washing machine (WM) 

and clothes dryer (CD) have constraints that once WM task 

ends, CD must start its operation immediately. In that case, 

F�,� = 1	for WM and G�,�= 0 for CD. Similarly, a 

refrigerator is on all the time, so in that case F�,� = 1	for 

WM and G�,�= 96.  Generally, a scheduler has no active 

impact on the operation of the non-interruptible 

appliances. For a complete energy consumption profile, 

standby power of interruptible appliances needs to be 

calculated. It is the power which is consumed by 

interruptible appliances when they are in idle mode. we 

need to calculate minimum	(	S�,�
TU?UV�V) and maximum 

(S�,�
T�WUV�V) standby power level for interruptible 

appliances. Standby power can be assumed to be such 

power which a device is consuming when it is in non 

operation mode but ready to start its operation. We can 

assume it as: 

 

S�,�
TU?UV�V ≥ ��,�

	 ≥ S�,�
T�WUV�V             (10)                             

   We are now ready to calculate different optimal energy 

scheduling model by considering equations (1)-(10) in our 

proposed hybrid �� DSM model. 

 

V. OPTIMIZATION METHODS 

   Traditional optimization methods like integer linear 

programming (ILP), mixed integer programming (MILP) 

and mixed integer nonlinear programming (MINLP) are 

unable to control large number of appliances.  

Furthermore, these methods are computationally 

inefficient and hence not suitable for real time 

optimization, which is deterministic in nature. Instead, the 

meta-heuristic optimization technique can provide a best 

solution while considering user defined constraints. We 

are applying genetic algorithm (GA), grey wolf 

optimization (GWO) method and a hybrid of both 

techniques to achieve real time optimal results.  

   GA is inspired from the genes of living organisms. 

Initially, binary coded chromosomes are randomly 

initialized. Total number of smart appliances are 

represented by the length of chromosomes’ and smart 

appliances ON/OFF status is identified through 

chromosomes binary coded pattern. Once the initial 

population is generated, fitness function of GA is 

evaluated which is actually an objective function of this 

study. Mutation and crossover are performed to generate 

new population. Generated population fitness function is 

then compared with the previous one and hence, optimum 

results are achieved.  

   On the other hand, GWO algorithm is based on grey 

wolves hunting and leadership hierarchy mechanism. 

Alpha, beta, delta and omega are four kinds of wolves in 

leadership hierarchy. For performing optimization 

hunting, searching, encircling and attacking,  prey steps are 

implemented. In this way, position of the search agents are 

updated in the form of position vector towards prey. 

Search agents update its position until it reaches to an 

optimal position in n-dimensional search space.  

   The purpose of proposing the hybrid technique is to 

achieve a balance between global search and local search. 

GA performs well in terms of exploration mode. Also, it 

has good convergence rate to reach to optimal solution.  

Initially, GA steps are followed for generating initial 

population of chromosomes. These chromosomes actually 

represent candidate solution to the problem. Furthermore, 

a bit of chromosomes represents the ON/OFF state of the 

smart appliances. Fitness function is based on objective 

function, taken from GWO. The best population is 

regenerated through velocity updating step of GWO. 

Firstly, it finds a local best solution and on the basis of this 

value, it achieves a global best solution.  Through an 

optimal stopping rule, the cost minimization problem can 

be formulated and the best fit value is thus chosen. Based 

on crossover and mutation, a new stream of is generated. 

Hence new generation population is created which has 

completely different characteristics as compared to the 

initial generation.  

VI. SIMULATION RESULTS 

  In this section, we present simulation results and assess 

the performances of the proposed algorithms. By making 

RTP signal for DSM, PAR reduction, cost minimization 

and load balancing are key features to be analyzed. The 

cost, load and waiting time for each group is represented 

in terms of cents, hours and kWh. Fig. 2 shows the load on 

grid for a single home using all three approaches according 

to RTP. In RTP tariffs, electricity price changes during 

different times of a single day. Particularly prices are 

higher in the afternoon, hot summer days and cold winter 

days. Fig. 3 clearly demonstrates that during the high price 

rate hours, if demand is high, then unscheduled load 

creates high peaks as compared to the scheduled load. Due 

to this reason, electricity cost of unscheduled load is high. 

It also depicts that without affecting the overall load, the 

proposed fitness function has a greatest effectiveness on 

cost and PAR reduction.  

   Moreover, load profile during multiple time slots for a 



 

 

complete day is shown in Fig. 4.  It demonstrates that the 

proposed hybrid model outperforms the GA and GWO 

models in terms of load shifting to off-peak hours; hence 

reduction can be many folds in terms of PAR and cost. Fig. 

4 illustrates the cost in different time slots during the day, 

the consumption pattern by GWO and GA during the peak 

price is high as compared to the hybrid �� approach. This 

affects the overall cost per day for aforementioned 

approaches as shown in Fig. 5. It clearly shows that price 

using hybrid �� is low as compared to GA and GWO. 

Using the hybrid ��, the proposed approach reduces 20% 

cost, which is the best among all three used approaches 

 
Fig. 2 Load profiles 

 
Fig. 3 Energy cost during the time slots                                                         

 
  Fig. 4 Cost in different time slots over the day 

      PAR results are shown in Fig. 6, where the 

unscheduled load is very high and for the hybrid �� it is 

commendable. This shows adeptness of the proposed 

approach which is better than GA and GWO. In this case, 

about 50% PAR is reduced by hybrid	��. While 

addressing the cost and PAR, waiting time of different 

appliances cannot be overlooked; this is highlighted in Fig. 

7. Waiting time has a direct relationship and impact on user 

comfort and it is an important parameter for efficiency 

measurement in any proposed scheme. It shows that 

waiting time for base load appliances for GA and GWO is 

higher as compared to the hybrid	��.  

 

                Fig. 5 Total cost under different approaches 

 
   Fig. 6 PAR under different schemes 

 
Fig. 7 Waiting time for the different approaches 



 

 

During the simulation, we perceived that GA is best for 

maximum number of populations. With the increase in 

number of population and generation step, difference 

among the lowest and highest point becomes negligible. 

On the other hand, GWO shows high performance for 

small population under hundred intervals. Fig. 5 and Fig. 

6 show that GA outperforms GWO in terms of cost 

reduction, peak reduction and PAR. The hybrid ��shows 

positive influence on both approaches by lowering PAR, 

cost and peak load values. 

 

VII. CONCLUSIONS 

   In this paper, we have presented an effective approach 

for load management by shifting or balancing home 

appliances in an optimum way. The main idea is to 

facilitate consumers to reduce electricity cost. From the 

simulated results, it is observed that considerable saving in 

energy costs can be realized by consumers. To facilitate 

consumers, artificial intelligence based optimization 

technique is adopted. The results show that through a 

carefully designed appliance scheduling model, users can 

offer a viable solution to optimal power management 

among residential energy users. The proposed approach is 

based on a hybrid GA and GWO. 

   It clearly demonstrates that the hybrid approach 

outperforms the GA and GWO. The load is balanced in 

such a way that not only load peaks are avoided but also 

user comfort is less compromised. It is worth mentioning 

that there exists the tradeoff between cost and PAR.  Since 

cost is minimized at certain time extents the load to off-

peak hours using the proposed model, resulting in 

maximizing PAR. Results show the effectiveness of the 

proposed hybrid model in terms of cost minimization.  

Future work will consider integration and testing RES 

along with real-time pricing signal. 
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