So You Need More Method Level Datasets for Your Software Defect Prediction? Voilà!

Thomas Shippey, Tracy Hall and Steve Counsell
Computer Science
Brunel University London
Uxbridge, United Kingdom
{thomas.shippey,tracy.hall,steve.counsell}@brunel.ac.uk

David Bowes
Science and Technology
Research Institute
University of Hertfordshire
Hatfield, United Kingdom
d.h.bowes@herts.ac.uk

ABSTRACT
Much defect prediction research is based on a small number of defect datasets. Most datasets are at class not method level. Consequently our knowledge of defects is limited. Identifying defect datasets for prediction is not easy and extracting quality data from identified datasets is even more difficult. We identify open source Java systems suitable for defect prediction and extract high quality data from these datasets. We use the Boa September 2013 SourceForge dataset to identify candidate open source systems. We used selection criteria based on the type and quality of both a software repository and its defect tracking system to reduce potentially 50,000 open source systems to 23 suitable for defect prediction. We enhance the SZZ algorithm to extract fault information from these systems and we used JHawk to produce 138 fault and metrics datasets. The data we provide enables future studies to proceed with minimal effort. Our datasets significantly increase the pool of systems currently being used in defect analysis studies. We make these datasets (the ELFF datasets) and our data extraction tools freely available to future researchers.

CCS Concepts
- Software and its engineering → Software defect analysis; Search-based software engineering; Computing methodologies → Machine learning algorithms;

Keywords
Defects, Defect Prediction, Boa, Data Mining, Defect linking

1. INTRODUCTION

In this paper, we present defect and source code metrics data from 23 Java open source systems. We selected systems using a systematic approach for identifying systems suitable for defect prediction. We extracted data from these systems at method level using a rigorous methodology. Over the last 20 years researchers have dedicated a huge amount of effort to developing a variety of software defect prediction models. Most defect prediction models are based on open source systems as commercial source code and defect data is difficult to obtain. Researchers confine themselves to studying a small pool of open source systems. This is not surprising as identifying suitable systems and extracting reliable data is difficult and time consuming. Consequently many of the systems analysed in previous studies are those where data is already available (e.g. from the Promise Repository [2]).

The reasons that collecting usable and reliable defect data is difficult include: First, projects will often not have enough defects stored in repositories to enable the building of defect prediction models. Second, knowledge, skill and care is needed when collecting defect data from project repositories to ensure reliable defect data is extracted. Third, it is difficult to collect sufficient good quality defect data at the method level and so the majority of data sets used in defect prediction are at class or file level. This high level of prediction granularity is of limited use given that a file or class might be hundreds of lines long. To address these difficulties, we present the ELFF dataset which contains systems rich in defect data, with method and class level defect data collected using a rigorous data extraction process which is accompanied by a wide range of source code metrics and for which all source code is available.

Our ELFF dataset was achieved by mining the Boa SourceForge September 2013 open source dataset [7]. In total, this dataset suggested more than 50,000 potential projects; using our bespoke ChallengerELFF tool, we filtered down the number of projects to 23. This filtering was done using criteria based on project maturity and commit frequency to ensure that all 23 systems are mature and contain sufficient defect fixing commits to be usable in defect prediction. We then used another bespoke tool, DefectFinderELFF to extract method and class level defects from multiple versions of the 23 projects. We combined this fault information with source code metrics to create the ELFF dataset: a corpus of new open source datasets for use in defect related research.

The main contribution of this paper is a freely available set of 138 source code metrics and defect data, both at class

1 There is a distinction between a fault and a defect. A defect is a direct result of an error by a developer when programming a system. A defect becomes a fault when the error manifests itself during the use of the software product [13].
and method level, from 23 open source projects and versions of those projects. This contribution to defect prediction will significantly increase the current pool of projects. The identification of new datasets is important for many reasons. Firstly, the ELFF dataset could be used in replication studies as there are many reported challenges currently within software defect prediction [5] that need further work and researchers can apply their new techniques to more projects and test the stability of their conclusions. Secondly, the ELFF corpus provides fault information at both method level and class level and so studies can be replicated at a lower level of granularity to test the stability of their conclusions. The ELFF dataset, ELFF tools and information to enable the work reported in this paper to be replicated can be found at www.elf.org.uk/ESEM2016.

2. BACKGROUND

Software defect prediction is a method for determining potentially defective areas in a particular piece of software code. The predictions make it possible for the developer to focus on areas of the software system before release, reducing both time and effort. Software defect prediction relies on three main components; dependent variables, independent variables and a model. Dependent variables are the defect data for a particular module. The defect data can be binary (faulty or non-faulty), or continuous (number of faults). Independent variables are the metrics which describe the software code, how it has changed or who changed it. Independent variables come in two forms, software code metrics: those that can be derived from the software code itself and process metrics: metrics that measure the change of software code or software practices over time. The models often use machine learning approaches which contain the rule(s) or algorithm(s) that predict the dependent variable from the independent variables. These rules can be as simple as the number of independent variables in the model, or as complicated as decision trees and regression techniques.

Our previous work Hall et al. [12] identified over 200 papers and the models/metrics used to carry out defect prediction.

Dependent variable information is extracted from software repositories. One way to identify defective software code is to analyse the code’s respective software version control system (VCS) and defect tracking system. When a fault is fixed, it is good practice to reference this fault fix in the VCS commit message. Normally, this fault will correspond to a fault that has been reported and logged in a fault tracking system. A defect tracking system is needed to identify where a fault has been fixed because sometimes the commit does not always include the information on why a change was made [29]. When the defect tracking information and the VCS information is combined, the reliability of discovering defect links is increased. If the defect tracking system was used alone, the commit that caused the change would not be known, only the time that the defect report was updated. Similarity, if just the VCS was used, the defect fix numbers reported in a commit message may not actually be defect numbers. One method to identify defective code is to match a particular commit where the defect has been fixed from the VCS to the correct defect number in a defect tracking system. This will give a defect-link and will tell us where a particular fault has been fixed; it is used subsequently to find the defect insertion point by tracking the historical changes to the fixed code. The defect insertion point is an important piece of information. If the insertion point and the fix point (the defect-link) is identified for known defects, then it is possible to know where there is a defect at any point in the history of the code. Many different algorithms have been proposed to find defects from these two software repositories. These algorithms include: SZZ by Śliwerski et al. [29], including its improvements by Kim et al. [16], Bird et al. [3] and Williams and Spacco [31], LINKSTER by Bird et al. [4], BugInfo by Jureczko [14], ReLink by Wu et al. [32], MLink by Nguyen et al. [26], RCLinker by Le et al. [21] and HyLok by Lam et al. [19].

A variety of open source and closed source projects have previously been used in defect prediction. The NASA datasets [23] are an example of closed source projects that have been used extensively in software defect prediction (in approximately 30% of software prediction studies from 2000 to 2010 [12]). However, the code for these datasets is not available and many inconsistencies have been reported with the data contained [28, 10, 11, 27]. Other close source systems have been less used. For example, Microsoft systems have been used by Kim et al. [17], Layman et al. [20], Nagappan and Ball [24], Nagappan et al. [25]. Defect prediction studies mainly use open source systems due to the ease with which researchers can gather the data. Open source code and defect information is freely available and therefore easily mined. There are many different open source projects available, but Eclipse and Apache projects are two of the most frequently used [12]. Researchers can also obtain defect data from the Promise repository [2]. This repository holds around 60 defect datasets, and the datasets held are used frequently by defect prediction studies. Some of the more frequently used Promise datasets are those curated by Jureczko [14], which have been cited five times this year alone [33, 30, 15, 22].

Defect prediction is performed at different levels of granularity, with the majority being at a high level of granularity, e.g. file and class level. All 60 defect datasets on the Promise repository [2] are at this high level. Hall et al. [12] show that only 12% (22/182) of defect prediction models from 2000 to 2012 are performed at method, function or procedure level and the performance range of these models is much wider than models at higher levels of granularity performed. Method level predictions are much more valuable to developers than predictions at file or class level. Files and classes can be very large, whilst defects can be very small, meaning greater additional effort to find the defect.

3. METHODOLOGY

3.1 SourceForge project extraction

We systematically generated a list of open source projects from which defect data can be extracted. To do this we used Boa which is a domain-specific programming language for analysing ultra-large-scale software repositories [7]. We chose Boa as it substantially decreases the effort required to mine software repositories and experiments are easily replicable. Boa allows you to mine several datasets, for our study we chose the September 2013 SourceForge dataset [7]. We
Forge Rest API

automatically, we extract defect information from the SourceForge because to perform this analysis systematically and automatically, a potential project had to have a SourceForge defect tracker. We chose this dataset as it was the most recent repository that has information stored about possible SVN projects. We applied criteria to establish the project’s suitability for inclusion in the ELFF dataset provided in Table 1.

We focus on SVN and Java projects because we have created a tool that extracts defects from projects with these two sources of information, we intend to extend this tool to extract information from other repositories in the future. A potential project had to have a SourceForge defect tracker because to perform this analysis systematically and automatically, we extract defect information from the SourceForge Rest API. Other projects could have different defect tracking systems, but this would be time-consuming to manually check. The projects have to be rich in fixed defects. If there are not enough fixed defects, then we could encounter data imbalance problems when running our defect prediction due to the lack of defective modules and this would impair the results of our prediction algorithms.

To identify SVN projects on SourceForge we ran a Boa script on the September 2013 dataset to extract all SVN projects and the number of defect fixing commits that fix Java files. To determined if the project had a defect tracking system in SourceForge, we created ChallengerELFF, which examined the SourceForge Rest API. ChallengerELFF was developed in Java and extracts information from the JSON representation of a SourceForge project. Each SourceForge project’s JSON representation was parsed to determine if a project had a defect tracker. This was determined by examining if the project had a ticket system called “Bug” or “Issue”. ChallengerELFF then extracted fixed defects tracker JSON. For SourceForge projects with defect trackers, we analysed the commits of the SVN to determine if they had defect-linking commits. A defect-linking commit was determined by using the SZZ algorithm. This would give us the total number of commits that fixed faults reported. This coverage statistic is vital, since projects that have low defect coverage could contain many false positive faults when we applied our defect-linking technique.

3.2 Fault data extraction

For each of the SourceForge projects we compiled a dataset of faulty methods. We found which methods were faulty at the time of release by finding the fault insertion and fix points. To identify faulty methods we used the SZZ approach as it has been used in many previous studies. SZZ is a fault linking algorithm described by Sliwerski, Zimmermann, and Zeller. SZZ was based on work by Cubranic and Murphy and Fischer et al., who inferred links between Bugzilla defect reports with CVS commit messages. We have created our own SZZ implementation called DefectFinderELFF. The SZZ algorithm matches the fault fix described in a defect tracking system with the corresponding commit in a version control system that ‘removed’ the fault. By backtracking through the version control records, it is possible to identify earlier code changes which ended up being ‘fixed’. It is assumed that the earlier code changes inserted the fault. The module of code is therefore labeled as faulty between the time the fault was inserted and the time it was fixed. Using this technique it is possible to identify for a particular snapshot of the code base, which modules are faulty and which are not. Obviously there will be defective modules which have not yet been reported. It is therefore important to carry out the fault mapping after sufficient time has passed for users to report most faults. It is unlikely that all defects will be reported and therefore there will be false negatives. Kim suggests that as long as the number of false negatives and false positives is less than 20% in total, defect prediction can be carried out. This is an important point, early work by Zimmermann et al. managed to map about 50% of faults reported in the defect tracking systems to changes in the code base. Later Bird et al. improved the mapping by removing some of the constraints that Zimmermann had introduced, for example the requirement to have matching defect IDs in a predefined format. The implementation of SZZ used in this paper was improved slightly from the original. It has a higher weighting for those numbers found in commit messages that are in the defect database and takes into account the “Fix for” prefix. The implementation was verified by us, independently of this study, by manually checking all defect links found for Eclipse JDT 3.0.

When ran DefectFinderELFF over different versions of each of the SourceForge projects to create a corpus of faulty methods. We combined this fault information with both class and method level metrics extracted using JHawk, to create datasets of fault information for each version of a SourceForge project. The metrics and faults can be found at www.elf.org.uk/ESEM2016/.

4. RESULTS

Using our Boa script, we extracted around 50,000 possible Java systems using SVN. Using the information gathered from this initial extraction, we were then able to analyse each of the possible systems further to determine if they were good candidates for defect prediction studies using the SourceForge Rest API. Table 2 shows the final 23 possible systems that could be used to extract fault information using the subversion and defect tracking systems from Sourceforge, selected using our criteria. The tables are sorted by the level of fixed defect coverage. The defect coverage of the system is important to the SZZ algorithm as it relies on the defect id’s to have been mentioned in the commit message. Without

Table 1: The criteria with which the final projects will be chosen

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a Java project</td>
<td>Our implementation of SZZ works with Java code</td>
</tr>
<tr>
<td>An SVN project</td>
<td>Our current implementation of the SZZ algorithm is currently set up to use SVN.</td>
</tr>
<tr>
<td>Have defect linking commits</td>
<td>To perform defect linking, we need defect linking commits.</td>
</tr>
<tr>
<td>SourceForge defect Tracking system</td>
<td>Defect id’s are needed to run defect linking.</td>
</tr>
<tr>
<td>At least 100 fixed defects</td>
<td>Needs to be lots of fault information to combat data imbalance.</td>
</tr>
</tbody>
</table>

7Version 5.0
the defect id, the algorithm may not be as accurate since it has to rely on commits that have certain keywords.

Table 2 gives the context and defect information for each project. There is a lot of variation between the projects. The average age of the projects is 12 years. The oldest project is jEdit, which started in 1999. Autopilot is the youngest project at eight years old. The domain for each of the projects, ranges from 3D modelling to simple integrated development environments. The projects vary in size from large projects like JMRI, with 549 KLOC to smaller projects like Autopilot, which has 16 KLOC. The average size of the projects is around 180 KLOC.

BRL-CAD has the best defect linkage of the projects extracted from the SourceForge dataset with nearly 100% defect linkage. The worst project linkage is jEdit with only around 8%. The selected 23 projects have approximately 41% defect linkage on average. The defects in the commit messages ranges between 106 (jTDS) and 484 (RunaWFE). BRL-CAD in its latest release had no Java files, but in its history there have been files changed due to a defect fix so we include it as it does fit our criteria.

We ran DefectFinderELFF on multiple versions for each of the 23 projects. We have fault information for 69 versions of the projects discovered using Boa. Table 3 shows a sample of the fault information for randomly selected projects. Some of the projects did not have easily identifiable releases, in this instance, we chose a particular date as the snapshot. For example, 1st January 2008 would have a version number of 01012008. Jmol 6 has the highest level of faults with around 13% of methods and around 42% of classes defective. The results show that a high linkage of defect-fixing commits does not always translate into a high number of faults in a particular version of a project. This could be due to a couple of reasons. The found defect-links might not actually be around the time of the versions identified, the projects could have picked up the defect links in later releases or became lax in reporting defect fixes properly. Another reason could be that even though the defect was fixed, but as SZZ traces the fix to its insertion point, the method may have not actually been defective at the time of the release.

5. CONCLUSION

Good defect data is hard to obtain, especially at the method level. Of the defect data on the Promise repository, none have method level defects. Method level defect prediction is important as developers do not have time to search through files to find potentially defective code. Finding appropriate open source projects that have rich defect repositories and accompanying subversions is hard and labourious. Consequently, researchers have repeatedly used the same projects in defect prediction. We applied a systematic approach to determine open source projects on which defect prediction could be performed. These projects were extracted from the SourceForge September 2013 dataset [7] and then further analysed with the SourceForge Rest API. We narrowed down 50,000 potential projects, to 23. These 23 projects were chosen as they have the best potential for extracting good defect information due to the defect linking in their SVN repositories. With these 23 projects, we extracted fault data for 69 versions. This fault data showed that a high defect-linkage in the commits, does not always correlate well to having a high number of faults in a particular version. The datasets that we have curated in this paper, the ELFF dataset, is freely available for other researchers to use. The corpus significantly increases the amount of method level datasets available. The ELFF dataset will help increase the diversity of datasets being used, so that researchers in defect prediction can make better global conclusions, perform study replications and test the stability of their conclusions on a larger set of systems.

Acknowledgements

This work was partly funded by a grant from the UK’s Engineering and Physical Sciences Research Council under grant number: EP/L011751/1.

References

Table 2: The contextual information for the 23 SourceForge projects identified as being suitable to apply the SZZ algorithm. N.B. BRL-CAD has been included as it fixed Java files in the past, however its suitability is impaired as currently it has no Java files.

<table>
<thead>
<tr>
<th>Project</th>
<th>Domain</th>
<th>KLOC</th>
<th>Age (Years)</th>
<th>Committers</th>
<th>Releases</th>
<th>Defects Reported</th>
<th>Fixed in Commits</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRL-CAD</td>
<td>3D Modelling</td>
<td>12</td>
<td>9</td>
<td>42</td>
<td>276</td>
<td>259</td>
<td>93.84</td>
<td></td>
</tr>
<tr>
<td>JPPF</td>
<td>Distributed Computing</td>
<td>45</td>
<td>11</td>
<td>77</td>
<td>120</td>
<td>235</td>
<td>208</td>
<td>88.51</td>
</tr>
<tr>
<td>EclEmma</td>
<td>Quality Assurance</td>
<td>55</td>
<td>9</td>
<td>26</td>
<td>35</td>
<td>138</td>
<td>109</td>
<td>78.99</td>
</tr>
<tr>
<td>GenoViz</td>
<td>Data Visualisation</td>
<td>193</td>
<td>11</td>
<td>9</td>
<td>57</td>
<td>245</td>
<td>165</td>
<td>67.35</td>
</tr>
<tr>
<td>Jikes RVM</td>
<td>Compilers</td>
<td>179</td>
<td>11</td>
<td>47</td>
<td>35</td>
<td>648</td>
<td>430</td>
<td>66.36</td>
</tr>
<tr>
<td>Jmol</td>
<td>3D Rendering</td>
<td>255</td>
<td>15</td>
<td>4</td>
<td>15</td>
<td>535</td>
<td>286</td>
<td>53.46</td>
</tr>
<tr>
<td>TANGO</td>
<td>Human machine interfaces</td>
<td>288</td>
<td>13</td>
<td>21</td>
<td>6</td>
<td>684</td>
<td>335</td>
<td>48.98</td>
</tr>
<tr>
<td>RunaWFE</td>
<td>Business Management</td>
<td>584</td>
<td>11</td>
<td>9</td>
<td>49</td>
<td>994</td>
<td>484</td>
<td>48.69</td>
</tr>
<tr>
<td>CMU Sphinx</td>
<td>Speech Recognition</td>
<td>68</td>
<td>16</td>
<td>189</td>
<td>26</td>
<td>333</td>
<td>151</td>
<td>45.35</td>
</tr>
<tr>
<td>JUMP</td>
<td>GIS</td>
<td>182</td>
<td>11</td>
<td>17</td>
<td>24</td>
<td>392</td>
<td>144</td>
<td>36.73</td>
</tr>
<tr>
<td>DrJava</td>
<td>IDE</td>
<td>161</td>
<td>14</td>
<td>7</td>
<td>62</td>
<td>825</td>
<td>299</td>
<td>36.24</td>
</tr>
<tr>
<td>JMRI</td>
<td>Gaming</td>
<td>550</td>
<td>15</td>
<td>30</td>
<td>49</td>
<td>502</td>
<td>181</td>
<td>36.06</td>
</tr>
<tr>
<td>UNICORE</td>
<td>Security</td>
<td>47</td>
<td>12</td>
<td>48</td>
<td>32</td>
<td>773</td>
<td>239</td>
<td>30.92</td>
</tr>
<tr>
<td>XAware</td>
<td>Development</td>
<td>104</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>702</td>
<td>209</td>
<td>29.77</td>
</tr>
<tr>
<td>ControlTier</td>
<td>Config Management</td>
<td>127</td>
<td>10</td>
<td>6</td>
<td>18</td>
<td>612</td>
<td>177</td>
<td>28.92</td>
</tr>
<tr>
<td>Autoplot</td>
<td>Visualisation</td>
<td>16</td>
<td>8</td>
<td>18</td>
<td>60</td>
<td>715</td>
<td>200</td>
<td>27.97</td>
</tr>
<tr>
<td>Saros</td>
<td>Agile development tool</td>
<td>88</td>
<td>9</td>
<td>55</td>
<td>29</td>
<td>766</td>
<td>202</td>
<td>26.37</td>
</tr>
<tr>
<td>OmegaT</td>
<td>Text Processing (CAT)</td>
<td>64</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>673</td>
<td>173</td>
<td>25.71</td>
</tr>
<tr>
<td>Jitterbit</td>
<td>Integration Tool</td>
<td>458</td>
<td>10</td>
<td>57</td>
<td>11</td>
<td>1110</td>
<td>202</td>
<td>18.2</td>
</tr>
<tr>
<td>CDK</td>
<td>3D Rendering</td>
<td>140</td>
<td>15</td>
<td>77</td>
<td>38</td>
<td>1225</td>
<td>204</td>
<td>16.65</td>
</tr>
<tr>
<td>HtmlUnit</td>
<td>HTML Manipulation</td>
<td>249</td>
<td>14</td>
<td>11</td>
<td>38</td>
<td>1637</td>
<td>265</td>
<td>16.19</td>
</tr>
<tr>
<td>jTDS</td>
<td>Database</td>
<td>133</td>
<td>14</td>
<td>75</td>
<td>37</td>
<td>658</td>
<td>106</td>
<td>16.11</td>
</tr>
<tr>
<td>jEdit</td>
<td>Text Editor</td>
<td>115</td>
<td>16</td>
<td>25</td>
<td>39</td>
<td>3727</td>
<td>283</td>
<td>7.59</td>
</tr>
</tbody>
</table>

Table 3: The fault information for a random selection of 69 versions the selected SourceForge projects. The full list is available at http://www.elff.org.uk/ESEM2016

