

ABSTRACT

With the rapid development of mobile devices, wired and wireless

communication technologies, and network based services, people

are able to access information ubiquitously using a variety of

devices. At the same time, users are often overwhelmed by the

complexity of interacting with different sorts of devices and services

available to them. Moreover, the lack of agreements and

standardisation complicates the design and deployment of adaptive

services by service providers and network operators. This excessive

complexity prevents novel information technologies from being

quickly accepted by end users and widely adopted by service

providers.

In this paper we argue that a flexible and extensible framework

is required to extricate different parties from the burden of this

complexity. The European Union funded Simplicity research

project introduces the notion of a Simplicity Device to end users.

Simplicity Devices allow them to store personal profiles and

preferences in a secure way and enable them to customise devices

and services with minimal effort. Simplicity offers a flexible and

extensible Brokerage Architecture to service providers and network

operators, facilitating unified treatment of device personalisation

and service adaptation by employing policy based decision

mechanism. This simple framework can be used by third party

application components to acquire the necessary information for

configuring and adapting themselves. Moreover, Simplicity is able

to provide support for heterogeneous platforms on a wide range of

devices, e.g., PCs, PDAs, mobile phones, MP3 players, TV sets and

smart spaces.

I. INTRODUCTION

Recent years have witnessed the rapid proliferation of

mobile devices, wired and wireless communication

technologies, and network based services. Most of us already

own a considerable number of personal computing devices,

such as PCs, laptops, PDAs and mobile phones, and enjoy

access to a growing number of services. The abundance of

devices and services aim to simplify our lives by providing us

with ubiquitous information access. However, inconsistencies

in the ways we interact with different devices and services

often tend to complicate things unnecessarily. More than

often, users are forced to manually edit network settings on

their laptop when trying to access different wireless networks.

On each machine they are using, users have to manually

change the settings of desktop and applications to acquire a

familiar look-and-feel; more than often they are required to

remember and type in a variety of usernames and passwords

to get access to the different online services they use, such as

online banking, shopping and auctions. On the other hand, the

lack of agreements and standardisation also complicates the

jobs for service providers and network operators.

Heterogeneous networks, devices, platforms and applications

make it very challenging to provide tailored information

access to a wide range of users in a unified manner.

This excessive complexity prevents novel information

technologies from being quickly accepted by end users and

widely adopted by service providers. The Simplicity [1]

project was proposed to extricate those different parties from

the burden of this complexity. The project introduces the

concept of Simplicity Devices (SDs). Simplicity Devices

enable users to customize different devices and services

(tailored to different environments) with minimal effort. For

service providers and network operators, Simplicity offers a

unified brokerage framework to support various types of

adaptation by taking into account the network capabilities,

service availabilities, device characteristics, and user

preferences. By offering a simple way of acquiring

information required for configuration and adaptation through

this unified framework, Simplicity provides support for third

party applications both on PCs and on other information and

communication technology (ICT) devices such as phones and

PDAs, and even on non-ICT-related platforms, such as MP3

players, TV sets and smart spaces. The expected extensive

adoption of the Simplicity Framework will make the SD

universally accepted over a wide range of information

appliances.

The rest of the paper is organised as follows: In section two

we provide a brief survey of related work in the field of

device and service personalisation; we describe the key

contributions of the Simplicity project from end users’ and

service providers’ perspectives in section three. In section

four, we analyse the benefits and drawbacks of the different

approaches, and finish with concluding remarks in section

five.

Towards Simplicity: an introduction

Maomao Wu, Oliver Storz, Nigel Davies, and Adrian Friday

Computing Department, Infolab21, South Drive,

Lancaster University, Lancaster, UK, LA1 4WA

{maomao, oliver, nigel, adrian}@comp.lancs.ac.uk

II. RELATED WORK

Besides Simplicity, a small number of projects have

identified the need for automatic configuration and adaptation

of devices and services. Approaches range from remote

machine access to the automatic personalisation of selected

services and devices.

Virtual Network Computing (VNC) [2] provides users with

access to personal data and applications on a remote machine

by using a thin client application. The user just needs the

account information (e.g., username and password) to get

access to the remote machine. The underlying technology is a

low-level remote display protocol that enables a local machine

to render the graphical user interfaces of applications running

on the remote machine. While user inputs are transferred from

the thin client on the local machine to remote applications, all

application states are maintained by the applications

themselves on the remote server. Users are able to walk away

from one machine and resume working on what has been

previous left from another machine. VNC does not actually

address the problem of device personalisation, since it does

not physically change any settings on the device that the user

is directly interacting. It simply redirects input and output to

and from the applications running on the remote machine.

Moreover, this approach requires good and continuous

network connectivity between client and server in order to get

the graphics rendered with a reasonable performance.

Analogous to suspending and resuming a session on a

laptop, Internet Suspend/Resume (ISR) [4] allows users to

suspend their desktop on one machine and resume the session

on another without having to carry any physical device. ISR

requires host machines to have network connectivity

(including access to a central share on a distributed file

system, such as Coda [6]). In addition, software providing a

virtual machine (VM) abstraction (e.g. VMware [5]) is

expected to be present on each host. The user always works

using the operating system (OS) that is executed within the

VM, called guest OS. When he suspends a session, the

complete volatile state of the VM can be captured by a Virtual

Machine Monitor (VMM) [7] and stored within a file (called

VM image) on a remote file server. This VM image is then

copied across the network to the local file system before

resuming a session on another machine. Several techniques

have been employed to optimise the performance of this

process, especially the delay encountered while transferring

images across the network. Proposed solutions to speed up the

resume procedure by reducing the amount of data that needs

to be transferred across the network include compression of

the VM image and look-aside caching [8].

Migo [9], a commercial product, supports the

personalisation of applications on PCs by keeping users’

personal profiles and files related to these applications on

portable USB storage devices, e.g. USB smart watches, USB

flash memory, or even iPods. At the moment, Migo supports

the personalisation of applications only on Windows-based

platforms and is limited to work with a few popular Windows

applications, including Windows Desktop, Microsoft Outlook

and Internet Explorer. Migo approaches personalisation on a

per-application basis, i.e. by directly personalising

applications one-by-one. Since each application might have

different ways of managing personal profiles and user data,

the designers of Migo are required to understand the internals

of every single application. These dependencies might prevent

Migo from scaling to a larger number of applications across a

variety of operating systems.

While the developers of ISR more or less assume

ubiquitous availability of high-bandwidth networking

facilities, different assumptions have lead to the development

of another approach. The Personal Server [3] by Intel research

is a portable device that offers storage, computing and

communication capabilities. Envisioning the ubiquity of

computing devices with rich user interfaces, the authors of [3]

believe that the Personal Server requires neither display nor

input devices. Instead, their concept builds on the ability to

detect the presence of I/O devices nearby and use them. These

I/O devices would then provide conventional user interfaces

to access the information stored on the Personal Server.

Information access is seen to happen via short-range wireless

communication technologies, such as Bluetooth. Personal

Servers still have processing power. They are powered by the

Linux OS and are able to host software stacks for many

different purposes, e.g., communication, discovery or security.

Although Personal Servers could be used by users to store

their profiles and data files, they do not natively provide any

means for personalising devices or services that users are

interacting with. Personal Servers are battery powered and are

expected to be always on.

In contrast to ISR, which completely frees users from

having to carry any device, IBM research proposes that users

should be able to carry everything with them on devices called

SoulPads [10] [11], in order to reduce infrastructure

requirements to a minimum. A SoulPad is a regular USB2

portable disk with a complete software stack on it, including

an auto-configuring host OS (Knoppix) and a suspended VM

image. By plugging a SoulPad into the USB port of an

arbitrary PC and booting from the SoulPad, users are able to

resume their personalised computing environments on

arbitrary computers (called EnviroPCs). Just before a user

finishes using an EnviroPC, the state of the session will be

suspended and stored on the user’s SoulPad so that changes

made by the user can be maintained. The SoulPad is a passive

storage device that requires no battery. Therefore users do not

have to worry about the battery life and recharging. The

personalisation procedure requires no network connectivity

and does not require EnviroPCs to have any specific software

installed or preloaded. The relatively low level of

infrastructure requirements makes this approach acceptable to

a wide range of conditions, and the developers believe it to be

especially useful for developing countries where Internet

connection is not widely accessible.

III. SIMPLICITY

Simplicity (“Secure, Internet-able, Mobile Platforms

LeadIng Citizens Towards simplicitY”) is a European Union

funded research project involving industrial and academic

partners from Austria, Finland, Germany, Greece, Italy, and

the United Kingdom. The aim of the project is to simplify the

way that the end users interact with different devices and

services by providing means for convenient personalisation,

and to provide a simple and unified architecture for adapting

services based on network and device capabilities as well as

user preferences.

A. End User Experience

From an end user’s perspective, the world with Simplicity

is expected to look as follows (the Simplicity website provides

detailed descriptions of user scenarios and business models

[1]):

Bob is a business manager who enjoys using different types

of personal devices, including a mobile phone, an iPod, a

PDA, a laptop, and PCs at home and in his office. To simplify

interactions with different services and devices, he adopted

the solution offered by Simplicity. Bob now always takes his

Simplicity Device (SD) with him, which acts as his key to the

Simplicity-enabled world. The SD stores Bob’s personal

profiles and optionally data that he’d like to use to personalise

the devices and services that he encounters. Each time Bob

plugs (not necessarily physically, because “connection” could

be wireless) the SD into one of his personal devices, the

existence of the SD is automatically discovered by a software

called Simplicity Personal Assistant (SPA) on the device. The

SPA displays a user interface asking Bob to grant the device

the right to access the SD. Bob has to authenticate himself,

e.g. by entering username and password. After successful

authentication, the device is authorised to access to profiles

and data on the SD and automatically starts the personalisation

process. For example, Bob’s home PC can get the same

appearance of the working environment of the office PC by

automatically configuring itself using Bob’s office PC profile

and copying personal data from Bob’s SD. The automatic

personalisation takes into account the differences in device

and network capabilities in different environments. For

example, the monitor of Bob’s home PC offers a much lower

resolution than Bob’s office PC. As a result, the display

resolution finally configured on the home PC will not be

exactly the same as that of the office PC. For networking, a

DSL connection is used at home, whereas Bob’s office PC is

configured to use the office’s Local Area Network (LAN).

Simplicity-enabled devices do not only exist in domestic

environments that Bob is familiar with, but are also common

in other places, such as brother companies and public spaces.

While visiting a brother company, Bob will be able to use his

SD to personalise the guest PC in the company. For example,

the email client on a guest PC will be configured in exactly

the same way as the one on Bob’s office PC, with the same

accounts being set up and same folder structures being

presented. In public places such as train stations, Bob will be

able to use his SD on the automatic ticket machine, which

automatically issues Bob window seat tickets in a non-

smoking coach. On the train, Bob can use his PDA to read the

news that have been downloaded to his SD, and Bob’s

Simplicity-enabled web-browser automatically displays the

news in plain text with hyperlinks to the pictures – according

to Bob’s preferences for the PDA. Even when visiting an

unfamiliar city, Bob is able use a Simplicity-enabled

electronic tour guide system to help him create a personalised

tour, which makes sure that the attractions suggested are of

interest to Bob. The tour guide system also displays detailed

descriptions of the tourist attractions that Bob is visiting, and

the contents of the description are tailored to Bob’s interests,

with a focus on the history of attractions rather than

architectural details.

B. Simplicity System Architecture

The Simplicity Framework (illustrated in Figure 1) consists

of two key components: the SD and the Simplicity Brokerage

Architecture.

Conceptually, a SD is the entity that stores users’ personal

profiles and preferences that enable convenient customisation

of devices and services. The SD could be a physical device

(e.g., a USB memory stick, a CompactFlash card, a Java card

or a Bluetooth-enabled mobile phone) or a virtual device, in

which case user-related data would be stored within the

network. The SD is the key for gaining access to the

Simplicity Brokerage Architecture and for exploiting the

benefits of it. It is therefore crucial to keep personal data on

the SD stored in a secure manner so that it cannot be released

without a user’s permission. In order to minimise user

involvement in the personalisation process, the SD should be

automatically discovered by the Simplicity framework and

Simplicity-enabled components. One specific goal of the

Simplicity project is to make SDs universally recognisable, so

that they can be used in conjunction with a wide range of

computing devices that users encounter. The format of the

user profile is important for it to be widely accepted, and

possible methods for standardisation are currently

investigated, including Generic User Profiles (GUP) in 3GPP

[12]. Following the project’s vision, a SD can be simply

plugged (e.g., USB stick) or integrated (e.g., SIM card) into

other devices. It should also be possible to have SDs that can

be connected without physical contact, e.g., via short range

wireless communication technologies, such as Bluetooth.

The Brokerage Architecture facilitates the design and

deployment of adaptive services by managing different

aspects of adaptation processes in a unified fashion. A broker

consists of a number of subsystems, each of which is

specialised to perform a specific task, e.g. the management of

information such as user profiles, location date and the

capabilities of devices or networks. Asynchronous

communication between subsystems on the same device is

enabled by a software component called Mediator, which

dispatches messages (e.g., events) according to a set of pre-

specified policies. In Simplicity, each broker undertakes

management actions on local resources, while the overall

administration of resources is achieved through inter-broker

cooperation and coordination. A Simplicity Broker

Communication (SBC) subsystem exists on every Simplicity

broker. It is responsible for the communication between

brokers on different entities.

Simplicity brokers also employ policy engines to facilitate

the management of device and service adaptation. Rules for

adaptation can be specified in a uniform way using a high-

level policy language. By separating these rules from the

components that perform the actual act of adaptation,

developers and users are able to add new policies and modify

existing ones conveniently without the need to modify these

components. Policies can also be ported to different services

and devices with minimal effort.

We classify Simplicity brokers into two types: brokers

deployed on end terminals are called Terminal Brokers (TB).

Amongst other things, Terminal Brokers host subsystems that

handle user interaction with the Simplicity Framework.

Brokers deployed to remote servers hosting network services

are called Network Brokers (NB).

TBs are responsible for retrieving personal information

stored on SDs and manage the interaction between the SD and

the terminal device through a subsystem called Simplicity

Device Access Management (SD-AM). SD-AMs offer

interfaces to a variety of different types of SDs, including

USB memory sticks and Bluetooth enabled mobile phones.

TBs also allow legacy third party applications to exploit the

benefits of Simplicity and customise themselves through

Application Programming Interfaces (APIs) exposed by a

special subsystem called Simplicity Application Interface

Management (SAIM).

Simplicity Personal Assistants (SPAs, mentioned in the

“End User Experience” section) are standalone applications

running on terminal devices to facilitates the process of

personal profile transfer from SDs to TBs (e.g., by providing

user interfaces for authentication). SPAs interact with the rest

of the Simplicity framework through APIs exposed by SAIM

subsystems.

To allow end users to select services and personalise them,

Simplicity employs NBs on those servers that host network-

based services. Service Management subsystems attached to

Network Brokers collaborate with Service Management

subsystems on TBs to provide support for service description,

advertisement and discovery. By retrieving additional

environmental information from context-aware modules, e.g.

from a location management subsystem or a network

capability subsystem, NBs are able to coordinate the

adaptation of services based on various factors, such as

location, network bandwidth or the availability of resources

on servers . In order to treat those different factors in a unified

fashion, Network Brokers make use of their built-in policy

management mechanisms.

More detailed description of the architecture of the

Simplicity system is beyond the scope of this paper. Please

refer to [13][14][15][16] for more information.

IV. ANALYSIS

As we have illustrated in section III, Simplicity provides a

unified framework for configuring and adapting a wide range

of devices and applications. The Simplicity framework itself is

modular and extensible. Subsystems communicate using a

light-weight, asynchronous, event-based interface, making it

possible to easily extend the Simplicity platform for the needs

of future applications.

By providing a framework that can be used by other

application components to acquire the necessary information

for configuring and adapting themselves, Simplicity is able to

provide support not only for PCs and PC-based applications,

but also for other ICT devices, such as phones and PDAs, and

even non-ICT-related platforms, such as MP3 players, TV sets

and even smart spaces. This ability to support heterogeneous

platforms is one of the main features distinguishing Simplicity

from other approaches that have been presented in section II.

In contrast, most of these approaches are centred around either

desktop PCs or workstations as targeted platforms.

While VNC, ISR and SoulPad merely support the migration

of existing working environments that were already

configured (e.g. complete images of the state of systems in the

case of ISR and SoulPad, and input/output to a remote system

in the case of VNC) to other machines, Simplicity enables

arbitrary existing devices, services and applications to

configure and adapt themselves according to users’

preferences.

We note that there is a clear relationship between the

amount of information a user is able to carry with him and the

degree of dependency with respect to additional infrastructural

services.

Approaches such as VNC or ISR do not require users to

carry any devices but mandate permanent high-bandwidth

network links (VNC) or at least intermittent network

connectivity (ISR). By enabling users to have their personal

Simplicity Devices with them at all times, Simplicity is able to

operate without relying on network connectivity. Moreover,

by allowing users to select from a wide variety of Simplicity

SPA
3rd Party

Applications

SBC

SAIM

SD-AM

Bluetooth

Smart

Card

USB

Mediator

SBC

Mediator

Terminal Side Network Side

Terminal

Broker

API

Network

Broker

Inter-Broker

Communication

Sub-

system
...

SAIM

Services

API

Sub-

system

Sub-

system
...

Simplicity

Device

Sub-

system

Sub-

system

...

Figure 1: Architecture of the Simplicity Framework

Devices, Simplicity enables users to select an option that is

well suited for their own personal needs.

Tradeoffs have to be made between the versatility of

devices and battery lifetime. Platforms, such as Intel’s

Personal Server technology, represent small embedded

systems that are programmable and can possibly be used for a

wide variety of tasks. However, their nature of being “always

on” causes batteries to deplete more quickly. The Simplicity

framework does not proscribe the use of any specific

Simplicity Device, as long as the device exposes a standard,

uniform SD interface. It is therefore possible to use both

passive, unpowered devices as well as active, more versatile

platforms, providing users with the flexibility they require.

Not unlike Simplicity, Migo aims at configuring existing

applications and services according to users’ needs. Migo

pursues the philosophy of actively configuring applications

and services. We personally believe that it is not feasible to

expect a configuration and personalisation framework to

provide modules for configuring every single existing

application and service. Not only does the development of

such components represent a great effort. It would moreover

require developers of such components to track application

development very closely to be able to support, for example,

changes affecting the format of configuration information.

This process is likely to require collaboration from the side of

application developers, which is why we believe that it is

more effective to leave the development of application-

specific configuration and adaptation approaches to

application developers themselves. Simplicity therefore

provides a lightweight framework for retrieving and managing

information necessary for the tasks of configuration and

adaptation.

V. CONCLUSION

In this paper we have introduced the concepts of Simplicity,

a novel framework for easing the burden of configuration and

adaptation of devices and applications. By analysing

Simplicity’s approach and by comparing it with related work,

we identified the following key contributions:

1) By providing a modular, extensible framework paired

with well-defined interfaces through which third parties

are able to use to retrieve information, we believe that

Simplicity is well-equipped to lead citizens towards

simplicity and to simplify interactions with a variety of

devices and services.

2) The policy-driven decision mechanism employed in the

framework facilitates uniform treatment of device

personalisation and service adaptation, and will

significantly increase the flexibility of the framework and

ease the task of maintenance.

3) By providing a framework that can be used by other

application components to acquire the necessary

information for configuring and adapting themselves,

Simplicity is able to provide support for heterogeneous

platforms on a wide range of devices that extends well

beyond the scope of other approaches.

We strongly believe that the benefits of the proposed

framework will help Simplicity to quickly experience

significant uptake by service providers, network operators as

well as end users, and we are all looking forward to the arrival

of Simplicity.

ACKNOWLEDGMENT

This work has been partially funded by the European Union

in the framework of the project IST-2004-507558 Simplicity.

The authors would like to acknowledge the contributions of

all the Simplicity partners.

REFERENCES

[1] SIMPLICITY project homepage: http://www.ist-simplicity.org/

[2] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual

Network Computing,” IEEE Internet Computing, 2(1), Jan/Feb 1998.

[3] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar and J. Light,

“The Persona Server - Changing the Way We Think about Ubiquitous

Computing,” Proceedings of Ubicomp 2002: 4th International

Conference on Ubiquitous Computing, Springer LNCS 2498, Goteborg,

Sweden, Sept 30th-Oct 2nd, 2002, pp194-209.

[4] M. Kozuch, and M. Satyanarayanan, “Internet Suspend/Resume,”

Proceedings of the Workshop on Mobile Computing Systems and

Applications (WMCSA2002), Callicoon, NY, June 20-21, 2002

[5] VMware homepage: http://www.vmware.com/

[6] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel,

and D. C. Steere, “Coda: A Highly Available File System for a

Distributed Workstation Environment,” IEEE Transactions on

Computers, 39(4), April 1990.

[7] R.P. Goldberg, “Survey of Virtual Machine Research,” IEEE Computer,

7(6), June 1974.

[8] N. Tolia, J. Harkes, M. Kozuch, and M. Satyanarayanan, “Integrating

Portable and Distributed Storage,” Proceedings of the Third USENIX

Conference on File and Storage Technologies (FAST '04), San

Francisco, California, March 31-April 2, 2004.

[9] Migo homepage: http://www.4migo.com/

[10] M. T. Raghunath, C. Narayanaswami, C. Carter, and R. Cáceres,

“Reincarnating PCs with Portable SoulPads,” IBM Research Report

RC23418, November 2004, Vol. 9, No. 1, February 2002. Available at

http://www.kiskeya.net/ramon/work/pubs/ibm2004.pdf

[11] R. Cáceres, C. Carter, C. Narayanaswami, M. T. Raghunath , “SoulPad:

Personalized Computing with Minimal Infrastructure,” demo at the Sixth

IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA 2004), English Lake District, UK, 2-3 December 2004.

[12] Homepage of the 3rd Generation Partnership Project (3GPP):

http://www.3gpp.org/

[13] N. Blefari-Melazzi, S. Salsano, R. Seidl: “The Simplicity Project: Initial

System Architecture Specification,” E2R Workshop on Reconfigurable

mobile systems and networks beyond 3G, 5 September 2004, co-located

with IEEE PIMRC 2004, in Barcelona (Spain).

[14] N. Blefari-Melazzi, S. Salsano, G. Bartolomeo, F. Martire, E. Fischer, C.

Meyer, Ch. Niedermeier, R. Seidl, E. Rukzio, E. Koutsoloukas, J.

Papanis, I. S. Venieris, “The Simplicity System Architecture,” 14th IST

Mobile & Communication Summit, Dresden, Germany, 19-23 June,

2005.

[15] E. A. Fischer, C. Meyer, Ch. Niedermeier, R. Seidl, S. Kapellaki, G.

Prezerakos, “Realizing Simplicity: Ambient Aware Service Adaptation,”

14th IST Mobile & Communication Summit, Dresden, Germany, 19-23

June, 2005.

[16] N. Blefari-Melazzi, D. Di. Sorte, M. Femminella, G. Reali, “Access

Network Control within the Simplicity Brokerage Framework,” 14th IST

Mobile & Communication Summit, Dresden, Germany, 19-23 June,

2005.

