

Aspect-Oriented Programming for Pervasive Computing:
A Comparative Study

Awais Rashid
Computing Department

Infolab21, Lancaster University
Lancaster LA1 4WA, UK

+44-1524-510316

awais@comp.lancs.ac.uk

Gerd Kortuem
Computing Department

Infolab21, Lancaster University
Lancaster LA1 4WA, UK

+44-1524-510324

kortuem@comp.lancs.ac.uk

James Walkerdine
Computing Department

Infolab21, Lancaster University
Lancaster LA1 4WA, UK

+44-1524-510352

walkerdi@comp.lancs.ac.uk

ABSTRACT
Recent years have seen an increasing interest in research into and
development of pervasive and ubiquitous computing
environments. Such environments require a high degree of
adaptability and are often inherently distributed in nature.
Adaptation and distribution are properties with a crosscutting
nature as the need for adaptation is determined by the context in
which various elements of the environment operate. Similarly, the
environment often tends to be composed of elements in different
locations, which need to communicate with each other and
exchange information to meet the needs of the pervasive
computing applications supported by the environment. Aspect-
oriented programming (AOP) has emerged as a promising
candidate to support modularisation of crosscutting concerns,
such as adaptation and distribution, in a reusable, evolvable and
maintainable manner. In this paper, we discuss our experience of
implementing an adaptive peer-to-peer (P2P) display environment
using AOP. We compare the AOP implementation with two
independently developed OO implementations of the
environment, one using a regular client-server model and the
other using a P2P application framework. The comparison
demonstrates that an aspect-oriented approach is indeed more
effective in modularising adaptation and distribution in a reusable,
maintainable and evolvable fashion. It also reduces the
complexity of the implementation with respect to the above three
desirable attributes. At the same time, our experience challenges
some of the existing (mis)conceptions about aspect granularity
within an application and also highlights the need for
development guidelines and idioms.

Keywords
Aspect-oriented applications, evolution, adaptability,
maintainability, pervasive computing, reuse, aspect-oriented
frameworks

1. INTRODUCTION
Pervasive computing aims at realising the vision of the
information society where computers are embedded within the
environment and applications seamlessly interact and exchange
information with each other and the users. Though most modern
day software systems, especially those servicing volatile business
domains such as banking and e-commerce, need to be adaptable to
changing requirements, adaptation is an even more crucial
characteristic of pervasive computing applications. New
interaction mechanisms, devices or services may be added to a
pervasive environment requiring them to be adapted to the
specific characteristics of the environment. Similarly, the existing
elements may be reorganised or adapted on the fly to react to
changes in user behaviour and data/information imparted or
manipulated by the pervasive environment.
Implementing adaptation in a pervasive environment is a
challenging task as the adaptation concern affects multiple
elements (devices, services, etc.) in the environment. The problem
is further compounded by the fact that the elements are often
geographically distributed and in many instances there is no
central node controlling the operation of the pervasive
environment. Therefore, the distribution concern has to be catered
for across the various elements forming the environment.
Aspect-oriented programming (AOP) [11, 19] has been proposed
as a means to effectively modularise such crosscutting properties,
i.e., properties that have a broadly scoped effect on a system. Not
only does AOP support improved separation of crosscutting
concerns, it promises to provide such separation in a manner that
promotes reusability, maintainability and evolvability. However,
few application studies exist so far to demonstrate the
effectiveness of AOP-based implementations with respect to these
quality attributes.
One of the earliest application studies of AOP was ATLAS [18], a
Web-based, distributed, learning environment, which investigated
the effectiveness of AOP (using an earlier version of AspectJ)
from the perspective of maintenance and change and also made
some important observations about aspect-class associations.
Soares et al. [32] have reported their experience on using AOP for
refactoring distribution and persistence in a layered Web-based
information system and derived guidelines for incremental
development of aspects in a system. A detailed study of
modularising the persistence concern in a large-scale bibliography
application has been carried out at Lancaster previously [27] and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

rashida
Computing Department, Lancaster University, Technical Report COMP-002-2005

rashida

observed that the notion of obliviousness – the base concerns
remaining fully unaware of the aspects being applied to them –
does not always make sense or is effective. In fact, at times key
architectural decisions rely on concerns not remaining oblivious
of each other. Similar observations were made by Kienzle et al.
[20] who studied the application of AOP to modularise
transaction management code. Some studies from IBM [7, 8] have
investigated the use of AOP, specifically AspectJ, to reduce
complexity in large-scale middleware platforms. Similarly, the
DAOP platform [24] has been used to implement coordination in
collaborative virtual environments. However, none of the
application studies so far have focused on applying AOP in
pervasive computing environments or more specifically on
modularising two key crosscutting properties in such
environments namely, adaptation and distribution.
It is important to investigate the effectiveness of AOP to improve
reusability, maintainability and evolvability in a pervasive
environment as such environments are aimed at underpinning the
next generation of applications. From an AOP perspective, such
an investigation would inform the design of AOP languages,
frameworks and methodologies to better serve such emerging
adaptive, distributed environments. From a pervasive computing
viewpoint, such a study would provide insight into a new
modularisation technique that promises to provide an effective
means to develop, maintain, reuse and evolve crosscutting
concerns, such as adaptation and distribution, which are at the
heart of pervasive applications.
In this paper we present our experience with using AOP to
modularise adaptation and distribution in a pervasive environment
supporting users to navigate their way to destinations and events
across the Lancaster University campus. We have chosen to use
AspectJ [3], an aspect language for Java to implement our
application. Our choice is driven by the maturity of the language,
its compiler and availability of effective tool support. Section 2 in
this paper describes the pervasive navigation environment in more
detail. Section 3 discusses the aspect-oriented implementation of
the environment in question. We carry out the implementation in
an incremental fashion: first building a standalone application
with adaptation concerns modularised with AOP, then adding P2P
distribution capabilities. This provides interesting insights into
whether such closely related concerns can be implemented
incrementally using AOP. Section 4 discusses two alternative OO
implementations of the environment, one using a regular client-
server distribution model and the other using a P2P application
framework. We must emphasise that all three implementations,
i.e., the AO implementation as well as the two OO
implementations, have been carried out completely independently
of each other. This has ensured that no biases for or against a
particular development technique have crept into the comparison
presented in section 5. We have chosen to compare the three
implementations on the following criteria for both adaptation and
distribution concerns:

• Modularity

• Reusability

• Maintainability

• Evolvability
In addition we also compare the complexity of the three
implementations with respect to the above qualities. Section 6

discusses some related work while section 7 concludes the paper
and identifies directions for future work.

2. THE PERVASIVE DISPLAY
ENVIRONMENT
The pervasive environment we are developing involves a set of
display devices (e.g., flat LCD panels, PDAs, etc.) to be deployed
across the Lancaster University campus. The environment is
aimed at supporting a range of applications including, but not
limited to, displaying news, disseminating information on
upcoming events and assisting visitors (and also staff and
students) in navigating their way around campus. We have chosen
to focus on the navigation application for the purpose of the
aspect-oriented implementation discussed in this paper.
Visitors, staff and students often need to find their way to various
destinations around campus. The destination can be a physical
location such as a building, department or a lecture theatre or it
can be an event such as a conference being hosted in a particular
building. The destination is often dynamic as a particular event
may have been moved to a different building or various sessions
relating to the same event might be taking place in multiple
buildings or the event may be held in different buildings on
different days of the week. Similarly, though less dynamic than
navigation information relating to events, a department may move
to a different building or expand to take up additional space in
another building. Similarly, alternative routes may need to be
displayed in case a particular path is blocked due to building or
renovation works or when the navigating person has special
requirements such as wheelchair accessibility.
Furthermore, each new display added to the environment must
adapt its specific properties to those of the environment. Displays
may also be moved as the environment expands or new
applications, usage scenarios and services are added.
The UML diagram of the environment is shown in Fig. 1.

Arrow

Destination Location
Located_at

n 1

Display

Flat Panel PDA

Display LocationInstalled_at
111 1

Displayed_on

Location VectorProperties

Here all attribute
& method sections
are suppressed

Fig. 1: UML diagram of the pervasive environment

The objects represented by the various classes in Fig. 1 are as
follows:

• Destination: A destination on campus, e.g., building,
department, event, etc.

• Location: A location based on coordinates on the campus map.

• Display Location: The location on the campus map where a
display has been installed.

• Location Vector: A vector pointing outwards from the display.
Used to determine which way a display is facing and whether
it has been moved.

• Display: An abstract class representing a display in the
environment.

• Flat Panel: A specific type of display, the flat LCD panel.

• PDA: A specific type of display, personal digital assistant.

• Properties: The specific characteristics of an individual
display.

• Arrow: The data to be displayed to assist with navigation (in
this case a simple arrow pointing in the direction to be
followed).

Note that each display is a self-contained computer with its own
processing, storage and wireless networking capabilities. It is also
equipped with a GPS receiver and an electronic compass to
determine its position (i.e., location and orientation) hence,
facilitating position-aware adaptation (filtering and
transformation) of content.

3. ASPECT-ORIENTED
IMPLEMENTATION
In addition to exploring whether we can modularise adaptation
and distribution in a reusable, maintainable and evolvable manner
using AOP, we aimed to explore two other key issues pertaining
to AOP when developing our pervasive environment. Firstly, we
wanted to explore whether it is indeed possible to aspectise, and if
so to what extent, two closely related crosscutting concerns,
adaptation and distribution, in an incremental fashion – a number
of approaches, e.g., [15, 32], have advocated such an incremental
approach to aspect-oriented development. Secondly, we aimed to
investigate whether it is really possible to develop a non-
distributed implementation of the environment and later introduce
the distribution aspect without significant changes – this is often
cited as a promising application of AOP [7, 8, 16, 23, 24, 32].
In order to obtain some answers to the above questions, we first
developed a non-distributed version of the environment. This
version solely focused on modularising adaptation code using
AOP and no distribution concerns were taken into account. Once
we had a working implementation of the non-distributed version,
we set about adding distribution capabilities to the environment,
again using AOP, based on a fully decentralised P2P architecture.

3.1 Non-distributed Implementation
When modularising adaptation we need to address three specific
facets of adaptation within our pervasive environment. The first
two are application independent and relate to any application
deployed in the environment while the third is specific to the
navigation application:
1. Display management: As the environment expands more

displays will be incorporated into it. All new displays must
have their specific properties adapted for use within the
pervasive environment. Furthermore, although the UML
diagram in Fig. 1 only shows two specific types of displays,
Flat Panel and PDA, it is conceivable that other types of
display devices may be added to the environment as they
become available.

2. Content management: The navigation content (an arrow in
this case) is only one type of content to be displayed on the
devices. There are other types of content that also need to be
stylised before they are delivered to the devices.
Furthermore, as new displays are added, the content already
being displayed within the environment has to be made
available on them as well.

3. Display adaptation: As a new destination is added or an
existing destination changed (e.g., change of venue for an
event), the displays need to be adapted to guide the users to
the correct destination. Furthermore, if a display is moved to
a different location it should be adapted to display the
content in a correct fashion based on its new location.

We have modularised each of these facets of the adaptation
concern using AspectJ aspects.

3.1.1 Display Manager Aspect
The DisplayManager aspect (cf. Fig. 2) encapsulates all
functionality relating to incorporation of new displays or
adaptation of their properties to the pervasive environment. The
aspect maintains a collection of all displays incorporated into
the environment and has a public method to traverse the collection
(cf. label (A) in Fig. 2). This is useful for other elements of the
system, especially the ContentManager aspect, which needs to
access all the displays in the system from time to time as new
content becomes available.
The three inter-type declarations (cf. label (B) in Fig. 2) introduce
display incorporation functionality into the abstract Display
class. Two final static variables representing the two available
display types are introduced. As new display types become
available, they can be introduced in a similar fashion. The
introduced static incorporateDisplay method instantiates
the right type of class as a new display is incorporated. If a
suitable display type does not exist, a
DisplayTypeNotFoundException is thrown.
The displayIncorporation pointcut (cf. label (C) in Fig.
2) captures all calls to the static method introduced into the
Display class. An after advice then adds the incorporated
display to the displays collection in the aspect as well as
adapts the properties of the newly incorporated display to the
pervasive environment.

public aspect DisplayManager {

private Vector displays = new Vector();

public Enumeration displays() {
// code

}

public static final int Display.PDA = 1;
public static final int Display.FLAT_PANEL = 2;

public static Display Display.incorporateDisplay(int id,
DisplayLocation location,
int displayType)

throws DisplayTypeNotFoundException {
// code

}

pointcut displayIncorporation():
call(public static Display Display.incorporateDisplay(..));

// advice code
}

A

B

C

Fig. 2: The Display Manager aspect

Note that although the DisplayManager aspect affects only a
single class, nevertheless it encapsulates a coherent concern. This
use of an aspect is, therefore, very much in line with good
separation of concerns practice. Had we not used this aspect,
display management concerns would have been coupled with the
core functionality of the Display class.

3.1.2 Content Manager Aspect
The ContentManager aspect is shown in Fig. 3. It declares
that all types of content must implement the Content interface
(cf. label (A) in Fig. 3). Note that in this case there is only one
type of content, Arrow, shown but in practice the pervasive
environment displays a variety of content. The Content
interface provides an application independent point of reference
for the pointcuts within the aspect, hence decoupling content
management from the type of content being managed. Any classes
that manipulate content in the pervasive applications deployed in
the environment are required to implement the
ContentManipulator interface, which specifies a number of
methods for content addition, removal and update. Note that this
interface is not implemented via the aspect, i.e., using the declare
parents feature of AspectJ, as each application has its own content
manipulation requirements. Like the Content interface, the
ContentManipulator interface also provides an application-
independent point of reference to capture all content manipulation
behaviour within the applications in the environment, including
the navigation application. The contentAddition pointcut
(cf. label (B) in Fig. 3) traps calls to addContent methods in all
application classes manipulating content. An after advice for
the pointcut then traverses all the displays registered with the
DisplayManager and updates them with the new content. The
contentDeletion and contentUpdate pointcuts (cf. label
(C) in Fig. 3) and their associated advice perform similar
functions upon content deletion and update. The
pushContentOnNewDisplay pointcut (cf. label (D) in Fig.
3) captures the instantiation of all sub-classes of the Display
class. An after advice then pushes the available content onto
the newly instantiated display.

public aspect ContentManager {

declare parents: Arrow implements Content;

pointcut contentAddition(Content c):
call(public * ContentManipulator.addContent(Content))
&& args(c);

pointcut contentDeletion(Content c):
call(public * ContentManipulator.deleteContent(Content))
&& args(c);

pointcut contentUpdate(Content c):
call(public * ContentManipulator.updateContent(Content))
&& args(c);

pointcut pushContentOnNewDisplay(): call(Display+.new(..));

//advice code
}

A

B

D

C

Fig. 3: The Content Manager aspect

3.1.3 Display Adaptation Aspect
While the DisplayManager and ContentManager aspects
are application independent and handle adaptation facets that span

across applications in our pervasive environment, the
DisplayAdaptation aspect, shown in Fig. 4, is specific to
the navigation application. The destinationChanged
pointcut in this aspect (cf. label (A) in Fig. 4) captures the change
in location of an existing destination or the creation of a new
destination. An after advice for the pointcut invokes the
adaptation rules for the displays to adapt the content accordingly.

public aspect DisplayAdaptation {

pointcut destinationChanged():
execution(public void Destination.setLocation(..))
|| execution(public Destination.new(..));

pointcut displayMoved():
execution(public void DisplayLocation.setLocationVector(..));

//advice code
}

A

B

Fig. 4: The Display Adaptation aspect

The displayMoved pointcut (cf. label (B) in Fig. 4) identifies
that a display has been moved by capturing the change in its
location vector1. An associated after advice then proceeds to
adapt the content of the moved display and any neighbouring
displays accordingly.

3.1.4 Discussion
The three aspects in section 3.1.1-3 clearly demonstrate that AOP
constructs provide an effective means to modularise both
application independent and application specific facets of
adaptation in a pervasive environment. The use of aspects makes
it easier to not only adapt the environment to changes in content
but also makes it possible to react to the reorganisation of the
displays in an effective fashion. Furthermore, any changes to the
adaptation characteristics of the environment or the navigation
application are localised within the aspects hence avoiding
changes to multiple elements of the system that would have
otherwise been required.
There are also interesting observations to be made about the
design of the adaptation concern. Firstly, the use of Content
and ContentManipulator as application independent points
of reference makes it possible to decouple the
ContentManager from application-specific content and
content manipulation operations. This is similar to the use of a
Persistent Root Class in [27] to decouple the persistence concern
from application-specific data. Also, similar to [27], we can
observe that the notion of one large AspectJ aspect (or one in any
other AOP technique) modularising a crosscutting concern does
not make sense in the case of the adaptation aspect either. The
three aspects and the Content and ContentManipulator
interfaces together modularise adaptation (cf. Fig. 5). While
different classes and AspectJ aspects modularise specific facets of
the adaptation concern, it is the framework binding them together
that, in fact, aspectises this particular crosscutting concern.

1 Change in location vector is the most appropriate way to identify

that a display has been moved as it might not have been
physically moved but simply rotated at its current position on
the map.

<<aspect>>
Content
Manager

<<aspect>>
Display

Adaptation

<<interface>>
Content

Manipulator<<aspect>>
Display

Manager

denotes Usage

Here all attribute, method &
advice sections are suppressed;

Application
specific

<<interface>>
Content

Fig. 5: Framework modularising Adaptation

3.2 Adding P2P Distribution
There are some very interesting observations that come to light
once we start on the next increment, i.e., the introduction of the
distribution aspect. Some features that “naturally” reside in the
three aspects in the non-distributed version in section 3.1 do not
necessarily belong there once we start considering distribution.
They either are not needed any more or would have been placed in
a separate aspect had we considered distribution when designing
our adaptation concern.
The first example of this can be seen in the form of the
DisplayManager aspect itself. The code in labels (A) and (B)
in Fig. 2 is used to incorporate new displays into the system and
keep track of all existing displays in a centralised fashion.
However, in our increment we have chosen to use a purely
decentralised P2P distribution mechanism. Consequently, each
display forms a peer node within the P2P network. There is no
central control server and as a result a centralised tracking of
displays in the environment does not make sense – as a new
display is added it advertises its existence to displays (peers) close
to it (note that it can also advertise to all peers in the environment
and not just the nearby ones) resulting in them becoming aware of
its existence. This means that a centralised collection of all
displays in the environment does not make sense any more. As a
result, code in labels (A) and (B) in Fig. 2 is not needed any more.
This also brings to front a problem with the
displayIncorporation pointcut (cf. label (C) in Fig. 2).
The pointcut is currently defined on the basis of the
incorporateDisplay method which is introduced into the
Display class by the DisplayManager. Once the introduced
method is removed, the pointcut is no longer valid. This
highlights the problems that can arise if pointcuts and advice are
specified with reference to methods or attributes introduced using
inter-type declarations. Had the pointcut been defined directly on
the basis of instantiation of sub-classes of Display as:

pointcut displayIncorporation():

call(Display+.new(..))

it would have not become invalid once the inter-type declaration
was removed. Furthermore, had the displayIncorporation
pointcut been specified in a separate aspect, we could simply
remove the (remainder of the) DisplayManager aspect as a
whole as it is not needed in our P2P distribution implementation.
Note, however, that had we chosen a regular client-server model
then the (remainder of the) DisplayManager aspect could

have been reused as it is; it would have formed an effective
element of a central server managing displays in such a case.
A similar example can be observed in the ContentManager
aspect. In a non-distributed implementation, pushing content on
new displays, i.e., the pushContentOnNewDisplay pointcut,
seems to naturally reside in the ContentManager aspect.
However, when we start to introduce distribution, it is clear that
this is something that must be handled by the P2P communication
features of the environment. Even in a regular client-server model
this would be the task of the distribution concern and not the
content management concern. The pointcut simply serves as a
temporary mechanism to simulate communication in the non-
distributed implementation. It would be best placed in a separate
aspect so that it can simply be excluded when the distribution
concern is implemented.
The above examples highlight that incremental development of an
aspect-oriented system may lead to us removing or keeping
elements of the concern implemented in the previous increment
depending on the design choices we make about the aspect being
implemented in the current increment. This also implies that an
increment should not be oblivious to the fact that there are further
increments to follow it as well as the nature of the aspects to be
implemented in those increments. If we had carefully considered
the next increment, i.e., the distribution aspect when designing
adaptation, we would have been aware of the design
considerations highlighted above and catered for these when
modularising adaptation.
Having made the above changes to the aspects modularising our
adaptation concern, we can move on to introducing P2P
distribution capabilities into the environment using AOP. We
have chosen to build the P2P capabilities using Sun
Microsystems’ JXTA [17] which provides a set of open protocols
for realisation of a decentralised P2P network. The choice of a
decentralised P2P architecture is driven by the fact that we wish
our display nodes to be independent and autonomous. Content
can be added to an application running on any peer and it should
not only get propagated to other peers but the peers (or at least
those close to each other) can communicate to figure out the best
way to display the content. An example of this is a scenario where
a user walks up to a small, PDA-sized, display and requests
information that is too rich to be displayed on the device. In such
a scenario, the small display can enquire whether any of the peers
close to it is a large display capable of presenting the information
to the user, request it to do so and, provided the request is
accepted by the large display, direct the user to it using the
navigation application. Note that this might require further
communication and interaction with nearby peers if the larger
display is not immediately close to the small display. In this case,
the intermediate displays will have to display the correct direction
of the arrow for the user to reach the large display.

3.2.1 P2P Communication Aspect
Before discussing the P2PCommunication aspect, it is
important to highlight two helper classes, JXTA_Setup and
PipeListenerThread, that play a key role in the
modularisation of the P2P distribution code. The JXTA_Setup
class encapsulates functionality to initialise JXTA and create a
peer group. It also encapsulates features for peer discovery as a
new peer joins the peer group. The PipeListenerThread is a

simple listener that waits for an incoming message on the input
pipe for the peer (JXTA uses the notion of input and output pipes
for connection among peers).
The P2PCommunication aspect (cf. Fig. 6) traps the
instantiation of a display, i.e., addition of a new display into the
environment (cf. label (A) in Fig. 6). An after advice operating
on the peerCreation pointcut then instantiates the
JXTA_Setup class, initialises JXTA and carries out peer
discovery. This results in the new peer being added to the peer
group and publishing its advertisement (a means to inform other
members of the peer group about its existence). The
inputPipeCreation pointcut (cf. label (B) in Fig. 6) works
in tandem with this and traps the publishing of such an
advertisement during JXTA initialisation. An after advice then
instantiates the PipeListenerThread to associate an input
pipe listener with the peer.
The messageArrived pointcut (cf. label (C) in Fig. 6) simply
waits until a new message is received by the
PipeListenerThread instance. Once a new message arrives,
it passes it onto the relevant application for processing.
The P2PCommunication aspect also has three pointcuts
identical to those in the ContentManager aspect. There relate
to content addition, deletion and update (cf. label (D) in Fig. 6;
note the use of application independent reference points:
ContentManipulator and Content). Since all displays in
the environment are autonomous, content can be added at any
display and must be conveyed to other peers in the display
network. The after advices associated with each of the three
pointcuts capture this communication facet; note that the
ContentManager aspect handles the stylistic issues pertaining
to the content and not communication (the only pointcut
simulating communication, i.e., the
pushContentOnNewDisplay pointcut in Fig. 3 has been
removed in this iteration).

public aspect P2PCommunication {

pointcut peerCreation(): execution(Display+.new(..));

pointcut inputPipeCreation(): cflow(
execution(public void JXTA_Setup.initialise())) &&
call(Advertisement AdvertisementFactory.

newAdvertisement(..));

pointcut messageArrived(Message message):
call(void PipeListenerThread.setMessage(Message)) &&
args(message);

pointcut contentAddition(Content c):
call(public * ContentManipulator.addContent(Content))
&& args(c);

pointcut contentDeletion(Content c):
call(public * ContentManipulator.deleteContent(Content))
&& args(c);

pointcut contentUpdate(Content c):
call(public * ContentManipulator.updateContent(Content))
&& args(c);

//advice code and helper methods
}

A

B

D

C

Fig. 6: The P2P Communication aspect

3.2.2 Aspect Precedence
The P2PCommunication and ContentManager aspects
operate with reference to the same set of pointcuts for content
addition, deletion and update. Similarly, the

P2PCommunication and the DisplayManager aspects
(with now only the new displayIncorporation pointcut
and associated advice) both operate with reference to the
instantiation of new displays. Therefore, we need to define clear
precedence rules between these two aspects.
If we look at our display environment, we can observe that any
stylistic manipulation of the content by the ContentManager
must be carried out before it is passed onto other peers by the
P2PCommunication aspect. Similarly, it is important to
establish connections among peers (via the
P2PCommunication aspect) before discovering the properties
of the environment and adapting a new display to these properties
(in the DisplayManager aspect). Since these precedence rules
are simple and static (i.e., the precedence doesn’t change
depending on the dynamic context as in [27]), we can specify
them easily with the declare precedence declaration in
AspectJ. We have chosen to define these precedences in a separate
aspect as we consider interaction rules to be crosscutting the
aspects whose interactions they govern. Consequently, the
AspectPrecedence aspect (cf. Fig. 7) is an aspect of
ContentManager, DisplayManager and
P2PCommunication aspects.

public aspect AspectPrecedence {

declare precedence: ContentManager, P2PCommunication;
declare precedence: P2PCommunication, DisplayManager;

}
Fig. 7: The Aspect Precedence aspect

3.2.3 Discussion
Similar to the modularisation of adaptation, we can observe that
the notion of a single, large aspect modularising distribution is not
true. The P2PCommunication aspect together with the
JXTA_Setup and PipeListenerThread classes and the
Content and ContentManipulator interfaces provides a
framework (cf. Fig. 8) which allows us to modularise distribution
effectively. The framework is application independent and can
seamlessly apply to any new application entering our pervasive
display environment. At the same time, it could be reused in other
similar content manipulating P2P environments. A modularised
distribution approach also makes it possible to change the
distribution approach without requiring any changes to the
applications operating within the environment. This application
independence is facilitated by the two interfaces which provide
application-independent reference points for the aspect to operate
on. It is also interesting to note that these interfaces are shared by
both aspect frameworks, i.e., adaptation and distribution.

<<aspect>>
P2P

Communication
Pipe

Listener
Thread

<<interface>>
Content

Manipulator

JXTA_
Setup

denotes Usage

Here all attribute, method &
advice sections are suppressed;

<<interface>>
Content

Fig. 8: Framework modularising Distribution

Our experience has also highlighted the fact that incremental
introduction of aspects during development is not as straight
forward as it might seem at the first glance. One needs to be aware
of aspects to be added in future increments otherwise it is likely
that design decisions will need to be revisited when new aspects
are added. This can be addressed by communication among
different members of the development team working on different
increments. Alternatively, an architect can keep abreast of these
“development aspects” (note that this is a lifecycle concern that
cuts across the development increments) and ensure that a holistic
picture of the design is maintained at each increment.

4. PURE OO IMPLEMENTATIONS
We now discuss two independently developed OO
implementations of the same pervasive environment. The first,
GAUDI, uses a regular client-server distribution model and XML-
based content transformation and adaptation. The second employs
a decentralised P2P distribution model (similar to the AO
implementation) but, instead of using AOP, employs a P2P
application framework offering high-level services for P2P
application development.

4.1 The GAUDI System
GAUDI, Grid of Autonomous Displays, is an OO realisation of
the pervasive display environment. It consists of a central content
server and an arbitrary number of autonomous displays units. The
content server is responsible for storing content and pushing
updates out to the displays. Content is generated by a number of
applications running on the same physical host as the server.
Since the displays are equipped with a GPS receiver and an
electronic compass, the content server is ignorant of the position
and capabilities of each display; each display receives the same
generic (i.e., position-unspecific) content and decides on its own
how best to adapt the content.
As shown in Fig. 9, the DisplayManager class in the content
server keeps track of all connected displays by managing a
collection of IP addresses and providing methods for traversing it.
Displays contact the content server to explicitly connect and
disconnect from it. The content server manages content for several
applications, each of which is an independent process running on
the same physical host as the server. The content is represented as
an XML file or, more specifically, as an instance of the
GenericContent class. Generic content consists of a
collection of multimedia objects and adaptation rules. In the
navigation application, the ContentCreator computes its
content from two pieces of information: a campus map and the
destination to which users should be guided. The output is an
image object depicting an arrow and rules of how to rotate this
object depending on a display’s position. Note, however, that the
adaptation is performed by the display and not by the content
server or the application.

XMLContent

GenericContent

Arrow DisplayManager

Display
n
1

ContentCreator

Destination

Location

Map

uses

generates
uses

AdaptedContentContentTransformerPosition

Orientation

generates

transforms

uses

1
1

1

Content Server Navigation Application Display UnitLegend
Fig. 9: The GAUDI system and its various elements

The main class in the display unit is the
ContentTransformer. It takes as input positional
information delivered from the sensor subsystem and uses it to
adapt a generic content file in a position-aware manner. This is
done by evaluating the adaptation rules contained in the
GenericContent file. The result is an instance of the
AdaptedContent class.
The GAUDI implementation does not focus on modularising the
distribution behaviour. However, it handles the three specific
facets of adaptation introduced in Section 3.1 as follows:

• Display management: Flexible display management is
achieved by strictly limiting the knowledge the server (and
application) needs to have about individual displays. Thus
new displays can be incorporated by simply registering with
the server, regardless of their specific characteristics.

• Content management: Flexible content management is
achieved by introducing a common content representation
format for all applications.

• Content adaptation: By strictly separating the roles and
responsibilities between the application (content creation),
server (content management) and display (content adaptation)
it is possible to dynamically adapt the content in a position-
aware manner. New content can be accommodated by
pushing it out to all connected displays.

4.2 Using a P2P Application Framework
A second decentralised P2P implementation of the display
environment was built using Lancaster’s P2P Application
Framework [34] (cf. Fig. 10). The framework is effectively an
abstract layer geared specifically towards P2P application
development. It reduces the burden on developers to understand
the underlying P2P technology by providing a set of generic,
protocol independent, application-oriented services. Such services
include peer communication, discovery/searching, awareness, file
sharing and network monitoring. By using the P2P Application
Framework, users can rapidly build an application once, and use it
over many different P2P protocols and network topologies.

P2P Application Framework

P2P Protocol/System

Physical Network

Interface Layer

Plugins

Fig. 10: Using the P2P application framework

Applications using the framework are developed in the form of
Java-based plug-ins to the framework (cf. Fig. 10). Therefore, in
case of our pervasive navigation application, the
NavigationPlugin acts as not just the content manipulator (it
implements the ContentManipulator interface) but also
captures all the functionality for distributing information to other
peer displays and adaptation behaviour to respond to changes in
destination or moving of the display. The actual functionality for
discovering and communicating with other peers is provided by
the framework and accessed via its API. This separation means
that the plug-in is not tied to a specific underlying P2P technology
though the adaptation, distribution and content manipulation
behaviour is closely coupled within the monolithic plug-in.
Furthermore, any other applications on the same node in the
display environment have to provide their individual
implementation of the high-level distribution functionality as well
as response to changes in case of content addition, deletion and
update in a fashion similar to the NavigationPlugin.

5. COMPARING THE AO AND OO
IMPLEMENTATIONS
We now compare the three implementations of our pervasive
display environment with regards to modularity, reusability,
maintainability and evolvability as well as the complexity of each
implementation in realising the above properties.
Modularity: We can observe that the two aspect-based
frameworks for adaptation and distribution in the pervasive
environment help us modularise these concerns effectively. The
frameworks use application-independent points of reference to
decouple themselves from the details of individual applications
within the environment. At the same time, the aspectisation of
adaptation caters for application-specific facets of this particular
concern. The use of aspects makes it easier for us to keep the
application-specific element of adaptation separate from the
application-independent elements. This is a direct consequence
for choosing the right level of granularity for the aspects in our
design and avoiding the temptation to modularise a concern using
one large aspect module. The AO implementation initially has
some development overhead due to the changes introduced to the
past increment (in this case adaptation) when a new increment
(distribution) is introduced. However, the guidelines we have
inferred from this experience can help minimise such revisions
during incremental development.
The XML-based content management and transformation
approach in GAUDI makes it possible to modularise the various
facets of adaptation. However, distribution is not effectively

modularised and any changes to the distribution behaviour can
have systemic, environment-wide impact. The
NavigationPlugin implementation (based on the P2P
Application Framework) is largely monolithic in that core
application concerns are intertwined with adaptation and high-
level distribution behaviour (e.g., application/domain dependent
algorithms for distributing content evenly across peers). However,
the framework does provide effective modularisation of low-level
P2P protocols and services.
Reusability: The AO implementation of adaptation lends itself to
a high degree of domain-specific reuse, e.g., pervasive
environments of a similar sort manipulating and sharing
information. The P2P distribution aspect framework, on the other
hand, is much more generic and can be reused in any content
manipulating application. Furthermore, new applications and
content can be seamlessly deployed within the environment as
long as they implement the ContentManipulator and
Content interfaces respectively.
In a similar fashion, adaptation behaviour in GAUDI is also
highly reusable in a domain-specific manner. The content
generation and transformation approach is generic. However, the
transformer might need to be extended to deal with other types of
content from new applications. This is in contrast with the AO
implementation where the adaptation aspect framework does not
need to be modified as new applications are deployed. GAUDI
does not modularise distribution so this concern cannot be reused.
The NavigationPlugin implementation has a low degree of
reuse with reference to adaptation and distribution but the
underlying P2P framework provides a large-scale reuse
mechanism facilitating development of other P2P applications, in
markedly different environments and using different protocols.
Maintainability: The revisiting of the previous increment in our
AO approach provides us with some insights into its
maintainability. The changes to adaptation behaviour are limited
to the two application-independent aspects, ContentManager
and DisplayManager. The application-specific adaptation
behaviour is isolated from these and hence remains unchanged.
Since the P2P distribution code is completely separated from
other elements of the environment, any changes or updates to it
are localised to the distribution aspect framework.
In GAUDI, though the adaptation code is modularised through the
XML-based content management and transformation approach,
any changes to it are likely to carry a significant overhead as there
is a significant code bloat arising from the inclusion of the XML
processing code. The distribution behaviour is not modularised so
changes to it will affect multiple elements of the pervasive
environment, e.g., the server, the navigation application and the
display unit. In case of the NavigationPlugin, changes to
either adaptation and distribution code are expensive as they are
not effectively localised. However, changes, such as, moving to a
different P2P protocol or service are very inexpensive as the
framework provides facilities for a seamless exchange.
Evolvability: Similar to maintainability, evolvability is facilitated
by the AO implementation by keeping the adaptation and
distribution behaviour modularised in the two aspect-based
frameworks. Any updates or changes to application-independent
or application-specific adaptation behaviour are localised to that
particular aspect framework. Similarly, one can evolve the P2P
distribution behaviour or move to a different mechanism without

affecting the code implementing the rest of the elements of the
pervasive environment.
The adaptation behaviour in GAUDI is also quite evolvable albeit
it is complex to do so due to the significant amount of XML
processing code. The distribution behaviour is much harder to
evolve as it is tangled with the various elements of the
environment. In the P2P Application Framework, one can evolve
the framework easily by adding support for more low-level
protocols and services. However, application evolution is a more
intensive and difficult task as crosscutting properties are not
modularised effectively.
Complexity: All three implementations provide modularity
mechanisms which are easy to understand and use. In case of the
AO implementation, the two aspect frameworks are fairly straight-
forward to use. Same is the case for the adaptation mechanism in
GAUDI and the high-level services provided by P2P Application
Framework. In terms of reuse, maintainability and evolvability,
the two aspect frameworks in the AO implementation provide a
simple yet effective set of abstractions that one can employ,
change or evolve. In case of GAUDI, the XML processing code
poses significant complexity when one is trying to adapt it for
reuse or maintenance or evolving it in line with changes to
requirements for the pervasive environment. The P2P Application
Framework is very simple to reuse due to its high-level
application interface. The layered architecture offers support for
maintaining and evolving individual layers. However, there is
significant coupling among the layers and changes to elements in
lower layers can have an impact on those residing in the
immediately adjacent higher layer.
Table 1 summarises our comparative analysis of the three
implementations.

Table 1: Comparative overview of the three implementations
Implementation

Property Concern
AO Impl. GAUDI P2P Appl.

Framework

Adap. Yes Yes No Modularity

Dist. Yes No Low-level
protocols only

Adap. Domain &
Appl.
Specific

Domain
& Appl.
Specific

None Reusability

Dist. Any content
manipulator

No Low-level
protocols only

Adap. Good Average Poor Maintainability

Dist. Good Poor Poor

Adap. Good Average Poor Evolvability

Dist. Good Poor Poor

Complexity Low Medium Medium

6. RELATED WORK
A number of middleware platforms have focused on support for
adaptive, mobile and ubiquitous computing applications. Román
and Campbell [28] propose a middleware-based application
framework for the purpose. The framework is specifically geared

towards device rich, mobile environments. Popovici et al. [25]
discuss the use of the aspect-oriented middleware platform,
PROSE, to support dynamic adaptation of mobile robots to
different production needs. The Distributed Aspect and Object
Platform, DAOP, [24] reifies the architecture specification,
provided using its own architecture description language, which
can then be adapted at runtime in line with the adaptation
requirements of the application. The platform has been used to
construct adaptive environments for collaborative work. All these
platforms focus on supporting adaptation with distribution
support provided by the middleware platform itself. Our
application study of AOP is, therefore, complementary to these
approaches as it focuses on evaluating a general purpose AOP
technique, in this case AspectJ, to develop adaptive, distributed
pervasive environments. In this sense, our AO implementation of
the pervasive environment can be seen as a kind of middleware
providing distribution and adaptation support for applications
being deployed within the environment.
Brooks et al. [5] discuss aspect-oriented design of an adaptive
sensor network supporting military applications. Their adaptive
environment is developed using a custom-built, petri-net based
solution while our comparative study is based on using general
purpose AO and OO techniques. Furthermore, the nature of their
sensor network, and applications supported by it, results in
complex aspect interactions which requires a resolution model
more elaborate than that of AspectJ. In case of our pervasive
environment, the aspect interactions are fairly simple and can be
easily handled and resolved by AspectJ.
Soares et al. [32] have focused on development of persistence and
distribution aspects as separate increments to a system. Our
experience provides further insight into the mechanics of such an
incremental approach. The AO implementation of our pervasive
environment shows that though such an incremental approach is
viable, there has to be significant communication across the
increments to avoid overhead of revisiting aspects developed in
earlier increments.
Some researchers, e.g., Murphy et al. [21] and Baniassad et al. [4]
have undertaken empirical studies of developers using AOP
techniques. Our application experience is orthogonal to such
studies as we analytically compare different implementations of
the same environment. Ethnographic studies of such comparative
implementations would provide interesting insights into the way
developers approach the modularisation of crosscutting concerns
both with and without AOP techniques.
Adaptation is a recurring theme in pervasive computing. A major
thrust of systems-level research in pervasive computing is aimed
at building context-aware systems [30, 31] that exhibit adaptive
behaviour, i.e., systems that can adapt at runtime to the user’s
tasks and needs, and to the availability of system resources such
as network bandwidth. The main strategy to achieve this goal is to
provide generic system and application platforms with built-in
adaptation capabilities. Examples of such platforms are the
Context Toolkit [10], Context Fabric [14], Aura [12, 33] and
OneWorld [2, 13]. Another approach is based on the use of
explicit software architecture models to monitor a system and
guide dynamic change to it. Cheng et al [6] use externalised
models to make reconfiguration decisions based on a global
perspective of the running system and to gauge their effectiveness
through continuous system monitoring. A variation of the same

architecture-based approach is the work on ArchJava [1, 29], an
extension to the Java programming language that unifies software
architecture with implementation. ArchJava can be thought of as
an aspect-oriented programming language with support for
separating crosscutting structural concerns from behavioural
concerns. Both of these architecture-based approaches aim at
enabling a system to self-repair or self-heal in order to recover
from an unwanted system state. However, all of the above-
mentioned approaches focus on short-term adaptation concerns;
so far not much attention has been paid to post-deployment issues
of pervasive systems such as maintainability, evolvability and
long-term adaptation.
A number of approaches have examined how P2P technology can
be modularised and abstracted. Due to the large number of P2P
protocols that have been developed most of this has focused on
low-level technological abstractions. Dabek et al. [9] abstract
common APIs for structured P2P networks. PROST [26] builds
on this and seeks to reduce the duplication of P2P routing
functionality by extracting it into a separate layer that can then be
reused by different applications. The Open Overlays project [22]
takes this further by building abstractions for any type of P2P
network technology. In all these cases (as with the P2P
Application Framework in section 4.2) only the low-level
functionality has been abstracted, meaning that the applications
built on top would still possess a largely monolithic structure (for
example, if having to implement functionality such as content
manipulation and display adaptation, as discussed in this paper).

7. CONCLUSION
This paper has described our experience of using AOP,
specifically AspectJ, to implement an adaptive peer-to-peer
pervasive display environment. We have also undertaken two OO
implementations of the same environment, developed completely
independently of each other and the AO implementation. The
three implementations give us a strong basis to compare the
modularisation of two key crosscutting concerns in pervasive
computing environments, adaptation and distribution. We have
derived our comparison criteria from some of the key motivations
behind AOP, i.e., the development of more modular, reusable,
evolvable and maintainable representations of crosscutting
concerns. At the same time, we have compared the three
implementations for complexity of realising the above quality
attributes with regards to adaptation and distribution. Our
comparison clearly demonstrates that an AO approach facilitates
modularisation of adaptation and distribution code in our
pervasive environment in a manner which is more reusable,
evolvable and maintainable compared to the two OO
implementations. While the two OO approaches modularise some
facets of each of the two concerns – an XML based content
generation and transformation approach to modularise adaptation
in GAUDI and an application framework modularising low-level
protocols for P2P distribution in case of the P2P Application
Framework based implementation – the AO approach does so in a
manner that is less complex, avoids unwanted code bloat and is
more intuitive to reuse, maintain and evolve.
Our experience also provides interesting insights into
development of aspect-oriented applications. We can observe
from the realisation of both the adaptation and distribution
concerns that the notion of one single, large aspect module (in this

case a single AspectJ aspect) encapsulating a crosscutting concern
does not make sense. One needs to modularise different facets of a
crosscutting concerns using abstractions most suited for the
purpose, i.e., aspects, classes or interfaces, and the resulting
framework that binds these facets together is, in fact, the aspect
modularising the crosscutting concern. There is another argument
for such an approach clearly visible from our implementation.
Had we not separated application-independent and application-
specific facets of adaptation using different AspectJ aspects, the
changes to adaptation code required when the distribution aspect
was introduced would have been much more difficult to achieve.
Our fine-grained modularisation facilitated analysis of our design
decisions and easy and effective implementation of any
refactorings to the existing, aspectised adaptation code.
Our application experience also helps us better understand
whether closely related aspects, such as adaptation and
distribution, can indeed be developed in complete isolation in
different system increments. We can see that, though this is an
attractive proposition, in reality the semantics of such increments
are too intertwined to allow strict isolation. In case of our
pervasive environment, the design of our adaptation aspect
framework would have been better informed had we taken into
account the semantics of the distribution concern and the specific
distribution architecture to be employed in the following
increment. It is, therefore, clear that such life cycle aspects, that
pertain to development guidelines and hence cut across
development stages or increments, require significant attention
from the AOSD community. Application studies similar to ours
are a key to formulate a better understanding of such life cycle
aspects.
We can also observe some interesting development styles for
aspect-oriented applications. We have used interfaces as
application-independent points of reference to decouple the aspect
frameworks (modularising the crosscutting concerns) from the
other concerns in the system. Similar, application-independent
points of reference were employed by [27] to modularise
persistence using AOP. We can see that such an approach works
well for aspect-base decoupling especially to improve reusability,
maintainability and evolvability of aspects implemented with
approaches like AspectJ which, otherwise, require pointcuts to be
specified with direct references to the signature of elements in the
base. The use of application-independent points of reference
offers a level of indirection to avoid such direct references hence
significantly reducing, and in our case eliminating, the impact of
changes to the signature of the base on the aspects and vice versa.
From a pervasive computing perspective, our application provides
an opportunity to evaluate the suitability of an emerging
development technique. One of the key points to note in our AO
implementation is the focus on the more longer term qualities
such as reusability, evolvability and maintainability. Most existing
research in pervasive computing focuses on meeting the short-
term adaptation needs of the applications and such long-term
qualities are often ignored in system design. Our application
brings forth AOP as a viable option to develop pervasive
environments that are responsive to needs imposed by such long-
term quality attributes without compromising the focus on short-
term adaptability needs of applications.
Our future work will focus on studies of developers working on
similar, independently developed, multiple implementations of

systems, involving a variety of systems from a wide range of
domains. This will not only provide further opportunities for
comparative studies of the implementations but also make it
possible for us to study how developers approach the
modularisation of a crosscutting concern and how challenging the
task becomes if AOP tools and techniques are not being
employed. Such studies are a key to understanding the full
potential of AO techniques.

8. ACKNOWLEDGEMENTS
The work presented in this paper is part of the ECampus initiative
funded by Lancaster University. The authors wish to thank Chris
Kray at Lancaster University for his contributions to the GAUDI
implementation and Danny Hughes, also at Lancaster University,
for helpful discussions.

9. REFERENCES
[1] J. Aldrich, V. Sazawal, C. Chambers, and D. Nokin,

"Architecture-Centric Programming for Adaptive Systems",
Proceedings of the Workshop on Self-Healing Systems.
(WOSS'02), 2002.

[2] L. Arnstein, R. Grimm, C.-Y. Hung, J. H. Kang, A.
LaMarca, G. Look, S. B. Sigurdsson, J. Su, and G.
Borriello, "Systems Support for Ubiquitous Computing: A
Case Study of Two Implementations of Labscape",
Proceedings of International Conference on Pervasive
Computing, 2002.

[3] "AspectJ Project", http://www.eclipse.org/aspectj/, 2004.
[4] E. L. A. Baniassad, G. C. Murphy, C. Schwanninger, and

M. Kircher, "Managing Crosscutting Concerns during
Software Evolution Tasks: An Inquisitive Study", 1st
International Conference on Aspect-Oriented Software
Development (AOSD), 2002, ACM, pp. 120-126.

[5] R. R. Brooks, M. Zhu, J. Lamb, and S. S. Iyengar, "Aspect-
Oriented Deign of Sensor Networks", Journal of Parallel
and Distributed Computing, Vol. 64, No. 7, pp. 853-865,
2004.

[6] S. Cheng, D. Garlan, B. Schmerl, J. Sousa, B. Spitznagel,
P. Steenkiste, and N. Hu, "Software Architecture-based
Adaptation for Pervasive Systems", International
Conference on Architecture of Computing Systems Trends
in Network and Pervasive Computing, 2002, Springer-
Verlag, Lecture Notes in Computer Science, 2299.

[7] A. Colyer, G. S. Blair, and A. Rashid, "Managing
Complexity in Middleware", Workshop on Aspects,
Components and Patterns for Infrastructure Software (held
in conjunction with AOSD 2003), 2003.

[8] A. Colyer and A. Clement, "Large-Scale AOSD for
Middleware", 3rd International Conference on Aspect-
Oriented Software Development (AOSD), 2004, ACM, pp.
56-65.

[9] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I.
Stoica, "Towards a Common API for Structured Peer-to-
Peer Overlays", Proceedings of IPTPS, 2003, Springer-

Verlag, Lecture Notes in Computer Science, 2735, pp. 33-
44.

[10] A. K. Dey, D. Salber, and G. D. Abowd, "A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications", Human-
Computer Interaction, Vol. 16, 2001.

[11] T. Elrad, R. Filman, and A. Bader (eds.), "Theme Section
on Aspect-Oriented Programming", Communications of
ACM, Vol. 44, No. 10, 2001.

[12] D. Garlan, et al. "Project Aura: Toward Distraction-Free
Pervasive Computing", IEEE Pervasive Computing, Vol. 1,
No. 2, pp. 22-31, 2002.

[13] R. Grimm, "One.world: Experiences with a Pervasive
Computing Architecture", IEEE Pervasive Computing,
Vol. 3, No. 3, 2004.

[14] J. I. Hong and J. A. Landay, "An Infrastructure Approach
to Context-Aware Computing", Human-Computer
Interaction, Vol. 16, 2001.

[15] I. Jacobson, "Use Cases and Aspects-Working Seamlessly
Together", Journal of Object Technology, Vol. 2, No. 4,
pp. 7-28, 2003.

[16] "JBoss Aspect Oriented Programming Webpage",
http://www.jboss.org/products/aop, 2004.

[17] "JXTA v2.0 Protocols Specification",
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.ht
ml, 2004.

[18] M. A. Kersten and G. C. Murphy, "Atlas: A Case Study in
Building a Web-based Learning Environment using
Aspect-oriented Programming", OOPSLA, 1999, ACM,
SIGPLAN Notices, 34(10), pp. 340-352.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, and J. Irwin, "Aspect-Oriented
Programming", European Conference on Object-Oriented
Programming (ECOOP), 1997, Springer-Verlag, Lecture
Notes in Computer Science, 1241, pp. 220-242.

[20] J. Kienzle and R. Guerraoui, "AOP: Does It Make Sense?
The Case of Concurrency and Failures", European
Conference on Object-Oriented Programming (ECOOP),
2002, Springer-Verlag, Lecture Notes in Computer
Science, 2374, pp. 37-61.

[21] G. C. Murphy, R. J. Walker, and E. L. A. Baniassad,
"Evaluating Emerging Software Development
Technologies: Lessons Learned from Evaluating Aspect-
oriented Programming", IEEE Transactions on Software
Engineering, Vol. 25, No. 4, pp. 438-455, 1999.

[22] "Open Overlays Project: Component-Based
Communications Support for the GRID."
http://www.comp.lancs.ac.uk/computing/research/mpg/proj
ects/openoverlays/, 2004.

[23] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin, "JAC:
A Flexible Solution for Aspect-Oriented Programming in
Java", 3rd International Conference on Meta-Level
Architectures and Separation of Concerns (Reflection),
2001, Springer-Verlag, Lecture Notes in Computer
Science, 2192, pp. 1-25.

[24] M. Pinto, L. Fuentes, and J. M. Troya, "DAOP-ADL: An
Architecture Description Language for Dynamic
Component and Aspect-Based Development", International
Conference on Generative Programming and Component
Engineering (GPCE), 2003, Springer-Verlag, Lecture
Notes in Computer Science, 2830, pp. 118-137.

[25] A. Popovici, A. Frei, and G. Alonso, "A Proactive
Middleware Platform for Mobile Computing",
ACM/IFIP/USENIX International Middleware Conference,
2003, Springer-Verlag, Lecture Notes in Computer
Science, 2672, pp. 455-473.

[26] M. Portmann, S. Ardon, P. Senac, and A. Seneviratne,
"PROST: A Programmable Structured Peer-to-Peer
Overlay Network", Proceedings of IEEE P2P, 2004, pp.
280-281.

[27] A. Rashid and R. Chitchyan, "Persistence as an Aspect",
2nd International Conference on Aspect-Oriented Software
Development, 2003, ACM, pp. 120-129.

[28] M. Román and R. H. Campbell, "A Middleware-Based
Application Framework for Active Space Applications",
ACM/IFIP/USENIX International Middleware Conference,
2003, Springer-Verlag, Lecture Notes in Computer
Science, 2672, pp. 433-454.

[29] V. Sazawal and J. Aldrich, "Architecture-Centric
Programming for Context-Aware Configuration", OOPSLA
Workshop on Engineering Context-Aware Object-Oriented
Systems and Environments (ECOOSE), 2002.

[30] B. N. Schilit, "A Context-Aware System Architecture for
Mobile Distributed Computing", PhD Thesis, Columbia
University, 1995.

[31] A. Smailagic, D. P. Siewiorek, and J. Anhalt, et al.
"Towards Context Aware Computing: Experiences and
Lessons Learned", IEEE Journal on Intelligent Systems,
Vol. 16, No. 3, pp. 38-46, 2001.

[32] S. Soares, E. Laureano, and P. Borba, "Implementing
Distribution and Persistence Aspects with AspectJ", ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 2002, ACM
Press, pp. 174-190.

[33] J. Sousa and D. Garlan, "Aura: An Architectural
Framework for User Mobility in Ubiquitous Computing
Environments", Proceedings of 3rd IEEE/IFIP Conference
on Software Architecture, 2002.

[34] J. Walkerdine, L. Melville, and I. Sommerville, "A
Framework for P2P Application Development", Computing
Department, Lancaster University, Technical Report No.
COMP-004-2004, 2004.

	INTRODUCTION
	THE PERVASIVE DISPLAY ENVIRONMENT
	ASPECT-ORIENTED IMPLEMENTATION
	Non-distributed Implementation
	Display Manager Aspect
	Content Manager Aspect
	Display Adaptation Aspect
	Discussion

	Adding P2P Distribution
	P2P Communication Aspect
	Aspect Precedence
	Discussion

	PURE OO IMPLEMENTATIONS
	The GAUDI System
	Using a P2P Application Framework

	COMPARING THE AO AND OO IMPLEMENTATIONS
	RELATED WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

