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Abstract: 
Accurate information on the geographic distribution of domestic animal populations helps biosecurity 
authorities to efficiently prepare for and rapidly eradicate exotic diseases, such as Foot and Mouth Disease 
(FMD). Developing and maintaining sufficiently high-quality data resources is expensive and time 
consuming. Statistical modelling of population density and distribution has only begun to be applied to 
farm animal populations, although it is commonly used in wildlife ecology. We developed zero-inflated 
Poisson regression models in a Bayesian framework using environmental and socioeconomic variables to 
predict the counts of livestock units (LSUs) and of cattle on spatially referenced farm polygons in a 
commercially available New Zealand farm database, Agribase. Farm-level counts of cattle and of LSUs 
varied considerably by region, because of the heterogeneous farming landscape in New Zealand. The 
amount of high quality pasture per farm was significantly associated with the presence of both cattle and 
LSUs. Internal model validation (predictive performance) showed that the models were able to predict the 
count of the animal population on groups of farms that were located in randomly selected 3km zones with 
a high level of accuracy. Predicting cattle or LSU counts on individual farms was less accurate. Predicted 
counts were statistically significantly more variable for farms that were contract grazing dry stock, such as 
replacement dairy heifers and dairy cattle not currently producing milk, compared with other farm types. 
This analysis presents a way to predict numbers of LSUs and cattle for farms using environmental and 
socio-economic data. The technique has the potential to be extrapolated to predicting other pastoral 
based livestock species. 
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Introduction 

 An exotic disease outbreak can be economically devastating for the primary production industries and related 

sectors in nations that have substantial primary sector export economies (Blake et al., 2003; Carpenter et al., 

2011). The preparation for and rapid control of outbreaks of exotic animal disease are high priorities for the 

Competent Authorities of these countries.  

Information on the size and distribution (i.e., the demography) of the farm animal populations at risk, and their 

proximity to sources of infection, are required to adequately prepare for and respond to these outbreaks 

(Woolhouse, 2003). Important aspects of planning for exotic disease outbreak management include: defining a 

strategy to reduce disease spread, vaccine bank resourcing, and identification of the locations of burial or pyre 

burning sites for disposal of animal carcases. Each of these activities relies on knowledge about the farm 

animal demography of the area in question (Tomassen, de Koeijer et al. 2002). Impacts of insufficient planning 

for disease outbreak management are numerous and may extend many years after the end of an outbreak as 

economic losses, ground water contamination and air pollution from carcase disposal sites (Gwyther et al., 

2011; Joung et al., 2013). 

Demography fundamentally influences how disease will spread (Buhnerkempe et al., 2014; Porphyre et al., 

2013a). Estimating the risk of spread of infection of contagious disease from known infected sites is important 

for prioritising interventions during an outbreak with finite disease control resources  (Bessell et al., 2010; 

Carpenter et al., 2004; Haydon et al., 2003; Jewell and Brown, 2014; Keeling et al., 2001; Thrusfield et al., 

2005). Farm animal demographic information facilitates a more timely identification of sites that are at high 

risk of becoming infected and/or at risk of spreading infection and guides decisions on control strategies early 

in an outbreak when epidemic information is scarce (Bessell et al., 2010; Hugh-Jones, 1972; Mansley, 2004; 

Sarandopoulos, 2015; Tomassen et al., 2002) . This prioritisation is critical because delays in identification of 

infected premises (IP) can have a major effect  on epidemic impacts (Carpenter et al., 2011). 

Disease spread simulation models, which use animal demographic information, are useful for planning and 

preparing for exotic animal disease outbreaks. Models of disease transmission in farm animal populations 

typically assume that infection rate is a function of farm-level characteristics and the distance between pairs 

and contact structure of farms.  Thus the distribution of farms and populations on the farms at risk are critical 



components of the effective reproduction number, Re (Dohoo et al., 2009, Porphyre et al., 2013).  In the 

model, estimates of Re indicate whether an outbreak is under control  and can inform policy adjustments 

which are implemented in the field (Ferguson et al., 2001; Paine et al., 2010). If the population data are 

inaccurate the model predictions of disease spread and impact will be inaccurate in ways which are not readily 

quantifiable without some model based structure to capture their uncertainty. 

 

Competent Authorities  may maintain national animal registries of farm and livestock population distribution 

(Paiba et al., 2007).  The maintenance of accurate data within central animal registries is an ongoing challenge; 

particular areas of difficulty include: recording of births and deaths, real time animal movements, and 

mismatches and inconsistencies between different sources of data in the repository (Jewell et al., 2015; Savill 

et al., 2007). Other Competent Authorities have addressed a lack of animal population data by simulating 

livestock populations within a country (Burdett et al., 2014) or globally (Robinson et al., 2014). Although 

simulated livestock population data are available on a global scale at 1 km2 resolution from the Food and 

Agriculture Organization’s Gridded Livestock of the World Project (Robinson et al., 2014), this is not sufficiently 

accurate at the farm level to plan disease control operations, which require knowledge of the numbers and 

species present on each IP (Mansley, 2004). An alternative approach, which is required in some countries for 

which details of farm locations and their animal populations are not available, is to model the location of farm 

sites and farm types based on environmental variables (Burdett et al., 2015).   

 

New Zealand livestock farming is predominantly pasture based and the main stock categories farmed are dairy 

cattle, beef cattle, sheep and deer.  These populations are represented in  multiple repositories of animal 

demographic information (Jewell et al., 2015), which are maintained by the government and private industry 

bodies. One of these, AgriBase, is owned by AsureQuality Limited, a New Zealand state-owned enterprise that 

provides operational services to the Ministry for Primary Industries (MPI). MPI maintains a second properties 

database FarmsOnLine (FOL) for biosecurity purposes but livestock counts are not available in this data source. 

Both AgriBase and FOL hold spatially referenced information on properties used for all farming activities 

including those used for recreational farming or “lifestyle” farming as it is known in New Zealand.  However, 

national databases are expensive to maintain, and require full engagement of the landowners to keep current 



both in terms of land parcels and livestock kept.  The result is that there may be a high level of unquantified 

uncertainty around what we would otherwise like to regard as census data (Jewell et al., 2015).  In this study, 

we investigate an approach to making use of sample-based data with known accuracy to predict counts of 

counts of livestock units (LSU’s) and cattle present in production systems where animals live mainly outdoors 

and eat a predominantly pasture based diet on unsampled farms in New Zealand using environmental and 

socio-economic data.  An LSU is a reference unit with allows various species of livestock to be aggregated 

based on nutritional requirement of each animal type; we have used the European Union definition of an LSU 

for this study (Anonymous, 2013).  

 

The balance of the paper is constructed as follows. In the next section we describe the data sets, data 

handling, and modelling strategy, and the means by which we assessed and compared the models. We then 

provide a detailed description of livestock prediction in New Zealand, with Discussion, and our Conclusion.  

Supplementary material to the materials and methods section is provided.  

 

Materials and Methods 

Databases and study variables: 

The predictive model was built using farm boundary and animal population data from AgriBase (Sanson and 

Pearson, 1997) which contained 135 002 farms. AgriBase contains spatially referenced farm boundary data and 

species-specific counts of animal populations for each farm. Some farm boundaries in the dataset overlapped 

one another as they are farmed under cross-lease agreements. These 6586 (4.5% of the total available farm 

records) overlapping farms were deleted from the dataset to avoid bias in predicting animal counts. In this 

case both of the overlapping farms were deleted. We deleted a further 36815 properties (27.02% of the total 

available farm records) that had no information on production type of any kind (agriculture or horticulture 

based) because we assumed that these represent missing data rather than the true absence of the animal 

species of interest. The remaining 91601 farms (68.50%) were used for model building and validation. 

The two outcome variables of interest were farm level counts of LSUs and of cattle; both were drawn from the 

AgriBase dataset (Sanson and Pearson, 1997). LSUs were calculated for sheep, goats, cattle, pigs, deer and 



horses following the European Union definition of individual species requirements in relation to a dairy cow 

(Anonymous, 2013) shown in Table 1. Poultry data were not included in the model.   

 

Publicly available land cover, environmental and socio-economic data held by Land Information New Zealand 

(LINZ), Statistics New Zealand, Land Environments of New Zealand (LENZ) and Land Resources Information 

New Zealand (LRINZ) were used to generate candidate predictor variables (Table 2). The New Zealand 

Transverse Mercator (NZTM) projection was used for geographic information projection in this analysis. 

Predictor variables were loaded into a geographic information system (GIS) relational database (PostgreSQL 

8.4 with PostGIS 2.2.0 extensions). This provided a convenient platform for interfacing with statistical software 

(Rv3.0.1, Foundation for Statistical Computing, Vienna, Austria), enabling large amounts of geospatial data to 

be processed and extracted for each farm. Predictor variables included in the models, where they were 

sourced and how they were derived are presented in Table 2.  

A Spearman correlation matrix was used to identify significant pairwise collinearity amongst the predictor 

variables, defined arbitrarily as a correlation of |r| > 0.7. Our choice to use the Spearman’s correlation 

coefficient rather than a variable selection process within the modelling framework allowed the analysts to 

make variable selections based on knowledge of the biological system under examination.  Collinearity was 

identified between the following pairs of variables: mean annual temperature and mean minimum 

temperature, mean solar exposure and minimum solar exposure, and slope and aspect. Collinearity was 

addressed by creating bivariate transformations to include in the model and by retaining one of each of the 

collinear pairs (see supplementary material equations 1 and 2 for further detail of the bivariate 

transformations).  

An interaction term was included to represent the relationship between deprivation index and distance from 

urban centres to capture the population of lifestyle farms.  Statistics New Zealand notes that this population of 

lifestyle farms in rural areas with high urban influence has the highest median and mean income (and 

household expenditure) of any demographic in New Zealand (Pink, 2011). Land held by this population 

demographic, which commutes to city centres for work, is thus unlikely to be used in the same way as land 

further from cities, where agriculture is the principal source of income. The log of the area in hectares of each 



farm covered by high quality pasture, low quality pasture, native forest and endemic forest and the 

complement of the farm area were used in the final model. Each of these was offset by 0.01 to make the log 

transformation possible for farms with no coverage of some of the categories. The log transformation of these 

variables was used in the modelling to promote for numerical stability.  

Statistical model framework 

A zero-inflated Poisson (ZIP) regression model was used to generate the predicted counts of LSUs and of cattle 

for farm properties.  A ZIP model was chosen because many rural properties are not engaged in livestock 

production; AgriBase records 37% of properties as having no animals present (Jewell et al., 2015). 

Consequently, the ZIP model fit the data significantly better than did a comparable Poisson model. 

The model was trained to predict farm level populations using a Bayesian approach that calculated a 

distribution of the predicted number of cattle or LSUs within a farm polygon on the land surface in New 

Zealand. The outcome variable for an individual farm (either number of cattle or LSUs) was modelled as a ZIP 

random variable, conditional on the values of the predictor variables for that farm (Mullahy, 1986). A two-

stage process was thus used, in which (i) a Bernoulli random variable first represented the probability of 

animals being present on a farm; (ii) then, assuming that animals are present, the number of animals was 

assumed to follow a Poisson distribution with mean related via a log link function to the predictor variables.  

Both the Bernoulli and the Poisson stages involved modelling using the suite of predictor variables. Further 

detail of the model framework, model equations and model code are available in the supplementary materials.  

The vectors of coefficients are calculated for the same set of predictor variables for the both the Poisson and 

Bernoulli components. We have allowed the prediction of the excess zeros and the prediction of the counts on 

each farm to be conditional on the same predictor variables, however as Table 4 shows, different predictors 

are identified as important in the Poisson regression step when compared with the Bernoulli step, thus 𝒙𝑖  

(equation 5 and 6 in the supplementary material) appears in the linear predictors for both the Poisson and the 

Bernoulli steps of the model. The importance of each covariate in the final model was explored using 

reversible jump MCMC which is fully described in the supplementary material (Carlin and Chib, 1995; Green, 

1995). 



The MCMC was coded in R using a single-site adaptive Metropolis-Hastings step for each coefficient (Chib and 

Greenberg, 1995; Jewell, 2016a).  A total of 50 000 iterations of each model was performed and the first 20 

000 runs were discarded as burn-in leaving 30 000 iterations which were thinned systematically every 30 

iterations to 1000 observations to be used in all further analyses. 

Predictive performance: 

To assess how well the model was able to predict the data which it was built from, a frequentist model 

residual analogue was calculated (rank probability score, referred to hereafter and in the supplementary 

material as RPS) and five “residual”, i.e., RPS checking analyses were completed. The statistical detail of the 

calculation of the RPS and the analyses performed on this residual analogue are explained in detail in the 

supplementary material.  

The first two methods of residual (RPS) checking were: i) an examination of spatial autocorrelation of RPS in 

two large regions (figure 1 shows the regions and figure 2 the variograms), and ii) the differences in model 

performance amongst farm types (figure 3). In these analyses the farm is the unit of interest. The third and 

fourth methods were performed at  iii) small (3km radial zone) and iv) larger (New Zealand administrative 

regions) spatial scales and calculated area level RPS values (table 3 and figure 4). In these analyses the area 

(either the region or the 3km zone) is the primary unit of interest. The final method v) used Receiver Operator 

Characteristic (ROC) curves (figure 5) to examine the performance of the Bernoulli component of the ZIP 

model (which predicts the presence or absence of livestock or cattle on the farm of interest).  

We chose 3km radial zones as a unit of interest to examine model performance because the outcomes (farm 

level counts of cattle or LSUs) of these models are primarily required for biosecurity purposes. In the event of a 

suspected or actual outbreak of FMD, the population in the 3km radial zone around an infected farm is at high 

risk of local spread (Thrusfield et al., 2005). This means that accurate data on susceptible animal populations 

on farms within 3km of a farm with a suspected outbreak of FMD should be available as early as possible in the 

investigation and risk assessment process. In the New Zealand context, a 3km zone is an appropriate choice 

based on local observations and farm density.  

Results 

Predictor variables 



Predicted coefficients of covariates for the Bernoulli and Poisson components of the ZIP models and their 

associated odds ratios and risk ratios are presented in Table 4. The most important covariate for predicting the 

presence or absence (Bernoulli component of the ZIP model) of cattle and of LSUs was the log of the area 

(hectares) of high quality pasture followed by region in which the farm was located.  Region was the most 

important predictor variable for counts of LSUs and cattle (the Poisson part of the models). The use of the 

zero-inflated distribution allows the excess appearance of zeros to be linked to the covariates. As an example, 

consider the Bernoulli component of the cattle model. As shown in the model covariate table presented in 

Table 4, the size of the area of high quality pasture present on the farm of interest is predictive of the presence 

of cattle (OR 1.91, CI between 1.91 and 1.92), however some regions have additional increases in the 

likelihood of cattle being present (multiplicative at the log scale with the covariate representing the size of 

high quality pasture). The difference between the covariates for the regional fixed effects for Northland and 

Nelson illustrate this point well. If the Manawatu- Wanganui region (a region with a large amount of farm land 

and a sizeable cattle population) is taken to be the referent category, then the Nelson region is half as likely 

(OR of 0.52 with CI between 0.5 and 0.54 to have cattle present on a particular farm of interest, and farms in 

the Northland region are 1.77 times more likely with CI between 1.75 and 1.83 to have cattle present on the 

property. No evidence to remove any of the covariates from either the Poisson or Bernouilli parts of the model 

was found when the covariates were explored using reversible jump MCMC. We have included the OR for the 

interaction terms in table 4 even though the OR for an interaction term cannot be interpreted without taking 

into consideration the OR for both of the terms involved in the interaction. Table 4 is a summary of the joint 

posterior distribution over the coefficients.  It displays marginal information for each coefficient and ignores 

correlations between the respective marginal posterior distributions, and the fact that for some realisations of 

the posterior the value of certain coefficients may be 0.   

Predictive performance  

The primary measure of the performance of our models is how well they predicted counts of LSUs or cattle at 

various spatial scales as measured by the RPS. Results for internal validation at each of the five scales are 

presented below.  



i) The spatial variogram of farm-level RPSs showed slight spatial autocorrelation in the LSU model 

over short distances in both the North Island and South Island test regions (Figure 2). This 

correlation was apparent up to about 30km in the North Island and about 50km in the South 

Island for the LSU model. In contrast, in the cattle model in the North Island, correlation of the 

RPS persisted up to 60km and in the South Island it reached a sill at around 50km. 

Autocorrelation in RPS was consistently larger in the South Island when compared with the North 

Island for the LSU model indicating a higher level of spatial correlation of model error.    

ii) Significant differences in mean RPS values were found for groups of farms stratified by the farm 

type recorded in AgriBase (dairy farms, pastoral livestock farms, pig breeder and finisher farms, 

grazing and dairy heifer rearing properties and other farm types) when tested with the Kruskal-

Wallis test (p < 0.001 with 6 degrees of freedom) for both the LSU and the cattle models. In both 

models, the farm type ‘dry stock’ which included contract grazing and dairy heifer rearing 

properties were predicted with the least accuracy (figure 3).  

iii) Prediction at the 3km zone level was most accurate with mean RPS of 0.093 for the LSU model 

and 0.162 for the cattle model summarised over the 10 model fits (table 3).  

iv) When region was removed from the model to allow internal validation between regions, the 

model that predicted cattle numbers performed better overall than the model that predicted 

LSUs (mean RPS of 0.317 and standard error of 0.062 for the LSU model compared with a mean of 

0.247 and standard error 0.033 for the cattle model) (table 3). When regional RPSs from each 

model run were aggregated and plotted a large amount of variability in the RPSs was observed at 

the region level (figure 4). 

v) The area under the curve (AUC) was estimated for the models and thresholds that maximised 

both sensitivity and specificity. As an example, for the model that predicted LSUs, when the 

cutoff for representing the posterior prediction of having no animals on each property was 0.25, 

90% of farms with no animals were correctly identified (specificity). The sensitivity of this 

estimate was poor (40%) with many false negative results (i.e. farms identified by the model as 

having no animals, which in fact had animals present). The largest area under the curve (AUC) for 

the LSU model was found at a point mass of zeros of 0.15, representing correct identification of 



68% of the farms without animals.  In the cattle model the area under the curve was maximised 

at a cutoff of 0.35 where 68% of the area was captured.  

Discussion 

To the best of our knowledge no work like this has been published in the peer-reviewed literature for New 

Zealand. The small scale of our spatial unit of interest (the farm), our focus on operational uses of the data for 

controlling disease outbreaks (as opposed to use in disease spread models only) and the large amount of 

existing farm-level animal data for New Zealand set this study apart from similar studies performed in other 

countries. Our technique differs from the FLAPs approach (Burdett et al., 2015) as it does not model farm 

locations but rather models the animal counts for known farm polygons.  When compared with the approach 

taken by the  Gridded Livestock of the World (GLW) project (Robinson et al., 2014) the main difference is that 

our model provides counts at the farm level (rather than a raster cell level count or animal density) , allowing 

farm level (rather than raster cell level) attributes to play a role in predicting animal counts.  

A model that included the log of the area (hectares) of high quality pasture and region in which the farm was 

located predicted presence or absence of cattle and of livestock in general (represented as LSUs) with 

reasonable accuracy.  Region was the most important predictor variable for counts of LSUs and cattle.  

The models performed better when used to predict the aggregated cattle or LSU population of 3km radial 

zones. Prediction at the level of single farms was poorer (as could be expected). Even though the purpose of 

the models is to predict presence or absence of animals and the counts of animals present on the farms rather 

than to examine the effects of different covariates, the relatively uninformative nature of many covariates in 

the models should be mentioned (that is, the odds ratios for many covariates in the predictive models are 

close to one, as shown in Table 4). We believe that these covariates still explain some of the variance (and 

improve prediction) without necessarily explaining an amount of variance beyond the traditional probability 

threshold value of 0.05.  In addition, many of these covariates that do not explain a large amount of variance 

may have been expected to play a larger role if the modelling had not provided evidence to the contrary. At 

the farm level we were able to identify that while counts on dairy farms were predicted more accurately (low 

RPS shown in figure 3), predicted counts were less accurate for farms classified as contract grazing and dairy 

heifer rearing. These results could be due to real differences in practices such as constantly changing stock 



numbers on dairy heifer rearing and contract grazing properties as animals are bought and sold and animals 

arrive for and leave after grazing contracts. These factors mean that contract grazing properties do not have 

the same predictable animal counts as properties of a similar size which have more stable population of 

resident animals.  Alternatively, the lower accuracy in prediction could be due to misclassification bias in the 

dataset used to build the model. Only an exercise that collects actual farm level data will clarify the reason for 

low predictability of LSUs and cattle numbers on contract grazing and dairy heifer rearing farms. The high level 

of regional heterogeneity in the farm-level animal populations in New Zealand makes some regions 

appropriate training data sets for particular regions but not for others (figure 4). In particular, the Waikato (an 

area of high dairy cattle farming density) is well predicted by the models and the Tasman Area is very poorly 

predicted.  

The livestock unit (LSU) model is important to test the hypothesis that in an animal production system where 

animals live mainly outdoors and eat a predominantly pasture based diet, remotely sensed geospatial layers 

provide sufficient information to extrapolate counts of LSUs at the farm level. As biosecurity applications 

include stocking of vaccine banks and predicting the spread of disease based on species composition at the 

farm level, such a model or the outputs of the LSU model must be adjusted to predict single (we present the 

cattle model as an example) or specified combinations of species populations on each farm (Burdett et al., 

2015; Robinson et al., 2014).  A useful characteristic of our model is the ability to predict LSU and cattle counts 

in the 3km radial zones with a high degree of accuracy reflected by the lower RPS for these zones compared 

with the predictions for individual farms (Table 3).  As accurate data on susceptible animal populations on 

farms within 3km of a farm with a suspected outbreak of FMD are needed by the responders to a disease 

event as early as possible in the New Zealand context our model may provide some idea of the magnitude of 

the risk presented by an IP before farm level information can be collected.  

The advantage of using Bayesian inference to estimate the coefficients of the ZIP model is that a predictive 

distribution of the number of animals on a farm may be estimated explicitly, without resorting either to 

asymptotic assumptions or complex bootstrapping procedures (West, 2014).  This provides a precise measure 

of uncertainty surrounding predicted animal numbers for each farm.  Samples from the predictive distribution 

may then be used as input for Monte Carlo disease simulation models, such as the Davis Animal Disease 

Spread model (DADs) and the Australian Animal Disease Spread model (AADIS), so that uncertainty in the 



population at risk of infection is reflected in the simulated outputs  (Bates et al., 2003; Bradhurst et al., 2015). 

This is an area of future exploration. Having information on farm-level populations is important because  in a 

disease outbreak, not all farms  have the same risk of disease (Gates et al., 2014).  In particular (in the context 

of this study), the importance of herd size is well established as a risk factor for disease spread based on 

detailed data collected from outbreaks in naïve populations (Hugh-Jones, 1972; Keeling et al., 2001; Kitching et 

al., 2006; Muroga et al., 2013; Tildesley et al., 2008; Tildesley and Ryan, 2012).  

Advances in modelling techniques and increased computational ability have resulted in a trend toward using 

individual animals as the unit of interest in disease spread modelling. The inclusion of within-herd spread in 

detailed process disease spread models is being employed to represent  the effects of farm and herd level 

heterogeneity (Bates et al., 2003; Bradhurst et al., 2015). These models are being used to evaluate the impacts 

of management decisions at a microeconomic level on individual farms (Halasa et al., 2013; Porphyre et al., 

2013a) and variation in start conditions (farm level populations). The effect of herd size on disease spread has 

the potential to alter the model outputs that inform policy decisions.  The adoption of such modelling 

techniques requires farm level animal population data and a clear understanding of the inadequacies in the 

data used and the impacts of any inadequacies on model outcomes. The accuracy of these data are seldom 

understood or examined (Honhold and Taylor, 2006; Jewell et al., 2015). Recent studies have explored how 

different models may be used to represent similar outbreak situations and have compared model outputs 

within and between countries (Dubé et al., 2007; Roche et al., 2015; Sanson et al., 2013, 2011)  but little 

attention has been paid in the published literature to the effect of the population information on the model 

outcomes and resulting policy advice (Wada et al., 2016). Similarly, although demographic data were identified 

as lacking during the 2001 FMD outbreak in the UK, the extent of the impact of the inaccuracies on either 

operations or decisions made based on disease spread modelling is hard to establish (Honhold and Taylor, 

2006; Keeling et al., 2001; Kitching et al., 2006; Thrusfield et al., 2005). 

 

Spatial correlation of the RPSs was present at distances less than 18km for the LSU model and distances less 

than 70km for the cattle model after inclusion of region and other environmental variables. This spatial 

autocorrelation of RPS could be reduced in future models by identifying missing predictor variables that 

capture the spatial autocorrelation or by the inclusion of a statistical effect which would extend the ZIP model 



to a geostatistical model (Diggle and Ribeiro, 1998). Given the large number of farms present in our dataset 

the addition of this statistical effect would pose a significant computational challenge.   

The interpretation of the ROC curves depends on the purpose for which the modelled data are being used. 

Unless we are able to measure the cost of error and uncertainty around knowing and not knowing if an animal 

is present on a particular property, it is difficult to choose a preferred cutoff at which to interpret the 

performance of the Bernoulli component of the model and to appreciate the impact of uncertainty associated 

with that cutoff. In our case we used the ROC curves as a predictive performance exercise to examine the 

performance of the Bernoulli component when predicting the absence of animals on a farm. Our 

interpretation of the results of the ROC curves is that our proposed model does provide valuable information 

about the demographics of animals present on a farm but it is not able to predict with acceptable accuracy the 

presence or absence of an animal population. This finding agrees with other studies that used spatial 

environmental variables to predict the distribution of animal species  - distinguishing between areas with low 

numbers of animals and areas where animals were absent is seldom achievable (Porphyre et al., 2013b).  

Aside from the statistical variability that our model is able to estimate around each population estimate (the 

error), ongoing fluctuations can be expected to occur due to seasonal changes in production and changing long 

term trends in species composition in different areas.  An appreciation of these population trends is important 

for animal disease outbreak response, as having incorrect data representing  a population early in a disease 

response may delay or influence decision making to the same degree as a lack of information could delay or 

influence response efforts.  Further work is needed to examine how long term and seasonal demographic 

changes are best represented in the model. An approach to long term changes is to use the presented LSU 

model and combine this with information present in the New Zealand agricultural census.  Strategies that 

could be explored to address seasonal changes include the incorporation of regional level animal movement 

data into the model or the use of normalised difference vegetation index (NDVI), which has successfully been 

used in the past to predict herbivore migration associated with pasture availability in ecological models 

(Marshal et al., 2006; Mueller et al., 2008; Myneni et al., 1995; Reed et al., 1994; Tveraa et al., 2013).  In 

addition to seasonal and production linked trends, herd size is affected by economic factors such as the milk 

price. These sources of uncertainty resulting from seasonality and economics suggest that maintenance of up 

to date national level registries is still an important function for the competent authority for biosecurity.  



We are able to identify some sources of bias in our models. Aside from bias present in the data used to build 

the models, which may be affected by response bias by those populating the data and will be affected by the 

currency of the data held in the databases, our methods may have introduced bias. We have mentioned that 

4.5% of farm records were deleted due to overlapping polygons and that another 27% were deleted due to 

missing data on production type. If either missing-ness or overlapping-ness are non-randomly distributed 

amongst the full dataset, bias will result from their removal. When properties were selected to have a 3km 

zone situated around them, this was done based on the property overlapping the centroid of the grid square. 

This biases our selection method toward larger farms raising the question of whether the accuracy of fit is 

affected by the selection of farms in a 3km zone surrounding larger farms when compared with those farms 

surrounding small farms. Finally when distances to features were measured, the calculation was made from 

the centroid of the farm to the closest feature rather than from the farm boundary to the closest feature. It is 

possible that this might bias the estimate of the distance from a farm to a feature for larger farms when 

compared with smaller farms predisposing our models to type 1 error.  

Although our goal was to predict the animal numbers on farms for which data were not available, we have 

only been able to test the model using withheld samples of farms for which the data were available, that is, we 

have performed internal validation.  Internal validation is inherently unsatisfying; it demonstrates that the 

sample of data that is available shows reasonable consistency from the point of view of fitting the model, but 

does not provide solid evidence of the extensibility of the model to novel situations.  Therefore for the 

deployment of the model it is necessary for us to assume that the farm population for which data are missing 

is represented statistically by the farms for which we do have information.  There are numerous reasons that 

would undermine this assumption, for example, that the missing farms have a greater proportion of peri-urban 

properties, that non-inclusion is not homogenously distributed across all production types or that overlapping 

properties are not randomly distributed in space. However, we proceed under the assumption that some 

information is better than no information.  Further work is underway to develop an independent dataset that 

can be used for a more complete external validation of our models, but that is beyond the scope of this article.   

 

Conclusions 



We have constructed a model that predicts the presence and absence as well as the numbers of livestock units 

and cattle at the farm level in New Zealand. While wildlife ecology uses similar models for conservation and 

research purposes, the use of modelled or inaccurate point estimates of animal populations for biosecurity 

operations (rather than when preparing for a disease outbreak) may introduce systematic error which could 

increase the number of properties affected by, and the eventual cost of a fast moving animal disease. 

Predictions were accurate at a wide spatial scale (3km zones or administrative regions) and our model allows 

us to explore uncertainty around a point estimate in animal numbers at the farm level by incorporating farm 

population posterior distribution estimates in disease simulators. Future work will further refine the modelling 

approach to improve its internal validity and provide external validation of the model using data collected from the 

field to fully assess the precision of the estimates of livestock numbers and of cattle on farms and to test the 

extensibility of the derived covariates to predict farm level counts on an unrelated spatial farms database 

(FarmsOnLine). While probabilities of presence and distributions of animal counts are useful in exotic disease 

preparedness and disease spread simulation modelling, when faced with the already considerable uncertainty 

inherent early in a disease outbreak response the decision maker requires the most accurate and correct 

information to make high quality decisions. Every reasonable effort must be made to strengthen data linkages 

between existing animal population data sources by aligning data collection efforts undertaken by government 

and industry and by the use of a single, national farm identifier.  
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Table 1: Species equivalence values used to calculate livestock units (LSUs) on rural properties in New Zealand, 

following the European Union definition of individual species feed requirements (Anonymous, 2013).  



 Livestock Units (LSUs) relative to a grazing dairy cow 

Dairy cattle 1 

Beef cattle 0.8 

Deer 0.8 

Sheep & Goats 0.1 

Pigs 0.4 

Horses 0.8 

 



Table 2: Predictor variables included in a Bayesian Zero Inflated Poisson model predicting counts of cattle and counts of livestock units on New Zealand farms.   

* Predictor variables included in the final models. ∆ Predictor variables significant in the LSU model. ¥ Predictor variables significant in the cattle model 

 

 
Predictor Variable  Description (units) Reference  

Distance to sealed roads 
*∆¥ 

Distance from the centroid of the farm to the nearest major sealed 
road (km) 

Land and Information NZ (LINZ) https://data.linz.govt.nz/ 

Distance to urban centres 
*∆¥ 

Distance from the centroid of the farm to the nearest urban centre 
(km) 

Land and Information NZ (LINZ) https://data.linz.govt.nz/ 

Distance to rivers *∆¥ Distance from the centroid of the farm to the nearest river (km) Land and Information NZ (LINZ).  https://data.linz.govt.nz/ 
Social deprivation index 
*∆¥ 

Value at the farm centroid (categorical variable between 1 and 10 
with 1 being the greatest degree of deprivation) 

Statistics NZ census data. Decile measure of socio-economic status 

Interaction term* 
Interaction term between deprivation index and distance to urban 
centres to account for the effect of lifestyle farming 

 

Area of high quality 
pasture (log of) *∆¥ 

Area of grassland per farm classified as high producing by the 
national land cover database (ha) 

Land Cover Database (LCDB) Version 4. A satellite derived GIS 
vector polygon layer of land use. https://lris.scinfo.org.nz  

Area of low quality 
pasture (log of)*∆¥ 

Area of grassland per farm classified as poorly producing grassland 
by the national land cover database (ha) 

Land Cover Database (LCDB) Version 4. A satellite derived GIS 
vector polygon layer of land use. https://lris.scinfo.org.nz  

Mean annual 
temperature 

The average annual temperature across the farm calculated by 
averaging each raster cell of a modelled temperature surface 
contained within the farm polygon  

Land and Environments NZ (LENZ) layer (Leathwick et al. 2002). 
www.koordinates.com  

Mean minimum 
temperature 

The average minimum temperature across the farm  calculated by 
averaging each raster cell of a modelled temperature surface 
contained within the farm polygon  

Land and Environments NZ (LENZ) layer (Leathwick et al. 2002). 
www.koordinates.com  

Temperature difference* 
Mean annual temperature minus the mean minimum temperature 
for each farm 

 

Mean solar radiation 
The annual average solar radiation across the farm calculated by 
averaging each raster cell of a modelled solar radiation surface 
contained within the farm polygon   

Land and Environments NZ (LENZ) layer (Leathwick et al. 2002). 
www.koordinates.com  
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Mean winter solar 
radiation 

The average minimum daily solar radiation across the farm 
calculated by averaging each raster cell of a modelled solar 
radiation surface contained within the farm polygon  

Land and Environments NZ (LENZ) layer (Leathwick et al. 2002). 
www.koordinates.com  

Solar difference*∆¥ 
The difference between the mean solar radiation and the mean 
winter solar radiation for each farm 

 

Mean water deficit*¥ 
The average of the annual water deficit across each farm  
calculated by averaging each raster cell of a modelled water deficit 
surface contained within the farm polygon   

Land and Environments NZ (LENZ) layer (Leathwick et al. 2002). 
www.koordinates.com  

Mean aspect 
Mean of farm aspect or the direction in degrees which a slope 
faces (degrees) 

 

Mean slope Mean of farm slope (slope is a unitless ratio)  
Slope x Aspect* Adjustment to slope and aspect to decrease collinearity (Stage, Salas 2007) 
Sine of Slope*∆¥ Adjustment to slope and aspect to decrease collinearity (Stage, Salas 2007) 
Cosine of Slope*∆¥ Adjustment to slope and aspect to decrease collinearity (Stage, Salas 2007) 
Standard deviation of 
slope*∆¥ 

Standard deviation of slope for the farm  

Mean and standard 
deviation of elevation*∆¥ 

Mean and standard deviation of elevation for the farm calculated 
by averaging each raster cell of a surface generated by a digital 
elevation model contained within the farm polygon (m) 

Digital elevation model from Land and Information NZ (LINZ).  
https://data.linz.govt.nz/ 

Regional Council*∆¥ 
One of the 17 New Zealand Regional councils that the farm 
centroid falls within (categorical variable) 

https://koordinates.com/layer/4240-nz-regional-councils-2012-
yearly-pattern/  

Size of farm  Farm area (ha) Agribase™ for the farm boundaries and post gis 

Forest cover (log of)*∆¥ The sum of endemic and exotic forest cover for each farm (ha) 
https://koordinates.com/layer/168-nz-native-polygons-topo-
150k/   &   https://koordinates.com/layer/131-nz-exotic-polygons-
topo-150k/  

Remaining land cover (log 
of)* ∆¥ 

Remaining area of the farm once high quality pasture, low quality 
pasture and forest cover had been taken from the total (ha) 
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Table 3: Mean and standard deviation of rank probability scores (RPS) for models predicting livestock units 

(LSUs) and cattle on farms within 3 km zones and administrative regions in New Zealand.  

Target data predicted 
Number 

of fits 
Level of RPS calculation LSU model Cattle model 

mean RPS 
Standard 
deviation mean RPS 

Standard 
deviation 

200 3km zones around randomly 
selected farms 

10 farm 0.221 0.006 0.214 0.014 

10 area (3km zone) 0.093 0.009 0.162 0.0122 

3 North Island and 2 South Island 
regions  

50 farm 0.317 0.062 0.247 0.033 

50 
area (administrative 
region) 0.261 0.227 0.265 0.219 

 

Table 4: Summary of the mean and standard deviation of the joint posterior estimates of covariates for species 

distribution models for New Zealand farms using counts of livestock units (LSU) as the outcome variable in the 

first instance and counts of cattle in the second instance. Risk ratios are reported for the Poisson component 

and odds ratios for the Bernoulli component for each model along with 95% credible intervals.  

   
 LSU 
model     

Cattle 
model     

Bernoulli component        

  Predictor variable mean  std dev OR (5%-95%CI) mean  std dev OR (5%-95%CI) 

  intercept 3.353 0.007 
28.58 (28.48 - 
28.68) 3.074 0.012 21.62 (21.53 - 21.79) 

  Other land cover in hectares (log) 0.013 0.000 1.01 (1.01 - 1.01) 0.008 0.000 1.01 (1.01 - 1.01) 

  High quality pasture in ha (log) 0.628 0.002 1.87 (1.87 - 1.88) 0.649 0.003 1.91 (1.91 - 1.92) 

  Low quality pasture in ha (log) 0.009 0.000 1.01 (1.01 - 1.01) 0.006 0.000 1.01 (1.01 - 1.01) 

  Forest cover in ha (log) 0.014 0.000 1.01 (1.01 - 1.01) 0.009 0.000 1.01 (1.01 - 1.01) 

  Distance to a road from farm centroid 0.050 0.000 1.05 (1.05 - 1.05) 0.072 0.001 1.07 (1.07 - 1.08) 

  
Distance to an urban centre from farm 
centroid 0.006 0.000 1.01 (1.01 - 1.01) 0.003 0.000 1 (1 - 1) 

  Temperature difference 0.006 0.000 1.01 (1.01 - 1.01) 0.004 0.000 1 (1 - 1) 

  Solar difference 0.011 0.000 1.01 (1.01 - 1.01) 0.000 0.001 1 (1 - 1) 

  Distance to a river from farm centroid 0.007 0.000 1.01 (1.01 - 1.01) 0.007 0.000 1.01 (1.01 - 1.01) 

  Mean slope -0.029 0.000 0.97 (0.97 - 0.97) -0.047 0.001 0.95 (0.95 - 0.96) 

  Standard deviation of slope -0.015 0.000 0.99 (0.98 - 0.99) -0.019 0.000 0.98 (0.98 - 0.98) 

  Mean digital elevation model -0.001 0.000 1 (1 - 1)  -0.002 0.000 1 (1 - 1) 

  
Standard deviation of digital elevation 
model 0.002 0.000 1 (1 - 1)  0.002 0.000 1 (1 - 1) 

  Cosine of slope 0.051 0.000 1.05 (1.05 - 1.05) 0.049 0.001 1.05 (1.05 - 1.05) 

  Sine of slope 0.008 0.001 1.01 (1.01 - 1.01) 0.006 0.001 1.01 (1 - 1.01) 

  Product of slope and aspect 0.000 0.000 1 (1 - 1)  0.000 0.000 1 (1 - 1) 

  Deprivation index 0.022 0.000 1.02 (1.02 - 1.02) 0.027 0.001 1.03 (1.03 - 1.03) 



  
Deprivation index * Distance to an urban 
centre -0.001 0.000 1 (1 - 1)  -0.002 0.000 1 (1 - 1) 

  Mean water deficit  -0.002 0.000 1 (1 - 1)  0.019 0.002 1.02 (1.02 - 1.02) 

  Mean solar hours -0.009 0.000 0.99 (0.99 - 0.99) -0.024 0.002 0.98 (0.97 - 0.98) 

  Mean temperature -0.001 0.000 1 (1 - 1)  -0.001 0.000 1 (1 - 1) 

 Fixed effects for region (Manwatu-Wanganui as the referent category)      

  Auckland -0.159 0.004 0.85 (0.85 - 0.86) 0.145 0.012 1.16 (1.14 - 1.18) 

  Bay of Plenty 0.204 0.004 1.23 (1.22 - 1.23) 0.333 0.008 1.4 (1.38 - 1.41) 

  Canterbury -0.047 0.004 0.95 (0.95 - 0.96) -0.055 0.016 0.95 (0.92 - 0.96) 

  Gisborne 0.548 0.004 1.73 (1.72 - 1.74) 0.764 0.008 2.15 (2.13 - 2.16) 

  Hawkes Bay 0.106 0.003 1.11 (1.11 - 1.12) 0.130 0.004 1.14 (1.13 - 1.14) 

  Marlborough -0.359 0.005 0.7 (0.69 - 0.7) -0.361 0.016 0.7 (0.68 - 0.71) 

  Nelson -0.718 0.016 0.49 (0.47 - 0.5) -0.660 0.025 0.52 (0.5 - 0.54) 

  Northland 0.169 0.004 1.18 (1.18 - 1.19) 0.573 0.016 1.77 (1.75 - 1.83) 

  Otago -0.344 0.004 0.71 (0.71 - 0.71) -0.586 0.021 0.56 (0.53 - 0.57) 

  Southland -0.288 0.003 0.75 (0.75 - 0.75) -0.547 0.023 0.58 (0.55 - 0.59) 

  Taranaki 0.179 0.002 1.2 (1.19 - 1.2) 0.340 0.005 1.4 (1.4 - 1.41) 

  Tasman -0.459 0.005 0.63 (0.63 - 0.64) -0.310 0.015 0.73 (0.71 - 0.75) 

  Waikato 0.257 0.003 1.29 (1.29 - 1.3) 0.447 0.007 1.56 (1.56 - 1.58) 

  Wellington -0.066 0.003 0.94 (0.93 - 0.94) -0.157 0.004 0.85 (0.85 - 0.86) 

  West Coast -0.341 0.004 0.71 (0.71 - 0.71) -0.179 0.010 0.84 (0.82 - 0.85) 

          

 

 

  
LSU 
model     

Cattle 
model     

Poisson component mean  std dev RR (5%-95%CI) mean  std dev RR (5%-95%CI) 

  intercept -2.438 0.046 0.09 (0.08 - 0.09) -1.394 0.036 0.25 (0.23 - 0.26) 

  Other land cover in hectares (log) 0.022 0.002 1.02 (1.02 - 1.02) 0.004 0.001 1 (1 - 1.01) 

  High quality pasture in ha (log) -0.040 0.003 0.96 (0.96 - 0.97) -0.086 0.003 0.92 (0.91 - 0.92) 

  Low quality pasture in ha (log) -0.015 0.003 0.98 (0.98 - 0.99) -0.018 0.002 0.98 (0.98 - 0.99) 

  Forest cover in ha (log) 0.009 0.002 1.01 (1.01 - 1.01) -0.002 0.001 1 (1 - 1) 

  Distance to a road from farm centroid -0.049 0.027 0.95 (0.91 - 0.99) -0.199 0.027 0.82 (0.78 - 0.86) 

  
Distance to an urban centre from farm 
centroid -0.011 0.002 0.99 (0.99 - 0.99) -0.025 0.002 0.98 (0.97 - 0.98) 

  Temperature difference 0.001 0.002 1 (1 - 1)  0.000 0.001 1 (1 - 1) 

  Solar difference 0.020 0.008 1.02 (1.01 - 1.03) 0.038 0.006 1.04 (1.03 - 1.05) 

  Distance to a river from farm centroid -0.005 0.003 1 (0.99 - 1) -0.011 0.002 0.99 (0.99 - 0.99) 

  Mean slope 0.107 0.006 1.11 (1.1 - 1.12) 0.123 0.006 1.13 (1.12 - 1.14) 

  Standard deviation of slope -0.160 0.008 0.85 (0.84 - 0.86) -0.145 0.006 0.86 (0.86 - 0.87) 

  Mean digital elevation model 0.002 0.000 1 (1 - 1)  0.003 0.000 1 (1 - 1) 

  
Standard deviation of digital elevation 
model -0.008 0.001 0.99 (0.99 - 0.99) -0.013 0.001 0.99 (0.99 - 0.99) 

  Cosine of slope 0.032 0.016 1.03 (1.01 - 1.06) 0.007 0.012 1.01 (0.99 - 1.03) 

  Sine of slope 0.001 0.017 1 (0.97 - 1.03) -0.036 0.014 0.96 (0.94 - 0.99) 

  Product of slope and aspect 0.000 0.000 1 (1 - 1)  0.000 0.000 1 (1 - 1) 



  Deprivation index -0.006 0.006 0.99 (0.98 - 1) -0.044 0.005 0.96 (0.95 - 0.96) 

  
Deprivation index * Distance to an urban 
centre 0.002 0.000 1 (1 - 1)  0.001 0.000 1 (1 - 1) 

  Mean water deficit  -0.002 0.008 1 (0.99 - 1.01) -0.011 0.007 0.99 (0.98 - 1) 

  Mean solar hours 0.045 0.006 1.05 (1.04 - 1.06) 0.037 0.005 1.04 (1.03 - 1.05) 

  Mean temperature 0.001 0.000 1 (1 - 1)  0.003 0.000 1 (1 - 1) 

 
fixed effects for region (Manwatu-Wanganui as the referent 
category)      

  Auckland 0.057 0.088 1.06 (0.92 - 1.23) 0.213 0.068 1.24 (1.11 - 1.39) 

  Bay of Plenty 0.954 0.085 2.6 (2.27 - 2.99) 0.453 0.068 1.57 (1.41 - 1.77) 

  Canterbury 1.085 0.078 2.96 (2.6 - 3.37) 1.469 0.061 4.35 (3.93 - 4.81) 

  Gisborne 0.300 0.118 1.35 (1.11 - 1.63) 0.386 0.096 1.47 (1.26 - 1.73) 

  Hawkes Bay 0.683 0.070 1.98 (1.76 - 2.23) 0.576 0.057 1.78 (1.62 - 1.96) 

  Marlborough 1.156 0.096 3.18 (2.71 - 3.72) 1.283 0.084 3.61 (3.14 - 4.14) 

  Nelson 0.627 0.215 1.87 (1.32 - 2.66) 0.870 0.182 2.39 (1.77 - 3.22) 

  Northland 0.026 0.116 1.03 (0.85 - 1.24) -0.089 0.091 0.92 (0.79 - 1.07) 

  Otago 1.661 0.108 5.27 (4.41 - 6.29) 2.141 0.084 8.5 (7.41 - 9.81) 

  Southland 1.409 0.127 4.09 (3.31 - 5.05) 2.240 0.093 9.4 (8.07 - 10.95) 

  Taranaki 0.214 0.068 1.24 (1.11 - 1.39) -0.226 0.054 0.8 (0.73 - 0.87) 

  Tasman 1.373 0.099 3.95 (3.35 - 4.63) 1.224 0.079 3.4 (2.99 - 3.88) 

  Waikato 0.209 0.073 1.23 (1.09 - 1.39) -0.047 0.057 0.95 (0.87 - 1.05) 

  Wellington 0.625 0.065 1.87 (1.68 - 2.08) 0.664 0.049 1.94 (1.79 - 2.1) 

  West Coast 1.691 0.098 5.42 (4.6 - 6.37) 1.643 0.077 5.17 (4.56 - 5.87) 

 

 

 

Figure 1: Map showing the 16 regions and the two main islands of New Zealand. Grey shaded areas represent 

the areas used to compute variograms in the North Island and South Island to evaluate spatial autocorrelation 

of model fit shown in this case by the rank probability score.  

 

Figure 2: Variograms for the LSU model (A) and the cattle model (B) showing the spatial covariance in the farm-

level Rank Probability Score (RPS) in areas presented in figure 1 in the North Island (NI) and the South Island 

(SI). The dotted lines represent the 5% and 95% of the prediction interval estimated by calculating a variogram 

for 100 random permutations of the real RPS values for each region. The distance at which the errors stop 

being correlated is read off where the solid lines cross into the 95% prediction intervals (dotted lines) for each 

island and for each model.  



 

Figure 3: Boxplot of RPS for each of the 7 farm types in AgriBase for models predicting livestock units (light 

grey) and 5 farm classes in AgriBase for models predicting cattle (dark grey) on rural properties in New 

Zealand. This figure shows that in both models predictions for dry stock (contract grazing and dairy heifer 

rearing properties) were least accurate. Box widths are proportional to the square root of the number of 

observations present in each group.  

Figure 4: Box plots of the RPS from 50 resampled fits of the model where region was removed from A, the LSU 

model and B the cattle model. The upper bound of each box is the 75th percentile, lower bound is the 25th 

percentile, the median is indicated within the box and the dotted whiskers terminate at the 95th and 5th 

percentiles. Outliers are shown as hollow circles.     

Figure 5: Receiver operating characteristic (ROC) curve for a model predicting the absence of cattle (dotted 

line) and the absence of LSUs (shown with a solid line) on rural properties in New Zealand.  The x-axis of the 

ROC curve shows 1-(Pred Animals| Data Animals), traditionally Sensitivity. The y-axis represented (Pred no 

animals| Data no animals), traditionally 1-Specificity.  
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