Ensemble Modelling and Structured Decision-making to Support Emergency Disease Management

Abstract
Epidemiological models in animal health are commonly used as decision-support tools to understand the impact of various control actions on infection spread in susceptible populations. Different models contain different assumptions and parameterizations, and policy decisions might be improved by considering outputs from multiple models. However, a transparent decision-support framework to integrate outputs from multiple models is nascent in epidemiology. Ensemble modelling and structured decision-making integrate the outputs of multiple models, compare policy actions and support policy decision-making. We briefly review the epidemiological application of ensemble modelling and structured decision-making and illustrate the potential of these methods using foot and mouth disease (FMD) models. In case study one, we apply structured decision-making to compare five possible control actions across three FMD models and show which control actions and outbreak costs are robustly supported and which are impacted by model uncertainty. In case study two, we develop a methodology for weighting the outputs of different models and show how different weighting schemes may impact the choice of control action. Using these case studies, we broadly illustrate the potential of ensemble modelling and structured decision-making in epidemiology to provide better information for decision-making and outline necessary development of these methods for their further application.

Keywords
ensemble modelling, structured decision-making, policy, disease management, foot and mouth disease

Corresponding Author
Colleen Webb

Order of Authors
Colleen Webb, Matthew Ferrari, Tom Lindstrom, Tim Carpenter, Salome Durr, Graeme Garner, Chris Jewell, Mark Stevenson, Michael Ward, Marleen Werkman, Jantien Backer, Michael Tildesley
Abstract
Epidemiological models in animal health are commonly used as decision-support tools to understand the impact of various control actions on infection spread in susceptible populations. Different models contain different assumptions and parameterizations, and policy decisions might be improved by considering outputs from multiple models. However, a transparent decision-support framework to integrate outputs from multiple models is nascent in epidemiology. Ensemble modelling and structured decision-making integrate the outputs of multiple models, compare policy actions and support policy decision-making. We briefly review the epidemiological application of ensemble modelling and structured decision-making and illustrate the potential of these methods using foot and mouth disease (FMD) models. In case study one, we apply structured decision-making to compare five possible control actions across three FMD models and show which control actions and outbreak costs are robustly supported and which are impacted by model uncertainty. In case study two, we develop a methodology for weighting the outputs of different models and show how different weighting schemes may impact the choice of control action. Using these case studies, we broadly illustrate the potential of ensemble modelling and structured decision-making in epidemiology to provide better information for decision-making and outline necessary development of these methods for their further application.

Key Words: ensemble modelling, structured decision-making, policy, disease management, foot and mouth disease
Introduction

Transboundary livestock diseases can have devastating animal-health and economic impacts because such diseases are highly contagious, with the potential for rapid spread across geographic boundaries. Government agencies and livestock industries worldwide continue to develop and refine their policy and management actions in the face of such threats (e.g. Keeling et al., 2003; Schoenbaum and Disney, 2003; Tildesley et al., 2006; Willeberg et al., 2011; Yoon et al., 2006). Similar challenges exist more broadly in animal and human health, for example malaria (Murray et al., 2014), tuberculosis (Suen et al., 2014), and dengue fever (Wildersmith and Macary, 2014; Shaman et al., 2016). Decision-making when managing transboundary livestock diseases is complex; it must balance trade-offs amongst competing objectives, limited resources, and uncertainty in disease risk (Taylor, 2003). A variety of tools that incorporate data from empirical studies, previous outbreaks, and expert opinion are used to support science-based decision-making (Green and Medley, 2002; Woolhouse, 2003; Keeling, 2005), particularly for diseases such as foot and mouth disease (FMD) in non-endemic countries. Many tools used to understand the potential for infection spread and the effect of response actions on that spread inherently require an underlying predictive model of disease transmission (Kao, 2002; Woolhouse, 2003; Keeling, 2005; Garner and Hamilton, 2011; Mansley et al., 2011; Willeberg et al., 2011).

Given the complexity of disease ecosystems, it is difficult to describe all aspects of disease processes accurately within one model. Choices must be made regarding what to include and what to omit, how to implement specific processes, and how to parameterize them. Thus, model outputs upon which policy decisions are based differ owing to different modelling approaches, assumptions, and parameter estimates (Green and Medley, 2002). These model differences are
often justifiable. Different models may produce similar or quite different outputs that can all be considered plausible, where plausibility is often supported either from first principles and parameterization from known literature values in the absence of observed outbreak data or by the match between model outputs and the characteristics of observed outbreaks, when they are available. Variability among models is valuable because it captures uncertainty in the system and outbreak scenario, but reconciling variability can be difficult (Green and Medley, 2002; Keeling, 2005). Many fields, including weather forecasting, climate-change science, and medical science, use a diverse portfolio of models to indicate to decision-makers the amount of uncertainty in possible outcomes (Mangiameli et al., 2004; Palmer et al., 2004; Araujo and New, 2007). Thus, justified model diversity should be harnessed to produce cohesive policy recommendations from models, but this requires a method to incorporate potentially disparate outputs objectively from an ensemble of model outputs.

The idea of integrating model outputs to achieve a transparent decision-support framework has a relatively long history in weather forecasting (Sanders, 1963; Gneiting and Raftery, 2005 ;), hydrology (Cloke and Pappenberger, 2009; Velázquez et al., 2010), and climate-change modelling (Orsolini and Doblas-Reyes, 2003; Benestad, 2004; Palmer et al., 2004; Tebaldi and Knutti, 2007; Chandler, 2013). In medical sciences, multi-model approaches are used to assist physicians in making a medical diagnosis (Mangiameli et al., 2004; West et al., 2005). Examples of integrated approaches within the ecological literature are increasing (Niu et al., 2014) and include particle-filtering (Doucet et al., 2001) and Bayesian (Lindström et al., 2015) approaches to integrate multiple parameterizations of a single model; another approach is using integrated climate-change data to describe future environmental variables used as inputs into ecological models (Araujo and New, 2007; Barbet-Massin et al., 2009; Coetzee et al., 2009;
Thuiller et al., 2009; Maiorano et al., 2011). The latter approach has been applied in epidemiology where integrated climate projections were used to generate future environmental variables that drive predictions of disease incidence (Palmer et al., 2004; Thomson et al., 2006; Guis et al., 2012). To date, however, multiple model approaches have been applied only to a limited extent in public health (Thomson et al., 2006; Shaman et al., 2016) and in agriculture (Catelaube and Terres, 2005). Recent work suggests a way forward for multi-model, decision-support frameworks in epidemiology and animal health. This work focuses on ensemble modelling (Ward et al., 2007; Shaman and Karspeck, 2012; Lindström et al., 2015; Shaman et al., 2016) and structured decision-making (Shea et al., 2014; Probert et al., 2016), although available methods, at the time of writing, are at a preliminary stage.

Ensemble modelling (EM) combines model outputs to produce collectively a depiction of future states including uncertainty from several potential sources. Single-model ensembles use a single model structure but allow for different starting conditions and parameterizations whose outputs are combined to produce probability distributions of modelled outcomes (Tebaldi and Knutti, 2007). The mean of the probability distribution is the expected outcome, and credible intervals quantify uncertainty in the outcome. Two different single-model EM methods have been developed and applied in an epidemiological context to seasonal influenza (Shaman and Karspeck, 2012) and FMD (Lindström et al., 2015). Multi-model ensembles incorporate outputs from a set of structurally different models, referred to as an ensemble, that can incorporate different underlying processes and contribute to the uncertainty estimate (Tebaldi and Knutti, 2007). These methods are in development for epidemiology (e.g. Shaman et al., 2016), but we later present a preliminary case study addressing this methodological gap.
Structured decision-making (SDM) is a framework for analysing decisions by breaking them into component parts (Clemen, 1997). In doing so, the key impediments to making a decision are identified and effort can be focused on reducing uncertainty about relevant components. The goal is to identify the decision that mathematically maximizes (or minimizes) the specified objectives. By using a multi-model ensemble approach to SDM, uncertainty about underlying mechanisms and parameters may be incorporated in the decision process. SDM focuses on uncovering consensus as well as tradeoffs between underlying mechanisms/parameters (represented by different models) and choice of objectives. Hence, SDM is a method that uses the component parts of decision-making to organize or partition uncertainty across models and objectives into a format in which major sources of uncertainty can be identified and addressed. It has been used to facilitate decision-making in diverse fields such as organizational learning, the use and management of natural resources, adaptive management for pest control or biodiversity (Argyris and Schön, 1978; Hollings, 1978; Walters, 1986; Lee, 1993; Shea and Management, 1998; Parma, 1999; Shea et al., 2002; Williams et al., 2007; Williams, 2011; Keith et al., 2011; Williams et al., 2011) and recently in animal health (Probert et al., 2016).

Methodological development integrating EM and SDM is needed to create human- and animal-health decision-support frameworks that integrate multiple model results (Karemera et al., Lessler et al., 2016). A few studies have shown multiple model outputs side-by-side (Murray et al., 2012; Smith et al., 2012; Probert et al., 2016) or have truly integrated outputs from multiple parameterizations of a single model (Shaman and Karspeck, 2012; Lindström et al., 2015). However, these approaches are not well-established and methods are lacking to deal
with integration of multiple, policy-informative simulation models with complex model structure.

Our goal in this paper is to illustrate the potential of a combined multi-model EM and SDM approach and encourage further work in this area. We present two illustrative case studies; one highlighting the implementation of multi-model EM for an SDM scenario using a mock FMD outbreak simulated in Cumbria, UK, and one focusing on how to incorporate models with varying levels and types of plausibility into ensemble results by weighting the contribution of different models in an objective fashion using a mock FMD outbreak simulated in The Midlands and Wales, UK. We use an ensemble of FMD models that have been developed by a number of FMD-free countries that are engaged in preparedness planning (Ferguson et al., 2001; Keeling et al., 2001; Morris et al., 2001; Garner and Beckett, 2005; Harvey et al., 2007; Stevenson et al., 2013) because of the large economic losses associated with previous outbreaks. We first briefly describe the situation with FMD modelling. We then apply EM and SDM approaches to illustrate how they can be used to integrate the outputs from multiple models and inform policy and outbreak management in the two case studies. However, we stress that our goal is not to provide specific recommendations with respect to FMD and that our results should not be taken as a broad policy recommendation. Instead our goal is to illustrate how EM and SDM approaches could be more broadly applicable to both human- and animal-disease preparedness planning and response. We focus on FMD models because this is where our expertise lies and because it is an important transboundary livestock disease with appropriate existing model results that were available to us. In conclusion, we discuss the logistics of a fuller integration of EM and SDM and the potential benefits to disease response and preparedness planning.
Foot and mouth disease models

We focus here on stochastic, spatially-explicit simulations of FMD, which comprise the majority of models used to inform FMD policy in the last decade, e.g. AusSpread (Garner and Beckett, 2005; Beckett and Garner, 2007), the Central Veterinary Institute model (CVI, Backer et al., 2012), Exodis FMD (DEFRA, 2005), InterSpread Plus (Morris et al., 2001; Stevenson et al., 2013), the North American Animal Disease Spread Model (NAADSM, Harvey et al., 2007), and the Warwick model (Keeling et al., 2001; Tildesley et al., 2006). While each of these models simulates the spread of disease between geographical locations where groups of animals are managed as a single unit (i.e. farms), they differ in the way infection and disease transmission is implemented. Many of these models incorporate multiple, specific pathways of transmission and are generally designed to reflect the environment, production and marketing systems of the source country for the model. Transmission pathways of infectious diseases mostly depend on the biology of the disease and are similar within different countries. However, these models also have built in flexibility that means they can be reparameterized or restructured and thus many of them can and have been used for other countries or diseases. Examples of transmission mechanisms include livestock shipments, feed truck deliveries, wind borne movement and fence line contact. These models are often parameterized from empirical data collected during the course of FMD outbreaks in other countries, survey data and expert opinion. Models of this type include AusSpread, InterSpread Plus, and NAADSM. Other livestock disease models, such as CVI and Warwick, use phenomenological spatial kernels to represent a convolution of specific transmission pathways where the spatial kernel describes the neighbourhood of influence of an infectious location and the risk of disease transmission generally decreases as a function of distance from the focus of infection. The risk of infection is therefore based upon the location,
size and species composition of each premises as well as the distance between them. The parameters of the spatial kernel can be estimated based upon historical data (Keeling et al., 2001, Hayama et al., 2013). Exodis-FMD uses a mixture of spatial kernels and specific transmission pathways. In the interest of brevity, we do not describe further details of the models, but present a summary (Table 1) and rely on this summary, their policy relevance and peer-reviewed status as sufficient justification of the models since the work proposed here does not depend directly on the exact details of the models.

Within the context of FMD (and we suspect for other disease systems as well) the lack of a decision-support framework for integrating model outputs means that often a single model is used by analysts and policy makers or when multiple models are used their integration is informal. Although these informal integrations are generally regarded as appropriate, decision-making could be improved by more formal methods and transparency in how multiple model outputs are combined through EM and SDM.

The first steps of a multi-model approach were begun as part of the “QUADS” series of comparison studies (Dubé et al., 2006; Roche et al., 2014, Roche et al., 2015) in which results were compared for standardized scenarios across a suite of FMD models (AusSpread, CVI, Exodis FMD, InterSpread Plus, and NAADSM). The QUADS studies found that model results were similar across many--but not all--of the scenarios considered; the QUADS studies also improved the understanding of individual models by highlighting the importance of model assumptions that generated outputs that differed from the rest of the model suite. This type of comparison was critical because it provides a logical starting point for fuller integration of outputs, e.g. EM and SDM. To illustrate EM and SDM, we focus on the models used in the QUADS studies plus one additional model (Warwick).
Case study one: Structured decision-making

Uncertainty in model outputs given a particular control action is sometimes of more interest than the predicted number of infected locations or epidemic duration (Yoon et al., 2006). The ensemble of model outputs encapsulates this uncertainty about the spatiotemporal dynamics of infection spread, which may be a limiting step in the decision process. SDM assists decision-making by incorporating this uncertainty while mathematically determining optimal management decisions given specified objectives (Shea et al., 2014). The first step in an SDM approach is to formalize the objectives, i.e. the fundamental goals that managers are trying to achieve through their actions. The objectives, e.g. minimizing loss of livestock, minimizing epidemic duration, minimizing economic costs, then provide a common measure by which to evaluate control actions implemented in each model in the ensemble.

For relatively simple decision-analysis problems, the objectives can be evaluated by generating a simulation experiment to project the outcome of all possible combinations of control actions and models under consideration. Because our goal is to provide a perspective on the use of SDM in epidemiology, we direct readers interested in more detailed methods to Probert et al. (2016). In this case study, we focus on three FMD models where the needed outputs were available to us: AusSpread, NAADSM, and Warwick (Table 2). Within the case studies, we anonymize model names because our focus is on ensemble methods and not model comparison. We illustrate SDM with a simple simulation experiment for a landscape consistent with Cumbria, UK (details in Appendix A) that determines the mathematically optimal decision for a given objective among five possible control actions in response to an FMD outbreak: 1) culling of infected premises (IPs) only; 2) culling of IPs and those that have been identified as at
risk because they have had contact with IPs (contact tracing); 3) culling of all farms within 3 km of IPs in addition to IP culling; 4) vaccination of all farms within 3 km of IPs in addition to IP culling; and 5) vaccination of all farms within 10 km of IPs in addition to IP culling. The model outputs depend strongly on multiple factors specific to the scenario investigated here, such as underlying farm demography, the level of efficiency in the implementation of control strategies and constraints on control resources. Hence, policy recommendations from the case study are specific to this scenario.

The output of each simulation was summarized with respect to three measures of the outbreak: 1) the economic cost (see description in Appendix A) in terms of the re-imbursement payments to producers for culled animals only, assuming that vaccinated animals are not subsequently culled owing to vaccination (vaccinate-to-live); 2) the economic cost in terms of the re-imbursement payments to producers for culled and vaccinated animals (i.e. assuming that vaccinated animals will also be subsequently culled owing to vaccination); and 3) the duration of the epidemic from the first detected case to the last animal culled or vaccinated, which would reflect the economic costs associated with the disruption of trade due to export bans. Particularly with respect to the vaccinate-to-live strategies, we highlight that these strategies have a number of other impacts (e.g. on animal movement, trading bans and animal welfare) that are not specifically captured in the outbreak measures used. The outcome of each control action was simulated within the three models and the optimal action was taken as that which minimized the outbreak duration (Table 2) or economic cost (Table 3). See Appendix A for details of the simulations.

Here, all three FMD models predict the lowest mean cost due to livestock culled if a 10-km ring vaccination action was applied – thus, although each model predicts different numbers
of cattle culled (Figure 1), the decision that minimizes that outcome is robust to model uncertainty. In contrast, if the objective was to minimize the duration of the outbreak – i.e. because of the larger economic costs of trade restrictions – the three models in the ensemble made differing predictions of the best control action: both models 1 and 2 recommended a 3-km culling ring, whereas model 3 recommended a 10-km vaccination ring (Table 2). This highlights that the important distinction is whether the transmission dynamics are more likely to behave like those of models 1 and 2 or like model 3, but distinguishing between models 1 and 2 would not affect the decision about the action to take. In the absence of empirical evidence supporting one model over another, policy-makers might set the initial policy as that which minimizes the expected objective with respect to model uncertainty; here, 3-km ring culling is the preferred option if the three models are given equal weight. If there is support for unequal weighting of projection models, this can easily be incorporated into the proposed framework by taking a weighted average of projected outcomes (i.e. an expectation relative to a probability model with unequal weights on projection models) (McDonald-Madden et al., 2010; Shea et al., 2014). There are many ways to arrive at unequal weights for projection models, ranging from goodness-of-fit to historical or contemporary surveillance data to expert opinion (McDonald-Madden et al., 2010; Shea et al., 2014). We present a novel approach to assessing model weights below.

Model uncertainty need not be the only factor limiting decision-making (Probert et al., 2016). The mathematically optimal decision is a consequence of interactions between the underlying model dynamics and the management objective. Table 3 illustrates the dependency of the least costly control action, with outcomes averaged over the three FMD models, for two different management objectives (i.e. measures of epidemic outcome). Clearly, when vaccination has a low cost (i.e. compensation is only required for infected and not for vaccinated
animals – vaccinate-to-live) an aggressive vaccination approach is favoured in all models. However, if producers must be compensated for vaccinated animals (vaccinate-to-die), then limited culling minimizes costs. Vaccination may incur additional costs not considered here, such as longer trade bans (Paarlberg et al., 2008; Anonymous, 2014) and, as seen above, more aggressive ring culling results in the shortest outbreaks, when averaged across all models (Table 2). Thus, by taking an ensemble approach, we can highlight consensus recommendations and the sensitivity of model output to the formulation of objectives that might have been confounded with model choice in a single model analysis (Probert et al., 2016). Total economic costs are arguably a more complete, and perhaps preferable, objective. However, their calculation requires a sophisticated economic analysis taking into account decisions made by trading partners that may itself have significant uncertainty. The specification of a full economic model for outbreak costs is beyond the scope of the current analysis, but we address the dependence of the analysis on alternative objectives in the General Discussion.

Case study two: Model weighting

In case study one, the contribution of each model was equally weighted and its influence spread uniformly (see also Murray et al., 2012; Smith et al., 2012). Here, we illustrate the application of the Bayesian Reliability Ensemble Average (BREA) method (Tebaldi et al., 2005) to epidemiology, which can take into account multiple influences on model weights (see Appendix B and Lindström et al., 2015 for technical details). The original BREA method estimates model weights based on agreement with observed data (bias criterion) and consensus between models (convergence criterion), which down-weights outliers. In the original climate change application of BREA (Tebaldi et al., 2005), the main quantity of interest was the
estimated current and future mean temperature. The framework was set up to allow for
correlation between current and future temperature estimates, so that, for example, a model that
under-predicts current mean temperatures might also do so for future mean temperatures. The
BREA climate change example is analogous to the epidemiological problem where instead of
current and future mean temperatures we substitute an outbreak quantity under the implemented
control strategy and an alternative control strategy that a policy maker would like to compare
(Lindström et al., 2015). This approach is easily expandable to consider multiple outbreaks and
multiple, alternative control actions in epidemiological applications.

A major advantage is that BREA produces easily interpretable probability distributions for
outbreak quantities (e.g., size, duration, economic costs) under two or more different control
actions. The BREA framework promotes straightforward communication of uncertainty in
outcomes and the effect of control actions rather than just the most likely outcome (Wade, 2000)
or an equally-weighted, average outcome (as in Case Study 1). The BREA method is also
technically appealing because it can be used for applications where relatively small amounts of
data are available and model fitting-to-data is not required (Lindström et al., 2015). The
weightings in the BREA method can be based on summary statistics (e.g. number of infected
premises, outbreak duration, economic costs), which allows integration of models for which
outputs are not necessarily of the same format (e.g. temporal or spatial scale). Thus, we
anticipate that the BREA method will be broadly applicable in veterinary epidemiology.

Our case study incorporated simulations from a QUADS scenario outbreak consistent with
the Midlands counties and Wales in the UK performed with five models: NAADSM, AusSpread,
CVI, Exodis FMD, InterSpread Plus, and we further added the Warwick model to the ensemble.
We used outbreak duration as the quantity of interest and focused on comparison of two control
actions from the QUADS studies (Roche et al., 2014; 2015): IP culling (scenario S0 in the QUADS studies: stamping out) and IP culling plus suppressive, prospective vaccination within one km around IPs (scenario V6 in the QUADS studies). See Appendix B for more details on the simulations. The original QUADS studies were based on standardized scenarios for model comparison as opposed to actual outbreak data. Thus, we were unable to implement the bias criterion aspect of estimated weights for this case study. Instead, we focus on comparison between equal-weighting as in Case Study 1 and weighting using the convergence criterion to down-weight outliers. We discuss the role of the bias criterion in estimating weights in the General Discussion below.

Figure 2 shows the mean individual-model outputs as well as the marginal posterior probabilities (probability distributions) of outbreak duration under the two considered weighting schemes: equal-weighting and weighting based on the convergence criterion (see Appendix B and Lindström et al., 2015 for technical details). Depending on the weighting scheme, the expected outbreak duration (posterior mean and 95% central credibility interval) is reduced by 44.5 [-4.2, 104.3] or 32.8 [0.2, 88.2] days when vaccination is implemented with equal-weighting and convergence-weighting respectively. When implementing the convergence criterion for weighting, the distributions are shifted towards the centre of the ensemble compared to equal-weighting. This formally down-weights outliers, providing a more conservative estimate of the reduction in duration with vaccination, which here indicates a positive effect of vaccination in the Midlands counties and Wales scenario. However, the probability distributions corresponding to either weighting scheme are wide, with estimated reduction ranging from little (or no) effect to several months. This stems from the discrepancy among the model predictions, and demonstrates the hazard of relying on a single model to inform policy.
As the number of outbreaks and control actions considered increases, the complexity of estimating convergence-weighting increases and would be extremely difficult to justify without a BREA-like approach. Returning to an issue raised in the Introduction, the assumption in this case study is that the weighting of models differs based on their similarity with other models. Models with lower weights in this context are not eliminated from the ensemble (instead they are down-weighted); and incorporating some influence of these models on the integrated predictions is justified given that their similarity (convergence) with other models in this case study differs under different control actions (e.g. in Figure 2 the green and cyan models are outliers under different control scenarios). Similarly if we had been able to include the bias-weighting in this case study, models would be further weighted with respect to their predictions of observed outbreak statistics (see Lindstrom et al., 2015 for a single-model example with both bias- and convergence-weighting).

General Discussion

Given the differences among modelling approaches, they sometimes appear to be in competition with one another (Kao, 2002; Woolhouse, 2003; Keeling, 2005; Garner and Hamilton, 2011). We suspect this competition largely comes from limited funding and constraints on how much model uncertainty can currently be incorporated into policy recommendations so that often a single model informs policy. However, model differences can be important characterizations of different risks in an outbreak, and uncertainty in these risks should be propagated to the evaluation of alternative actions. There is also growing interest in collaboration among different modelling teams (Dubé et al., 2007; Gloster et. al., 2010; Sanson et al., 2011) that serves to enhance emergency preparedness and builds confidence in model results. Ensemble approaches provide a way to use models representing different assumptions in
a complementary framework, thus emphasizing the potential for models to be mutually informative while propagating uncertainty in epidemic processes to the evaluation of actions.

Case Study 1 using SDM, and Case Study 2 using BREA produce qualitatively similar results: that the addition of ring vaccination with a relatively smaller radius results in shorter outbreaks (~30 days shorter) in expectation; but, the BREA analysis highlights that strong variation in outcomes within and between model projections results in very weak evidence that this intervention will differ from simple IP culling. However, our goal is not to recommend particular control actions for FMD, but to illustrate how control recommendations can be integrated across multiple models and objectives. Model predictions of the effectiveness of control will be highly dependent upon logistical capacities and it is therefore important to stress that the control strategies predicted to be optimal in this analysis according to the SDM approach may change as culling and vaccination capacities are varied. This phenomenon has been investigated in detail elsewhere for the Warwick model (Tildesley et al. 2006).

SDM, as illustrated in Case Study 1, focuses on the issues associated with the choice of objective and the potential for tradeoffs when multiple objectives are considered. One obvious choice of objective is total economic costs, as is reducing the risk of adverse events (Gerber et al., 2007). In the 2001 UK FMD outbreak, implementation of specific control actions was influenced by several factors throughout the epidemic, including the availability of resources, the perceived likelihood of spread and public perception of the impact of interventions (Andersen 2002). Hence, objectives associated with animal welfare (e.g. number of animals impacted), maintenance of culturally important lifestyles (e.g. number of family farms impacted), environmental damage (e.g. arising from the burial or burning of carcasses) and crisis fatigue (e.g. duration of the control period) may better reflect the objectives of the many stakeholders in
this decision. Exact specification of these objectives may only be possible with retrospective analysis in which data on direct outbreak costs as well as trade and additional other impacts are available. In response situations and for more open-ended preparedness planning scenarios, information on costs not directly associated with control actions can be difficult to specify. In these situations, direct measurements of the outbreak such as the number of animals infected, the number of premises infected and outbreak duration along with associated costs of these actions may be all that is available. Thus, there are multiple objectives that may be desirable to consider and understanding how tradeoffs among them interact with model uncertainty is the goal of SDM and of benefit in decision-making.

In contrast to SDM, BREA focuses on how to integrate multiple weighting schemes. Bias-weighting has been used for several single-model ensembles (Murray et al., 2012; Shaman and Karspeck, 2012; Lindström et al., 2015), and the next steps are to implement these methodologies for the type of multi-model ensembles illustrated in Case Study 2. Bias-weighting, based on the match of model predictions to observed data, is clearly an important way to incorporate the plausibility of models into an integrated policy recommendation. However, it should not be the sole consideration in all circumstances. Our experience is that models often perform differently in different situations, and there is no single best model in terms of prediction accuracy in all settings. Thus when considering alternative future control actions, i.e. for which observed data are unavailable, weighting based on bias relative to past observations alone may unnecessarily down-weight models that are more plausible for alternative control actions. Convergence-weighting, based on the match of model predictions to each other, is a complementary approach. The assumption here is that models that incorporate appropriate mechanisms, for example because they are based on established first principles, should behave
similarly. The incorporation of both bias- and convergence-weighting captures the tradeoff between bias and precision in ensemble forecasts or predictions and would be our recommended approach. Because BREA methods are Bayesian, expert opinion in the form of priors can also be included (Kuhnert et al., 2010).

While EM and SDM methods individually facilitate the incorporation of multiple models into decision-making, we advocate the development of methodologies that combine both approaches by combining multiple objectives and weighting schemes. This is feasible within the BREA framework and methods development is underway to expand the BREA framework with bias- and convergence-weighting to multiple summary statistics. Multiple summary statistics are often correlated, and this must be appropriately taken into account. However, different summary statistics have different information content if not fully correlated. Thus, using a combination of summary statistics will further improve predictions (as more information can be used) while more fully incorporating tradeoffs among objectives and multiple weighting schemes. This overall framework is highly flexible and can be applied in both preparedness and response settings with potential expansion to address questions beyond alternative controls. Analogous with climate change in which the goal is to capture current and future climate characteristics, BREA could use current outbreak data to predict future outbreak characteristics, such as final size and duration for proposed response scenarios. Further, this overall framework can be extended to allow for adaptive decision-making; i.e. as with model weights in EM, real-time observation may result in increased support for a subset of models within the ensemble and thus decisions might be made with greater weight on the outputs of that subset (Williams et al., 2007; Williams, 2011; Williams et al., 2011). As a given outbreak progresses, observations may increasingly support the predictions of one model over the others, setting the stage for an
adaptive management approach (Williams et al., 2007; Williams et al., 2011; Williams, 2011; Shea et al., 2014) that shifts from the initial action that is robust to model uncertainty, to an action that is conditionally optimal for the best supported model.

There are many potential benefits to a combined EM and SDM approach simply in terms of the integration across models and objectives for more straightforward policy recommendations. Additionally, ensemble methods have improved prediction over single models in other areas of science (Palmer et al., 2004; Gneiting and Raferty, 2005; Velazquez et al., 2010; Niu et al. 2014). Our experience has been that the primary hurdles to integrating multiple models are not technical but logistical. Choice of plausible models to include in the ensemble is key as an ensemble of poor models can only produce poor predictions. The individual models are complicated, so organizing collaboration among modeling groups or training individuals to work across multiple models is both critical and challenging. For many transboundary animal diseases, including FMD, the data are international and confidential in nature and often government owned. Thus, negotiating international access and agreements for data sharing with modeling groups is also a challenge. A final challenge is developing an appropriate pipeline that works across different models for implementing standardized scenarios and standardized outputs of individual models for use in the ensemble model. We find that a formal feedback stage including all individual modeling groups is key to resolving differences in interpretation of implementation (scenarios and parameters) because the models generally work differently. Such a pipeline is important for improving the efficiency with which ensemble results are produced. Once ensemble results are confirmed, straightforward visualizations of results can be produced for decision-makers that illustrate the benefit of reducing modeling uncertainty given outbreak measures of interest (such as Tables 2 and 3) and that illustrate the
relative benefit of different control actions while integrating across models and incorporating our uncertainty in predictions (such as Figure 2). Our experience has been that both modeling groups and data owners are fundamentally interested in collaboration and quickly see the benefits of EM and SDM approaches, but patience and persistence are needed to successfully develop the type of consortium needed to implement this framework.

Conclusions

Because an integrated EM and SDM framework will evaluate the outcomes of all models in an ensemble across multiple objectives, they are useful to highlight control actions that are robust to existing model uncertainty, identify the key differences among models in the ensemble that must be clarified to resolve uncertainty in the best action, and illustrate trade-offs among the objectives of management. Although we were motivated here by our experience with FMD models, the proposed framework is broadly applicable to most, if not all, transboundary animal diseases. Full development of this framework will take time, but it is a good investment because of the role of models in policy and the complexity of integrating outputs from multiple models. Clearly, there is a need to more strongly engage policy makers in development and use of more science-based processes to integrate model recommendations both to inform policy and to overcome constraints such as data collection and data sharing. Although many challenges exist to the development of ensemble approaches for models of livestock and other diseases, their successful application in weather forecasting and other predictive sciences provide strong evidence for the importance of pursuing similar approaches in disease modelling.
Acknowledgements

Funding provided by the Research and Policy for Infectious Disease Dynamics (RAPIDD) Program, Science and Technology Directorate, US Department of Homeland Security, and Fogarty International Center, National Institutes of Health through interagency agreement #HSHQDC-09-X-00135. We especially thank the AusSpread, CVI, Exodis FMD, InterSpread Plus, NAADSM and Warwick modelling teams for providing model outputs for our analyses and Kelly A. Patyk for her comments on the manuscript. MF and MT are funded by a grant from the Ecology and Evolution of Infectious Disease program of the NSF/NIH (award number 1 R01 GM105247-01).

References

Smith, T., Ross, A., Maire, N., Chitnis, N., Studer, A., Hardy, D., Brooks, A., Penny, M.,

Stevenson, M.A., Sanson, R.L., Stern, M.W., O'Leary, B.D., Sujau, M., Moles-Benfell, N.,

Thomson, M.C., Doblas-Reyes, F.J., Mason, S.J., Hagedorn, R., Connor, S.J., Phindela, T.,

Appendix A - Methods for Case 1: Structured decision-making

For each of the 15 combinations of five control actions and three models (AusSpread, NAADSM, and the Warwick model), we generated 100 stochastic simulations of an FMD outbreak on a simulated landscape of 8000 farms. Farm sizes, composition (proportions sheep and cattle), and spatial distribution were chosen to be consistent with the Cumbria region of the UK. We chose the Cumbria region because of its relevance for the 2001 UK FMD outbreak, and because the models used in this example were already parameterized for an FMD outbreak in this region. During the UK 2001 outbreak, Cumbria was severely affected, with between 20 and 30 farms reporting infection per day at the peak of the outbreak and animals on up to 150 farms being pre-emptively culled in an attempt to control the outbreak. This resulted in a maximum of 48,000 animals being culled per day in Cumbria alone. Vaccination was not used in 2001 for a number of reasons, not least of which was that there was insufficient capacity at the time to carry out a sustained vaccination campaign (Andersen 2002). Since 2001, vaccination has been considered as part of the UK FMD contingency plan, with DEFRA estimating that at most 35,000 animals could be vaccinated per day nationwide during a future FMD epidemic (Tildesley et al. 2006). In this paper we are considering a localised outbreak in Cumbria from a single source and with this in mind we assume a conservative daily culling capacity of 50 farms per day and a maximum vaccination capacity of 10,000 animals per day. Our objective in this section of the paper is to explore the effectiveness of structured decision making in determining the effectiveness of control, and it would be naïve to assume that the optimal strategy will be consistent as capacities are increased.

For all simulations we assumed an initial period of undetected spread for 10 days prior to the first detected case. Parameterizations for NAADSM and AusSpread were based on those
described in Sanson et al. (2011). The parameterization used in the Warwick model was as in (Tildesley et al., 2008). The reimbursement costs to farmers were calculated as 1000£ per cattle and 100£ per sheep and are based upon estimates of market prices of cattle and sheep in the UK during the 2001 outbreak.

Appendix B - Methods for Case 2: Determining ensemble weights

Application of Bayesian Reliable Ensemble Average Method to Epidemiology

We here describe the BREA method used in Case study 2. For a fuller exposition on BREA methods in epidemiology including both bias and convergence criteria, we refer readers to Lindström et al. (2015).

One of the key aspects of the BREA method is that weights, expressed as a precision parameter λ_i, are estimated jointly with the parameters of interest. In the original climate-change application of the BREA method (Tebaldi et al., 2005), the main quantity of interest was the estimated current and future mean temperature, denoted μ and $\hat{\mu}$ respectively. The relationship between these quantities (included in the analysis as random variables) and simulated current and future mean temperatures (denoted X_i and Y_i, respectively) for each model i was given by

$$X_i \sim \text{Normal}\left(\mu, \lambda_i^{-1}\right)$$

$$Y_i \sim \text{Normal}\left(\nu + \beta (X_i - \mu), (\theta \lambda_i)^{-1}\right)$$

(0.1)

The parameter β is included to allow for correlation between current and future temperature estimates, so that, for example, a model that under-predicts current mean temperatures might also do so for future mean temperatures. Further, θ is included to allow for different levels of
The discrepancy between projections of current and future temperatures, e.g. model simulation outputs may be more similar for current than for future temperature projections.

The BREA climate-change example is analogous to the epidemiological problem where, instead of current and future mean temperatures, we substituted an outbreak summary statistic (e.g., number of culled animals, number of vaccine doses administered, outbreak duration) under two different control actions. For equal-weighting of models, we estimated a single precision parameter $\hat{\lambda}$, common for all models, i.e. $\hat{\lambda}_1 = \hat{\lambda}_2 = \ldots = \hat{\lambda}_n = \hat{\lambda}$, and for weights based on the convergence criterion we estimated $\hat{\lambda}_i$ for each model i. For the latter we also implemented a hierarchical approach similar to Smith et al. (2009) with $\hat{\lambda}_i \sim \text{Gamma} \left(k_{\hat{\lambda}}, k_{\hat{\lambda}}/m_{\hat{\lambda}} \right)$ that estimates hyperparameters $k_{\hat{\lambda}}$ (shape) and $m_{\hat{\lambda}}$ (mean) of $\hat{\lambda}$ in the analysis (Lindström et al., 2015). This corresponds to the assumption that the models in the ensemble come from a population of possible models, and the outbreak quantities of interest for this population are estimated. This approach reduces the sensitivity to which models are included or excluded in the analysis (Smith et al., 2009). Defining the gamma distribution by $m_{\hat{\lambda}}$ allows us to specify a prior for a hyperparameter that corresponds to $\hat{\lambda}$ in the equal-weighting analysis.

The method proposed by Tebaldi et al. (2005) also includes observed mean temperature, X_0, in the analysis as $X_0 \sim \text{Normal} \left(\mu, \lambda_0^{-1} \right)$ where λ_0 is the precision of natural variability in temperature. In climate modelling, it is reasonable that λ_0 is known, and it might also be the case for some data-rich diseases that variability in outbreak size or duration is known. However, in other cases such as FMD, natural variability in outbreak summary statistics is unknown. Thus, we included $\lambda_0 \sim \text{Gamma} \left(a_\lambda, b_\lambda \right)$ as an estimated parameter for the natural variability in the outbreak summary statistic in the epidemiological application of BREA (Lindström et al., 2015).
The stochastic simulations used for projection provided a mean simulated summary statistic, but also a range of the summary statistic. In the absence of a sufficient number of observed outbreaks to quantify λ_0, we estimated λ_0 based on variability in the simulated projections via the hierarchical parameters, $a_\tau b_\tau$.

Because the BREA method is a Bayesian approach, priors need to be specified for all random variables. Where possible, we implement the same, vague priors as used by Tebaldi et al. (Tebaldi et al., 2005) and specified $P(\mu) = P(\nu) = P(\theta) \propto 1$ and $P(\beta) = Gamma(a_\beta, b_\beta)$, i.e. a gamma distribution with shape a_β and rate b_β, with $a_\beta = b_\beta = 0.001$. For the analysis of equal weights, we implemented the prior $P(\lambda) = Gamma(a_\lambda, b_\lambda)$, with $a_\lambda = b_\lambda = 0.001$. For the model with different weights, we implemented a hierarchical model, similar to Smith et al. (Smith et al., 2009), and specified $\lambda_i \sim Gamma(k_\lambda, k_\lambda/m_\lambda)$, i.e. a gamma distribution with shape k_λ and mean m_λ. By using this parameterization, we may express the prior on m_λ, which is the corresponding parameter to λ in the equal-weight analysis. Thus, by using $P(m_\lambda) = Gamma(a_m, b_m)$ for $a_m = b_m = 0.001$, we may ensure that potential differences observed between the two weighting schemes are not the result of different priors. We also specified $P(k_\lambda) = Gamma(a_k, b_k)$ for $a_k = b_k = 0.001$, thus allowing for a wide range of shapes of the hierarchical distribution.

Because duration is inherently positive, we specify our model on the log-scale to fit with the assumptions of Eq. 0.1. That is, X_i and Y_i are interpreted as the mean log-duration, and μ and ν are the corresponding ensemble quantities. In Figure 2, we present the marginal distribution of these quantities, i.e. integrating over all other parameters in Eq 0.1, including model weights λ_i.

However, for transparency we transform all quantities and parameter estimates back to the
original scale (rather than the log-transformed duration) with days as unit. As such, our results are presented for the geometrical mean duration.

Simulations

Case study 2 focuses on a mock outbreak of FMD in a subpopulation of farms from the UK, consisting of the Midlands counties and Wales. AusSpread, the CVI model, Exodis FMD, InterSpread Plus, and NAADSM had already simulated outbreaks as part of the QUADS studies (Roche et al., 2014; 2015). We simulated the Warwick model for the same initial conditions, underlying demography, and control measures as the QUADS studies scenarios (as given in Roche et al., 2015). Table B1 summarizes the simulation data of the models used in the BREA analysis for Case Study 2.

Vaccinations included all species and were assumed to start 14 days after first detection. Simulations started after the silent-spread phase, thus excluding transmission via animal shipments, and all models, scenarios, and replicates were seeded with the same 20 infected farms, of which one was detected. Further details on the assumptions can be found in Roche et al. (2014; 2015).
Table 1. Summary of FMD model properties. All models are stochastic, spatially explicit, state–transition models. IP: infected premises, DC: dangerous contact, CP: contiguous premises.

Table 2. Mean predicted duration (days) of outbreak for each model and control action. Shading indicates the action resulting in the shortest predicted outbreak duration for each model. Numbers in parentheses indicate the 10th and 90th quantiles of the distribution of outcomes. The “average” row gives results for an equally weighted mixture of the distributions resulting from each model.

Table 3. Model-averaged predicted cost for each objective (rows) and control action (columns). Predicted costs are given in millions of pounds (£). Numbers in parentheses indicate the 10th and 90th quantiles of an equally-weighted mixture distribution of the outcomes of the three models. Shading indicates the action with lowest mean cost for each objective.

Table B1. Underlying data for Figure 2. Expected outbreak duration (log-transformed) under control actions with infectious premises culling (X) and with vaccination in addition (Y).

Figure 1. The distribution of predicted cattle culled for 100 realizations of each combination of model (rows) and control action (columns).

Figure 2. The expected predicted outbreak duration in days under control actions with infectious premises culling (A) and with vaccination in addition (B) and the difference from using vaccination (C). Coloured, dashed lines indicate the mean projection of each individual model,
consistently coloured across the three panels. The marginal posterior probabilities of the ensemble analysis with equal weights (black lines) and convergence weighting (grey lines) are indicated and were calculated as described in Appendix B.
Figure 1. The distribution of predicted cattle culled for 100 realizations of each combination of control action (rows) and model (columns).
Figure 2. The expected predicted outbreak duration in days under control actions with infectious premises culling (A) and with vaccination in addition (B) and the difference from using vaccination (C). Coloured, dashed lines indicate the mean projection of each individual model, consistently coloured across the three panels. The marginal posterior probabilities of the ensemble analysis with equal weights (black lines) and convergence weighting (grey lines) are indicated and were calculated as described in Appendix B.
Table 1. Summary of FMD model properties. All models are stochastic, spatially explicit, state–transition models. IP: infected premises, DC: dangerous contact, CP: contiguous premises.

<table>
<thead>
<tr>
<th>model</th>
<th>transmission via</th>
<th>control measures</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>AusSpread</td>
<td>Specific pathways</td>
<td>Quarantine, movement ban by zone or entire region, forward & backward tracing, IP, DC, and/or CP culls, vaccination, surveillance</td>
<td>Garner and Beckett, 2005; Beckett and Garner, 2007</td>
</tr>
<tr>
<td>CVI</td>
<td>Spatial kernel</td>
<td>Regulating transports, DC tracing, IP culls, ring culling, ring vaccination</td>
<td>Backer et al., 2012</td>
</tr>
<tr>
<td>Exodis-FMD</td>
<td>Mix of spatial kernel and specific pathways</td>
<td>Movement ban, protection & surveillance zones, culling of IP, DC, and/or contiguous, ring culling, welfare culling and vaccination, implemented by county.</td>
<td>DEFRA, 2005</td>
</tr>
<tr>
<td>InterSpread Plus</td>
<td>Specific pathways</td>
<td>Quarantine, movement ban by zone or entire region, forward & backward tracing, IP, DC and/or CP culls, vaccination, surveillance</td>
<td>Morris et al., 2001; Martinez-Lopez et al., 2009a; 2009b; Yoon et al., 2006; Stevenson et al., 2013</td>
</tr>
<tr>
<td>NAADSM</td>
<td>Specific pathways</td>
<td>Movement ban by entire region, forward tracing, IP, DC, and/or CP culls, vaccination, surveillance</td>
<td>Harvey et al., 2007</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Warwick</td>
<td>Spatial kernel</td>
<td>Movement bans, IP, DC, and/or CP culls, vaccination</td>
<td>Keeling et al., 2001; Tildesley et al., 2006</td>
</tr>
</tbody>
</table>
Table 2. Mean predicted duration (days) of outbreak for each model and control action. Shading indicates the action resulting in the shortest predicted outbreak duration for each model.

Numbers in parentheses indicate the 10th and 90th quantiles of the distribution of outcomes. The “average” row gives results for an equally weighted mixture of the distributions resulting from each model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Culling only</th>
<th>Culling and Vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Infected premises(^1)</td>
<td>Contact(^2)</td>
</tr>
<tr>
<td>Model 1</td>
<td>151 (39, 396)</td>
<td>98 (37, 182)</td>
</tr>
<tr>
<td>Model 2</td>
<td>135 (59, 245)</td>
<td>137 (52, 243)</td>
</tr>
<tr>
<td>Model 3</td>
<td>65 (27, 107)</td>
<td>42 (27, 56)</td>
</tr>
<tr>
<td>Average</td>
<td>117 (36, 222)</td>
<td>92 (33, 187)</td>
</tr>
</tbody>
</table>

\(^1\) culling of infected premises only

\(^2\) culling of infected premises and those identified as dangerous contacts

\(^3\) culling in a 3-km ring around infected premises, including infected premises

\(^4\) vaccination in a 3-km ring around infected premises and culling of infected premises

\(^5\) vaccination in a 10-km ring around infected premises and culling of infected premises
Table 3. Model-averaged predicted cost for each objective (rows) and control action (columns).
Predicted costs are given in millions of pounds (£). Numbers in parentheses indicate the 10th and 90th quantiles of an equally weighted mixture distribution of the outcomes of the three models.
Shading indicates the action with lowest mean predicted cost for each objective.

<table>
<thead>
<tr>
<th>Objective</th>
<th>culling only</th>
<th>culling and vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>infected</td>
<td>traced</td>
</tr>
<tr>
<td>premises(^1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tracing(^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>culling(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vaccination(^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vaccination(^5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted costs in millions of pounds (£)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vaccinate-to-live</td>
<td>11.0 (2, 19)</td>
<td>8.8 (2, 18)</td>
</tr>
<tr>
<td>vaccinate-to-die</td>
<td>11.0 (2, 19)</td>
<td>8.8 (2, 18)</td>
</tr>
</tbody>
</table>

\(^1\) culling of infected premises only
\(^2\) culling of infected premises and those identified as dangerous contacts
\(^3\) culling in a 3-km ring around infected premises, including infected premises
\(^4\) vaccination in a 3-km ring around infected premises and culling of infected premises
\(^5\) vaccination in a 10-km ring around infected premises and culling of infected premises
Table B1. Underlying data for Figure 2. Expected outbreak duration (log-transformed) under control actions with infectious premises culling (X) and with vaccination in addition (Y).

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>5.0097</td>
<td>5.7874</td>
<td>4.7045</td>
<td>4.9517</td>
<td>5.1512</td>
<td>4.7702</td>
</tr>
<tr>
<td>Y</td>
<td>4.7761</td>
<td>5.0168</td>
<td>4.3199</td>
<td>4.7196</td>
<td>5.0105</td>
<td>4.7035</td>
</tr>
</tbody>
</table>
Title: Ensemble Modelling and Structured Decision-making to Support Emergency Disease Management

Colleen T. Webba, Matthew Ferrarib, Tom Lindströma,c, Tim Carpenterd, Salome Dürre, Graeme Garnerf, Chris Jewellg, Mark Stevensonh, Michael P. Wardi, Marleen Werkmanj, Jantien Backerj and Michael Tildesleyk

aDepartment of Biology, Colorado State University, Fort Collins, CO USA
bCenter for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
cIFM, Theory and Modelling, Linköpings Universitet, Linköping, Sweden
dEpiCentre, Massey University, Palmerston North, New Zealand
eVeterinary Public Health Institute, Vetsuisse Faculty, University of Berne, Switzerland
fAnimal Health Policy Branch, Department of Agriculture, Canberra, Australia
gInstitute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
hFaculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
iFaculty of Veterinary Science, The University of Sydney, Camden, Australia
jCentral Veterinary Institute part of Wageningen UR (CVI), Lelystad, the Netherlands
kWarwick Infectious Disease Epidemiology Research (WIDER) group, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK

Corresponding author: Colleen T. Webb; colleen.webb@colostate.edu