
OpenPING: A Reflective Middleware for the Construction
of Adaptive Networked Game Applications

Paul Okanda
Computing Department,

Lancaster University,
Lancaster, LA1 4YR.

+ 44 (0) 1524 593315

okanda@comp.lancs.ac.uk

Gordon Blair
Computing Department,

Lancaster University,
Lancaster, LA1 4YR.

+ 44 (0) 1524 593809

gordon@comp.lancs.ac.uk

ABSTRACT
The emergence of distributed Virtual Reality (VR) applications
that run over the Internet has presented networked game
application designers with new challenges. In an environment
where the public internet streams multimedia data and is
constantly under pressure to deliver over widely heterogeneous
user-platforms, there has been a growing need that distributed VR
applications be aware of and adapt to frequent variations in their
context of execution. In this paper, we argue that in contrast to
research efforts targeted at improvement of scalability, persistence
and responsiveness capabilities, much less attempts have been
aimed at addressing the flexibility, maintainability and
extensibility requirements in contemporary distributed VR
platforms. We propose the use of structural reflection as an
approach that not only addresses these requirements but also
offers added value in the form of providing a framework for
scalability, persistence and responsiveness that is itself flexible,
maintainable and extensible. We also present an adaptive
middleware platform implementation called OpenPING1 that
supports our proposal in addressing these requirements.

Keywords
Virtual Reality (VR), Middleware Platforms, Reflection,
Adaptation, Networked Games.

1. INTRODUCTION
Recent research in networked games and VR service platforms
has been aimed at offering adequate support for applications

1 OpenPING is an enhanced version of Platform for Interactive

Networked Games, the original non-reflective version having
been designed by a number of partners in a EU funded project:
PING-IST-1999-11488.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30 & Sept. 3, 2004, Portland, OR, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008…$5.00.

running on the public Internet. This has proved extremely
challenging, particularly in massively multi-participant games
where thousands of users potentially interact with each other and
with thousands of autonomous entities using uncontrolled
network and local (processor, memory) resources. In an effort to
better address these challenges, researchers have identified
various capabilities that a networked games middleware platform
should offer. Requirements for such systems include the
following:

• Scalability: ability to continue functioning satisfactorily as
the system’s execution context changes in size or volume in
order to meet diverse needs.

• Persistence: capacity to remain active even when some/all
user sessions have terminated.

• Responsiveness: capability of responding to user demands
within a prescribed time frame guaranteeing sustained
support for high levels of interaction between many users.

• Flexibility: ability to satisfy differing system constraints and
user needs with fluctuations in the system’s execution
environment.

• Maintainability: the ease with which the game application
can be modified to correct faults, improve performance, or
other attributes.

• Extensibility: the ease with which the platform can be altered
to increase the system’s functional capacity.

The main focus of research on VR and networked game platforms
has been on the first three capabilities and, as a result, a number of
techniques both at the platform and the application level have
emerged:

• To improve scalability, existing published works propose a
wide range of world partitioning approaches from static
coarse-grained partitions [2] and interest management
(perception-based) approaches in Virtual Society [6] to
information aggregation depending on level of details.

• To address persistence requirements, some service platforms
such as Continuum [4] implement mastership transfer within
peer-to-peer architectures. Others have centralised databases
that regularly maintain versions of object states.

• To provide support for responsiveness, researchers have
attempted to implement fully distributed architectures
together with multicast grouping of clients, e.g. DIVE [2].

(A detailed analysis of techniques used in VR platforms can be
accessed in [7]).
In contrast, less research has been carried out on addressing the
flexibility, maintainability and extensibility requirements of VR

and networked game platforms. We aim to address these
requirements using a suitable framework that culminates in the
realization of an adaptive middleware platform.

This paper is structured as follows. Section 2 presents a
background on open implementation. Section 3 then provides an
insight into our overall approach and a description of our system’s
design. Implementation details and an overall architecture are
covered in section 4 followed by details of some experiments and
their evaluation in section 5. Section 6 then concludes the paper.

2. TOWARDS OPEN IMPLEMENTATION
We believe that contemporary game platform architectures are
unable to cope effectively with flexibility, maintainability and
extensibility requirements as a result of two main reasons:

1. Firstly, their black-box nature inevitably creates a bias in the
performance of the resulting implementation since the
platform designers have to decide beforehand and make a
choice on the implementation, then lock that decision inside
a black-box. As shown in Figure I below, a black-box
abstraction presents a single interface that exposes
functionality but hides implementation.

base interface

 base program(s)

Figure I A black-box implementation

2. Secondly, even in instances where access to the platform
implementation is enabled, their highly coupled nature makes
implementation choices of certain services hard-coded in the
implementation of others.

Current research in software design is geared towards
reconsidering the question of what a system’s implementation
should expose to its clients. There is huge potential in a system
becoming more useful if it allows clients to take control over its
implementation strategy. This design principle is called open
implementation [Kiczales96, DeVolder95].
base interface

 base program(s)

 meta-program(s)

Figure I I An open implementation

As shown in Figure I I above, an open implementation presents
two interfaces – the primary (base) interface which provides the
functionality and the meta-interface which allows the client to
adjust the implementation strategy decisions that underlie the
primary interface.

Open implementation presents issues such as technologies to
support realisation of the above goals and how to make key
decisions about what implementation decisions to expose.

We contend that in order to meet flexibility, maintainability and
extensibility requirements of networked game middleware, there
is an obvious need for more effort towards incorporation of
openness in their design.

3. SYSTEM DESIGN
To achieve openness, a primary focus in the research community
has been the concept of computational reflection. The
fundamentals of reflection were introduced by B.C. Smith [11]
who argued that a system can be made to control its own
representation in much the same way as it controls the
representation of its application domain. Such a system is said to
have a self-representation (also referred to as a meta-
representation) whose constituents could be its own state and
behaviour. Additionally, if this self-representation has a causal
connection relationship with the domain, i.e. if a change in the
system’s self-representation triggers a change in the application
domain and conversely, any alteration in the application domain
causes a corresponding effect in the system’s self-representation,
then the system is said to be reflective.

We provide a simple context-specific definition of reflection in
networked game applications as;

“ a design principle that allows a networked game platform
and/or application to have a representation of itself in a manner
that makes its adaptation to a changing environment possible” .

3.1 Object Model
The framework’s design uses an object-oriented approach in
which an object consists of:

• a set of accessible attributes,
• a set of methods to get and set these attributes (collectively

forming the interface of the object),
• a set of associated behaviours,
• one or more renderings of the object.
Active objects (e.g. avatars) possess all the four elements while
passive objects (e.g. components of a networked game terrain)
contain all elements except the set of behaviours.

We look into an object model that has three categories of
associated behaviours:

• Application (shallow) behaviours: are application level and

may or may not trigger changes in the system. For example,
the simulation of an avatar’s change in location (motion) is
an application behaviour.

• Platform (deep) behaviours: are system level and exist at the
application level as representations of middleware services or
mechanisms. For example, a particular consistency policy
that implements a receive-order sequence of events is a
platform behaviour.

• Hybrid (shallow-deep) behaviours: these are application-
system level with an implementation that causally cuts across
the entire game platform. For instance, an event channeling
protocol that has application-level input in form of packet
loss detection is a hybrid behaviour.

4. PLATFORM IMPLEMENTATION
4.1 Overall Architecture
The platform whose overall architecture is described below offers
dynamism in networked game applications via exploitation of
application-specific semantics and run-time execution

environment awareness. Crucially, it provides the application
designer with access to application objects as well as mechanisms
encapsulated in six services within a middleware platform called
OpenPING. The services, each with its own set of pluggable
mechanisms include: Concurrency, Replication, Interest
Management, Persistence, Consistency and Event Channelling.

The diagram below illustrates a framework for the platform’s
architectural design.

Figure IV Architectural Design
4.1.1 Object and Event Management Bundle
At the Object and Event Management Bundle, five services
present run-time pluggable or unpluggable mechanisms as
detailed below:
Replication: To provide responsiveness and counter the
drawbacks that are commonplace in centralized approaches, a
number of networked game applications implement a replicated
distribution architecture. OpenPING’s Replication service
comprises:
Replication Rate with a:
- Standard Rate which replicates data between a node and

other peers at an average rate.
- Low Rate which does the replication between a node and its

peers at a lower frequency than the standard one.
- High Rate which updates shared data between the master

node and replicas at a higher frequency than the average one.

Concurrency: In order to provide acceptable interaction between
users that are dispersed over large geographical areas,
OpenPING’s shared data is replicated amongst participant nodes.
Its Concurrency service bundle comprises:
Lock Transfer Mode with a:
- Pessimistic Scheme which blocks all nodes until a lock

request is received and is subsequently granted allowing the
node to manipulate the object.

- Predictive Scheme in which an object’s owning node
anticipates requests for ownership based on such properties
as orientation, navigation, position and speed.

Persistence: This service is concerned with storage of shared data
in stable storage such that it is possible to access the stored data
should a need arise.

It comprises:
Service Type with:
- In-memory storage in which shared data persists only for the

period that the session is on.
- In-disk storage in which the shared data persists even after a

session has been terminated.
Check-point Rates with a:

- Standard rate at which a snap-shot of the shared state of the
game session or simulation state set is taken for in-disk or in-
memory storage.

- Low Rate which takes a snap-shot of the game session’s
shared state set at a lower frequency than the standard one
above.

- High rate which takes a snap-shot of the game session’s
shared data set at a higher frequency than the standard one.

Consistency: The fact that consistency of a shared state cannot be
guaranteed even when all updates are delivered to all peers
implies that there is always the need for consistency algorithms.
It comprises:
Algorithms with:
- Receive-order in which event delivery is in the order that

events are received at the consistency service.
- Priority-order algorithm which inserts new events at the

correct place in the event queue with reference to event
creation time at the application level.

- Total-order which makes use of causal timestamps to ensure
a total ordering of events across all simulations.

4.1.2 Application Bundle
Based on an application object behaviour classification,
OpenPING’s Application service bundle presents instances of
application-specific mechanisms. These include the following
categories:
Prediction: This involves modeling of deterministic application
behaviours at respective nodes in order to compensate for high
latency with increased processing by each entity via envisaging
the Master object’s trajectory in the simulation.
Behaviour Configuration: Implementation of the framework’s
Application service bundle configures behaviours by dynamically
dropping, picking and replacing their attributes depending on
external and local load levels or user preferences.
Smoothing: The framework’s Application service bundle
implements algorithms that are applied to counter jerking visual
effects on a moving object’s trajectory. This is obviously
dependent on the rate at which updates are sent to the node.

Application
Prediction

Behaviour Config.

Smoothing

 Concurrency

Modes

Replication

 Rates

 Event

Dispatch

 Interest
Management

Protocols Consistency

 Algorithms

 Event

 Routing

 Event
Channelling

 Persistence

Services

 Rates

Protocols

4.1.3 Communications Bundle
OpenPING’s Communication service bundle comprises three
protocols within the Event Channelling service bundle as detailed
below:
Reliable Channel: Applications are provided with a simple
Application Programming Interface (API) where reliability is a
toggle and the network service provides adequate buffers to
resend information when reliable messages have not arrived at
their destination.

Application Level Framing (ALF) Channel: This type of
channel results from a network principle which advocates that the
application should help the networking level when transferring
data in-between the end points.

Unreliable Channel: OpenPING’s unreliable protocol offers a
network channel with a rather simplistic transmission of events. In
its User Datagram protocol (UDP)-type implementation, the
network service provides no buffers at all to retransmit packets
that do not arrive at their intended destination.
Behaviours can be broken down into individual constituent parts
called Behavioural Attributes (BAs). A Behavioural Attribute is a
separable part of the behaviour of an object. Considering motion
in a game, InertiaSlave (an algorithm that models the
deterministic Inertia behaviour at the slave simulations) is a BA
of the behaviour Inertia. It encapsulates a reactive program and
can be configured or reconfigured individually using
properties/methods/events. A reactive program describes a BA
and its associated state.

4.2 Adaptation Management
Adaptation management concerns the observation of objects,
decision-making based on observed trends, and the subsequent
enactment of decisions through a feedback and control loop [8].
The diagram below presents adaptation management in our
architecture.

 Reification CCSR

 App.

 Services
 Object & Event

 Management

 Event Channelling

 Reification
 Execution Kernel CCSR

 .

Figure V OpenPING’s Adaptation Management

As can be seen from the figure above, the object model (earlier
presented in section 3) provides meta-information about itself at
two separate meta-meta levels – the first one is at the application
bundle which handles shallow behaviours and the second level is
at the platform kernel which handles deep and hybrid behaviour.
From an application programmer’s viewpoint, the application
bundle models both application behaviours alongside a
representation of platform behaviours, thus providing a common
metaphor for adapting the entire system.
We choose to focus our efforts on Replication, Consistency and
Event Channelling services for our experiments since efforts to
address scalability, responsiveness and persistence concerns have
focused on the Interest Management, Concurrency and Persistence
services.

5. EXPERIMENTS AND EVALUATION
From our implementation, we have set up experiments (covering
all the behavioural) types that focus on allowing developers to
adapt object behaviour at run- time. Our experimental prototype is
a simple ‘RobotWar’ game in which remote users attempt to ‘ fire’
at one another’s robots using ‘canons’ . The primary goals of this
experimental work are to evaluate the framework’s:
• Use of structural reflection to address flexibility,

maintainability and extensibility in networked game
applications.

• Flexibility in provision of multiple infrastructure mechanisms
to address scalability, persistence and responsiveness needs.

• Provision of a reflective model that supports run-time
adaptation of application as well as platform behaviours.

• Ease of use and expressiveness with which the game
application designer is able to incorporate the platform’s
mechanisms alongside application-specific behaviour.

• Selective performance metrics and scalability.
Our interpretation models context-specific application (shallow)
behaviours alongside standard implementations of platform (deep)
and hybrid (shallow/deep) behaviours. Two examples are briefly
outlined below.
(Further details can be accessed in the author’s PhD thesis
currently in preparation).

5.1 Exper iment 1 – Hybr id Behaviours
Aim: To enable dynamic causal addition/removal of the ALF
Event Channelling protocol.
Implementation: While the system executes, an application
switch to GravityBA causally activates a switch by the Event
Channelling service bundle to UnreliableEventChannelBA such
that the underlying platform makes up for the additional load at
the Application service bundle. Conversely, whenever GravityBA
is disabled, ALFEventChannBA is activated to exploit the
information that the application has on the game.
Result: This experiment shows that the middleware adapts to the
increase in system load by sacrificing application-semantics’
involvement in event delivery. Conversely, it adapts to a decrease
in system load by activating reliable event delivery at the
platform.
Evaluation: The results of the experiment prove that the
framework’s reflective model supports run-time adaptation even
in instances where behaviours cannot explicitly be referred to as
purely platform or application.

 Application
Behaviours

Platform Services

Data
 &
Events

Kernel

unreg(oldService), reg(newService)
rem(oldService) init(newService)
untick(oldSevice) put(newService)
 tick(newService)

Meta-interface
 getBA(), addBA(), removeBA(),
 getBANames(), addBAListener()

5.2 Exper iment 2 – Per formance Metr ics
This experiment evaluates the performance overhead that is
directly attributed to the additional code used to realise reflection
hence run-time adaptation within the framework. It involves the
use of Intel PIII PCs with 128 MB – 256MB memory and
650MHz clock speeds in a 100 Mbps Fast Ethernet Local Area
Network (LAN). All the experiments are done on single idle
processors and averages (with typical variations measured at ± 2
milliseconds) taken over 100 independent runs.
Aim: To appraise performance metrics and scalability of the
OpenPING framework.
Implementation: At start-up, a measure is done on the period of
time it takes to load and initialise all services from the platform
and start the ‘RobotWar’ game. Subsequent measurements are
made with varying numbers (N) of either Application behaviours
or Platform/Hybrid behaviours loaded at the same instant.
Result: It takes an average of 1,735 milliseconds to load the
platform and the game at start-up. The total variance between time
measurements regarding the configuration or re-configuration of
all behaviours during normal operation is 31 milliseconds.
Configuring (getting/adding or getting/removing) a single (or two)
Application, Platform or Hybrid Behavioural Attribute(s) either at
start-up or run-time (during execution) costs 16 ms of execution
time while it costs a maximum of 31 ms of execution time to load
as many as 10 behaviours at the same instant.
The contribution this makes towards attainment of the
recommended threshold for effective end- to-end lag in
propagation of multimedia data (100 – 300 ms) [5] is not
significant.
Below is a graphical representation of loading time (ms) against
Behaviours (N) at start-up.

Performance Metrics

1730

1740

1750

1760

1770

0 5 10 15

Number of Behaviours (N)

Applicat ion Behaviours Plat f orm & Hybr id Behaviours

Figure VI Execution time for configuration of Platform Services
and application-specific BAs at start-up.
Evaluation: The figures above give credence to the fact that at
just about 1% (of the total execution time) as an overhead
incurred by the framework, incorporation of run-time adaptation
through structural reflection offers tangible benefits.
Since as many as 10 Behavioural Attributes (BAs) are configured
at the same instant without an exponential increase in execution
time, the approach taken fully meets scalability demands in next
generation networked game service platforms.

6. CONCLUSION
This paper has outlined the need for dynamic adaptation as a
means to achieve better flexibility, maintainability and

extensibility and also offer support in a flexible way for the run-
time incorporation of scalability, persistence and responsiveness
techniques. Incorporating dynamically evolving application-
specific wishes by making modifications (on the middleware or
application) at compile-time is not ideal especially if the
application involves real-time interaction and requires round-the-
clock availability. To support dynamic adaptation, this paper has
detailed how our framework facilitates not just the co-existence of
multiple alternative infrastructure mechanisms but additionally,
rather than applying a single mechanism to all environmental
scenarios, mechanisms can be tested, replaced, reconfigured or
dropped at the application level in the same manner that
behaviours in the application are.

Hence we argue that in distributed virtual reality, the use of
reflection at the application level to design a meta-interface
through which internal managers monitor and adapt platform and
application behaviour dynamically is the way forward in the
design of next generation networked games platforms.

REFERENCES
[1] Birman K., R. Cooper, T. Joseph, K. Marzullo, M.
Makpangou, K. Kane, F. Schmuck and M. Wood, “ The ISIS
System Manual, Version 2.1” , Cornell University, Sep. 1990.

[2] Frecon Emmanuel, Marten Stenius, “ DIVE: A Scalable
Network Architecture for Distributed Virtual Environments” ,
Distributed Systems Engineering, 5(3), pp. 91-100, 1998.

[3] Frederic Dang Tran, B. Dumant, F. Horn, J.B. Stefani,
“ Jonathan: an open distributed processing environment in java” ,
Middleware ’98, IFIP International Conference on distributed
Systems Platforms and Opens Distributed Processing, Lake
District, UK, Sep. ’98.
[4] Frederic Dang Tran, Anne Gerodolle, “ An Object-oriented
Framework for Large-scale Networked Virtual Environments” ,
Springer-Verlag, In Proceedings of the 6th International Euro-Par
Conference, Munich, Germany, Sep. 2000.
[5] ITU90, “ Effect of propagation delays on communication
quality” , International Telecommunications Union (ITU) SG12,
Feb. 1990.
[6] Lea Rodger, Yasuaki Honda, Kouchi Matsuda, “ Virtual
Society: Collaboration in 3rd spaces on the Internet” , The Journal
of Collaborative Computing, 1997.
[7] Okanda, P., Blair, G., “ Analysis of Techniques used in
Distributed Virtual Environments” , Internal Report No. MPG-02-
01, Computing Department, Lancaster University, Nov. 2002.
[8] Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Qulici, A., David S. Rosenblum,
D.S., Wolf, A.L., “ An Architecture-Based Approach to Self-
Adaptive Software” , IEEE Intelligent Systems, Vol. 14, No. 3, pp.
54-62, May/June 1999.
[9] Purbick James, “ Continuously Available Virtual
Environments” , PhD. Thesis submission, Nottingham University,
UK ’01.
[10] Rao, R., “ Implementational Reflection in Silica” ,
Proceedings of ECOOP ’91, Lecture Notes in Computer Science,
P. America (Ed), pp. 251-267, Springer-Verlag, 1991.
[11] Smith, B.C., “ Procedural Reflection in Programming
Languages” , PhD. Thesis, MIT, Available as MIT Laboratory of
Computer Science Technical Report 272, Cambridge, Mass.,
1982.

