New developments in the CAPTAIN Toolbox for Matlab with case study examples

C. J. Taylor ∗ P. C. Young ∗∗ W. Tych ∗∗∗ E. D. Wilson ∗

∗ Engineering Department, Lancaster University, UK (e-mail: c.taylor@lancaster.ac.uk, e.d.wilson1@lancaster.ac.uk)

∗∗ Lancaster Environment Centre, Lancaster University, UK; Fenner School of Environment and Society, Australian National University, Canberra; Australia (e-mail: p.young@lancaster.ac.uk)

∗∗∗ Lancaster Environment Centre, Lancaster University, UK (e-mail: w.tych@lancaster.ac.uk)

Abstract: The CAPTAIN Toolbox is a collection of Matlab algorithmic routines for time series analysis, forecasting and control. It is intended for system identification, signal extraction, interpolation, forecasting and control of a wide range of linear and non–linear stochastic systems across science, engineering and the social sciences. This article briefly reviews the main features of the Toolbox, outlines some recent developments and presents a number of examples that demonstrate the performance of these new routines. The examples range from consideration of global climate data, through to electro–mechanical systems and broiler chicken growth rates. The new version of the Toolbox consists of the following three modules that can be installed independently or together: off–line, time–varying parameter estimation routines for Unobserved Component (UC) modelling and forecasting; Refined Instrumental Variable (RIV) algorithms for the identification and estimation of both discrete and ‘hybrid’ continuous–time transfer function models; and various routines for Non–Minimal State Space (NMSS) feedback control system design. This new segmented approach is designed to provide new users with a gentler introduction to Toolbox functionality; one that focuses on their preferred application area. It will also facilitate more straightforward incorporation of novel algorithms in the future.

Keywords: Identification; estimation; forecasting; signal processing; control system design; robotic systems; climate data; chicken growth

1. INTRODUCTION

The Computer–Aided Program for Time Series Analysis and Identification of Noisy Systems (CAPTAIN) Toolbox provides access to novel algorithms for various important aspects of system identification, estimation, nonstationary time series analysis, signal processing, adaptive forecasting and automatic control system design. These algorithms have been developed by the first three authors of this article, and their colleagues (see Acknowledgements), over many years. In fact, CAPTAIN was originated by the second author over 40 years ago, whilst the first Matlab implementation was released in 2000 (Pedregal et al., 2007; Taylor et al., 2007). The books on Recursive Estimation and Time Series Analysis (Young, 2011) and True Digital Control: Statistical Modelling and Non–Minimal State Space Design (Taylor et al., 2013) contain information on the history, derivation and use of all of the algorithms in the Toolbox.

In essence, the Toolbox represents the output of various on–going investigations into Matlab implementations of the underlying algorithms, as well as default and optional values of the input parameters to the routines. This should help both expert and less experienced modellers to use these routines when they are considering the analysis of data sets across a wide range of scientific disciplines, as illustrated by the citations to e.g. Taylor et al. (2007) that have appeared in diverse areas of the open literature.

As explained later in the article, the latest version of the Toolbox includes improved routines and new modelling tools. Furthermore, the Toolbox has recently been reorganised significantly and now consists of the following three distinct modules:

(1) TVPMOD: Time Variable Parameter (TVP) MODels. For the identification of Unobserved Component (UC) models, with a particular focus on time–variable and state–dependent parameter models, including the popular Dynamic Harmonic Regression (DHR), all of which can be used for signal extraction, interpolation and forecasting.
2.2 How to use the Toolbox

The Toolbox is primarily used by means of standard function calls i.e. directly from the Matlab Command Window or from scripts. Each function is called using a number of input and output arguments. Here, default input arguments are embedded into CAPTAIN and usually provide a reasonable initial result, while the full power of the Toolbox is accessed through the wide range of optional settings. For example, a smoothed trend y_s for the climate data illustrated in Fig. 1 (see later) is straightforwardly obtained using $y_s = \text{irwsm}(y)$, in which \text{irwsm} is a CAPTAIN function for the estimation of integrated random walk models. There is only one input argument, the data y, and so CAPTAIN utilises the most typical model for this type of analysis. However, entering $y_s = \text{irwsm}(y, \text{TVP}, \text{nvr})$ allows the user to optionally specify the model type and noise variance ratio, among other settings. Rather than provide a formal tutorial in this article, we instead direct the reader to the ‘Getting Started Guide’ which is freely available from the first authors’ website.

<table>
<thead>
<tr>
<th>Table 1. Abbreviations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVPMOD</td>
</tr>
<tr>
<td>RIVSID</td>
</tr>
<tr>
<td>TDCONT</td>
</tr>
<tr>
<td>ARX</td>
</tr>
<tr>
<td>CT</td>
</tr>
<tr>
<td>DBM</td>
</tr>
<tr>
<td>DHR</td>
</tr>
<tr>
<td>DT</td>
</tr>
<tr>
<td>MPC</td>
</tr>
<tr>
<td>NMSS</td>
</tr>
<tr>
<td>PIP</td>
</tr>
<tr>
<td>RIV</td>
</tr>
<tr>
<td>RIVBJ</td>
</tr>
<tr>
<td>SDP</td>
</tr>
<tr>
<td>TDC</td>
</tr>
<tr>
<td>TF</td>
</tr>
<tr>
<td>TVP</td>
</tr>
<tr>
<td>UC</td>
</tr>
</tbody>
</table>
Finally, the Toolbox includes over 50 useful command line demos. These illustrate the wide scope of models and algorithms. Experience suggests that one of the most effective ways to get started with CAPTAIN is to examine such demos and then to adapt them for each new data set of interest, so saving much time in algorithmic development.

3. RECENT DEVELOPMENTS

Earlier articles about the Toolbox, presented in software–themed sessions at the IFAC System Identification series of conferences, have included Young et al. (2009) and Young and Taylor (2012). The first of these provides an overview of its functionality, with practical examples based on the Mauna Loa atmospheric carbon dioxide series and flow data for the River Canning in Western Australia. The second reported on new functions for the estimation of multiple–input TF models with different denominator polynomials and on some improvements for real–time recursive estimation, with a practical example concerning the Leaf River catchment in Mississippi, USA. The following discussion focuses on the main developments subsequent to these and describes some new examples. The Toolbox has also been updated in various other minor ways during the past few years, not least to fix bugs and to ensure compatibility with the latest versions of Matlab.

3.1 New Modular Structure

In recent years, the Toolbox has grown to over 300 routines, sometimes leading to confusion, especially for new users who might not know where to start. Hence, one recent development is the introduction of the three modules noted above. In addition to the superficial division of the Toolbox into three separate folders, the reorganisation is accompanied by revisions to the user help information, the development of new demos for each module, and the preparation of three new user handbooks (in–progress). In addition, some of the common sub–functions (not normally directly called by the user) have been rewritten to ensure that each module can operate independently of each other. These new arrangements are primarily designed to help the Toolbox developers to more rapidly correct bugs, and to upgrade with new algorithms in the future. However, further work is required to continue to improve the accessibility of the Toolbox, particularly for inexperienced users. Many functions in the Toolbox include an enormous number of options. These provide value to the authors and a small number of other users, but can seem overly complicated to occasional modellers, hence a streamlining of some of the options is now in progress.

3.2 New TDCONT Module

In contrast to some other Matlab toolboxes that focus on either system identification or control, CAPTAIN facilitates an integrated TDC approach that encompasses the entire design process, from data–based model identification, through to control system design and implementation, using a digital, sampled–data standpoint throughout (Taylor et al., 2013). In brief, the design procedure consists of (i) stochastic identification and recursive estimation of suitable control models (using RIVSID) based on the analysis of either planned or monitored experimental data; or via model reduction from data generated by a physically–based simulation model; (ii) off–line control algorithm design and initial evaluation (using TDCONT), via an iterative application of an appropriate discrete–time design methodology, coupled with closed–loop sensitivity analysis based on Monte–Carlo simulation; and (iii) implementation and evaluation for the real process.

With regard to (iii), standard real–time Matlab tools or other software environments can be utilised. Alternatively, since the approach yields Proportional–Integral–Plus (PIP) algorithms that can be interpreted as a logical extension of conventional PI/PID methods, it is usually straightforward to express the controller in a suitable incremental form, and hence implement using existing industry hardware–software frameworks. As a result, CAPTAIN Toolbox algorithms have been utilised for the design of PIP control systems in various practical domains, from agriculture (Lees et al., 1998; Taylor et al., 2000, 2004), robotics in construction (Shaban et al., 2008) and nuclear decommissioning (Taylor and Robertson, 2013) (see also section 4.2), as well as for simulation–based research into e.g. engines (Jamali et al., 2015).

Central to TDCONT is a generalised Non–Minimal State Space (NMSS) model that allows for deterministic and stochastic optimal control design, in addition to pole assignment and predictive control options. In contrast to earlier versions of the Toolbox, the new module includes delta–operator design (Chotai et al., 1998), robustness evaluation (Taylor et al., 2001) and analytical multivariable decoupling; and the authors are presently adding functions for nonlinear control based on SDP models. Furthermore, the included demos reproduce almost every worked example and graphical output from a complementary book on state–space control (Taylor et al., 2013). In other words, NMSS feedback is utilised in TDCONT as a unifying framework for generalised digital control system design, with the included demos providing a relatively gentle learning curve, from which potentially challenging topics, such as optimal, stochastic and multivariable control can all be investigated.

3.3 Other Algorithmic Developments

The major up–coming changes to CAPTAIN are a new routine for Multi–State Dependent Parameter (MSDP) estimation; an Arbitrary Sampling DHR (ASDHR) algorithm that allows for non–uniformly sampled data; modifications to the RIVSID routines to allow for more refined specifications to the RIVSID routines to allow for more refined initialisation when using as should might fail, as well as automating the present advice about estimating initial conditions when using or by (outlined in http://captiontoolbox.co.uk/Captain_Toolbox.html/ Technical_Matters/Technical_Matters.html); and, finally, making the input and output arguments of routines conform better with those of other well–known toolboxes, such as SID and CONTSID (Padilla et al., 2015).

The new SDP and DHR algorithms will be prepared for introduction into the Toolbox after full β–testing. In the first instance, the initiation modifications for RIVSID just involve an option for the user to insert the details of the model, with a recommendation on how to estimate...
this using high order ARX modelling and emulation but additional changes in the future are intended to automate the procedure completely.

4. ILLUSTRATIVE EXAMPLES

The first two examples exploit Continuous–Time (CT) models. CAPTAIN was the first Matlab Toolbox to allow for optimal identification of both Discrete–Time (DT) and CT models from sampled data in a unified ‘hybrid’ TF form (Young, 2011), based on algorithms developed originally by Young and Jakeman (1979–1980). The latest versions of the CT routines (rivcbjd/rivcbj) are used in the first example, where they are combined with DHR modelling (dhr) for an important forecasting application. The second example utilises rivbj and sdp for a robotic system. Further examples demonstrate DT estimation (using rivbjid and rivbj) for a biological control problem and application of dhr to a noisy paleo–climatic data set.

4.1 Global Climate Model Identification and Forecasting

This recent study (Young, 2018) follows from earlier work on climate modelling and carbon emissions management (Jarvis et al., 2009). It is based on a UC model and has involved rivcbjd/rivcbj modelling of the continuous–time TF relationship between total radiative forcing and the globally averaged surface temperature; together with dhr modelling of an additive, quasi–cyclic component. This component plays an important part in explaining the temperature changes and appears to be related to other quasi–cyclic climate phenomena, such as the Atlantic Multidecadal Oscillation (AMO). The complete model forms the basis for forecasting using the Kalman filter that is part of the DHR algorithm. A typical example is shown in Fig. 1, where we see that, on the basis of only the data up to 2001, it is able to forecast successfully the changes in the global temperature for 15 years ahead and produce forecasts after which seem feasible. The CT model is important because it is related directly to the differential equation models used by climate scientists and is characterised by parameters that can be interpreted directly in climate terms. Also, the rivbj routine yields low order CT models that are able to ‘emulate’ the response of large climate models almost perfectly.

4.2 Nonlinear Electro–Mechanical System Identification

This example is also based on CT modelling, this time a differential equation model of a nonlinear Electro–Mechanical Positioning System (EMPS), where the sdp implementation of the SDP algorithm is used to identify frictional nonlinearity in the system. This routine exploits fixed interval smoothing, together with special re–ordering of the data to generate a non–parametric (graphical) estimate of the nonlinearity. First, the sdp routine provides the non–parametric estimate; then a suitable parametric function is selected that is able to characterise the shape of this estimate, with its parameters optimised using the standard lsqnonlin optimisation routine in Matlab. Both estimates are shown in Fig. 2 and it will be noted that the nonlinearity is identified as being asymmetrical. This is important in practical terms because it is normally assumed to be symmetric and is estimated as such. The paper describing this study (Janot et al., 2017) also considers nonlinear SDP control. This linearises the closed–loop system so that linear PIP control, exploiting the TDCONT routines and a rivbj identified model of the inner closed–loop, is used for outer loop ‘trimming’ that refines the closed–loop response. Related SDP modelling and control approaches have been developed by Taylor and Robertson (2013) for a robotic hydraulic manipulator system.

4.3 Chicken Growth Curves

In this example, a DT rivbjid/rivbj model of the weight output of broiler chickens in response to feed input is estimated from simulated data. The model is used to design an MPC algorithm to control the growth response of the broiler chickens, using the feed supply, with the aim of following a predefined target weight trajectory. This simulated example is based on practical work carried out by researchers at KU Leuven (Aerts et al., 2003; Cangar et al., 2007). For the present article, simulated input data for model estimation are generated from a basic linear ad
Fig. 3. Simulated broiler chicken growth curves showing: a) modelling weight response to feed inputs and b) closed–loop controlled weight response. Ad libitum feed rule and an experimental feed rule. For the latter, each day the feed has a 50% chance of being the same as the ad libitum feed, or a 50% chance of being 20% of the ad libitum feed. The corresponding output growth is simulated using a nonlinear growth formula based on equation (5) from Aerts et al. (2003). From twenty–four simulated data sets, in twelve the feed was based on the ad libitum feed rule, and in the other twelve the experimental feed rule. Random variations to the inputs and output were added to the data. The best DT model structure across all data sets is identified. An example of the fit to two data sets is given in Fig. 3a. The average identified model parameters are used to design a constrained MPC. The resulting growth curve when using MPC is compared to ad libitum and the desired growth in Fig. 3b.

4.4 Detecting Long Term Cycles in Paleo–Climatic Data

The dhr routine has recently been used in the detection and quantification of a millennial scale cycle in precipitation changes, based on a high–resolution speleothem δ18O record from northern Iberia (Smith et al., 2016). These variations in precipitation delivery relate to an underlying millennial scale cycle in North Atlantic Oscillation (NAO) dynamics, which show two distinct cycle lengths of approximately 1300 and 1500 years (extracted from data and visible as peaks in Fig. 4) with evolving amplitudes throughout the Holocene until the modern day. The speleothem δ18O is strongly correlated to existing records of North Atlantic Ocean Ice Rafted Debris (IRD), indicating an NAO–like connection with oceanic circulation during the Holocene. DHR methods are used in the identification of cycle periodicities, initially with a single periodicity model that highlights the two spectral peaks, Fig. 4, for which standard frequency response approaches struggle due to high noise levels. A dual frequency DHR model is subsequently applied and explains over 70% of the data variance. Level breaks in the time series trend are handled using a variance intervention technique also implemented in the dhr routine. The cyclic model fit to the detrended series is shown in Fig. 5.

Fig. 4. Total power measure (L2–norm of the modelled cyclic component) of single periodicity against the tested periodicity range (years) (Smith et al., 2016).

Fig. 5. Full two cycles and trend DHR model, shown for clarity without the trend, and the detrended data, plotted against time (years). Timescale is years before present. Gaps in the record are visible especially around 8 ka before present.
5. CONCLUSIONS

The article has briefly reviewed the main features of the CAPTAIN Toolbox for Matlab, and described how it is now organised into modules for: (i) TVP estimation and UC modelling; (ii) RIV identification and estimation of both discrete and ‘hybrid’ continuous–time TF models; and (iii) NMSS control system design. The article has focused on some recent improvements and developments, and has alluded to new algorithms that are in the process of being added to the Toolbox. Other future work includes the inclusion of multivariable delta–operator system identification and control, and nonlinear SDP control.

ACKNOWLEDGEMENTS

The current developers of the CAPTAIN toolbox are the first three authors of this article. Significant contributors in the past have included: Prof. Diego J. Pedregal, Escuela Tecnica Superior de Ingenieros (Industriales Edificio Politenica, Ciudad Real), Paul G. McKenna and Renata Romanowicz. The authors are also grateful to the many toolbox users who have made suggestions over the years.

REFERENCES

