
The Simplicity Project: easing the burden of using complex and
heterogeneous ICT devices and services

Part II: State of the Art of Related Tecnologies

N. Blefari Melazzi1, G. Ceneri2, G. Cortese3, N. Davies4, N. Dellas6, A. Friday4, J. Hamard5,

E. Koutsoloukas6, C. Niedermeier7, C. Noda5, J. Papanis6, C. Petrioli9, E. Rukzio10, O. Storz4, J. Urban8

1 DIE, University of Roma “Tor Vergata”, e-mail: blefari@uniroma2.it

2 Radiolabs, email: gianni.ceneri@radiolabs.it

3 Telecom Italia Learning Services, e-mail: g.cortese@computer.org

4 Computing Department, Lancaster University, e-mail: {nigel,adrian,oliver}@comp.lancs.ac.uk

5 DoCoMo Communications Laboratories Europe, e-mail: {hamard,noda}@docomolab-euro.com

6 , School of Electrical and Computer Engineering ,National Technical University of Athens,
e-mail: {lefterisk, jopapan, ndellas}@telecom.ntua.gr

7 Siemens Corporate Technologies, e-mail: Christoph.Niedermeier@siemens.com

8 Siemens Mobile, e-mail: Josef.Urban@siemens.com

9 CS Department, Rome University “La Sapienza”, e-mail: petrioli@di.uniroma1.it

10 "Institut für Informatik", Ludwig Maximilians University, e-mail: Enrico.Rukzio@informatik.uni-muenchen.de

ABSTRACT

As of today, to exploit the variety of different “services”,
users need to configure each of their devices by using
different procedures and need to explicitly select among
heterogeneous access technologies and protocols. In
addition to that, users are authenticated and charged by
different means. The lack of implicit human computer
interaction, context -awareness and standardisation places
an enormous burden of complexity on the shoulders of the
final users. The IST-Simplicity project aims at leveraging
such problems by: i) automatically creating and
customizing a user communication space; ii) adapting
services to user terminal characteristics and to users
preferences; iii) orchestrating network capabilities. The
aim of this paper is to present the technical framework of
the IST-Simplicity project. This paper is a thorough
analysis and qualitative evaluation of the different
technologies, standards and works presented in the
literature related to the Simplicity system to be developed.

I. SIMPLICITY FRAMEWORK

Our vision is that of a user surrounded by different devices,
providing him with access to several “services” and
functionalities (e.g. access control to a building, location
aware services, ...). As of today, to use these services, the
user has to access the network through heterogeneous
technologies and protocols, must have different devices,
must configure each of them by using different procedures,
must be recognized and authenticated in different ways and
must be charged with different means. Consequently a
complexity burden lies on the shoulders of the user who
doesn’t know how to “choose” between such possibilities,
and can’t carry a large number of different devices at the
same time.
The aim of the IST-Simplicity project is to ease the user
interaction with devices and the use of services and
functionalities. In more details, the project goal is to design
and deploy a “brokerage” level able to decouple user needs
and user devices, as well as service deployment and
fruition, from the underlying networking and service

support technologies. In our view, each user should be
ideally endowed with a personalized profile to be used for
different services/transactions, eventually based on
different classes of terminal. Such profile should ideally
allow an automatic, transparent personalization and
configuration of terminals/devices, and should provide a
simple and uniform way to be recognized, authenticated,
located and charged. Thanks to this profile, users could
also enjoy the automatic selection of services appropriate
to specific locations (the home, buildings, public spaces),
the automatic triggering of home/building/public-space
functionalities, and the easy exploitation of different
telecommunications paradigms and services. Depending on
user’s characteristics, preferences and abilities, the profile
could take the form of e.g.,: i) a standard profile defined by
a Service Provider; ii) a pre -defined template whose
parameters can be configured by the user; iii) an open
profile designed by the user using a GUI or a high-level
description language. The user profile is stored in a so
called Simplicity Device (SD) or a network location or a
software agent. If the SD is a physical device, users could
personalize terminals and services by the simple act of
plugging the SD in the chosen terminal (see Fig. 1).

Fig. 1: The reference scenario

The Simplicity system (see Fig. 1) thus encompasses the
Simplicity Device and a Brokerage Framework. The
Brokerage Framework will use policy-based technologies
(e.g., policies for mobility support, QoS, security, SW
downloads) to orchestrate and adapt network capabilities,
taking into account user preferences and terminal
characteristics. The Brokerage Framework will encompass
a Terminal Broker module, which is primarily used to
allow the interaction of the SD with both the terminal and
the network, and a Network Broker module. Since the SD
has the goal to allow a uniform and personalized user view
of services, there must be a way to describe, and advertise
such services, to allow the user to browse and select them.
Subsequently, there is the need to coordinate services and
share/allocate the available resources. The Network
Broker is responsible to perform the aforementioned tasks,
by providing a platform for service deployment,
advertisement, personalization, etc. The brokerage level
must provide adaptation capabilities to the considered
context (location, time, etc) and eventually an orchestration

of events, managing also simultaneous access of several
users to the same resources, services, and locations.

In the next sections we will discuss the technologies,
standards and solutions currently available for each of the
Simplicity system components.

II. PERSONALIZATION ISSUES AND USER
PROFILES

The Simplicity system creates a Personal Service
Environment (PSE) which relies on users profiles for
adaptation and personalization of services and terminals. In
general, a personal profile is a collection of information
electronically representing the user such as personal
characteristics, preferences, rules, and tasks. In this section
we will detail the SoA regarding user profiling,
service/terminal adaptation and personalization.

A 3GPP solution to user profiling under standardization is
the Generic User Profile (GUP)[4] [5], based on XML.
3GPP GUP proposes a structure according to which data
have to be organized, but leave great flexibility on the
content of the data themselves. For example, 3GPP GUP
may store data like authorized and subscribed services,
general user information, user privacy control data,
information about specific services and billing information.
Historical/Statistical and Runtime data are not included in
the GUP. The 3GPP solution envisions network
cooperation as profiles are stored and downloaded from the
network, but this approach can be adapted and extended to
support a user side architecture where information are
stored directly in the SD. The most important aspect of
GUP is that it could be adapted to every system and
context, thus providing the flexibility needed by the
Simplicity project.
Another interesting solution is the Application
Configuration Access Protocol (ACAP) [2] that is designed
to support remote storage and access to customization,
configuration and preference information. The data storage
model is designed to allow a client to simply access all the
information needed for automatically adapting and
personalizing the service. New information can be easily
added without server re-configuration thus allowing the
use of both standardized data and custom or proprietary
data.
In the field of terminal capabilities description
technologies, the Composite Capabilities/Preferences
Profile (CC/PP) framework is an important standardization
effort, which defines how a user agent profile can be
specified [1]. The goal of the CC/PP framework is to
specify how client devices express their capabilities and
preferences (the user agent profile) to the server that
originates content (the origin server). The origin server
uses the ‘user agent profile’ to produce and deliver content
appropriate to the client device. In addition to computer-
based client devices, particular attention is being paid to
other kinds of devices such as mobile phones. The
framework describes a standardized set of CC/PP attributes

that can be used to express a user agent profile in terms of
capabilities, and the users preferences for the use of these
capabilities.
The User Agent Profile Specification [8] is a specification,
which extends the WAP v1.1 standard to enable the end-
to-end flow of a user agent profile in mobile environments.
The UAProf specification defines in this respect so-called
Capability and Preference Information (CPI), which is
communicated between the WAP client, the intermediate
network points, an the origin server. The specification
seeks to interoperate seamlessly with the emerging
standards for Composite Capability/Preference Profile
(CC/PP) distribution over the Internet. It uses the CC/PP
model to define a robust, extensible framework for
describing and transmitting CPI about the client, user, and
network. The specification defines a set of components and
attributes that WAP-enabled devices may convey within
the CPI.
RDF [3], the Resource Description Format, was designed
by the W3C consortium for dynamic content adaptation. It
defines a mechanism for describing (Web) resources
(meta-data), to enable “automated” processing of these
resources. It provides a model for representing these meta-
data, and proposes XML as the syntax for this model. No
assumption is made about a particular application domain.
Some interesting projects propose the use of policy based
technologies or rule languages for personalization aspects
to achieve flexibility and generality [6] [7]. The most
important rule languages in this context are Jess,
ZKB/XKB and RuleML.
Jess [10] is a well-established rule engine and scripting
environment that is based on the CLIPS expert system
shell and that is entirely written in Java. XKB/ZKB is the
rule language which is included in the open source java
class library Mandarax [11]. Both these two projects allow
to express reactive rules and facts that refer to and act on
Java objects representing for example user models, device
capabilities, applications or network aspects.
The Rule Markup Initiative develops a semiformal XML-
based language called RuleML [9] that permits Web-based
rule storage, interchange, retrieval, and application. It’s
possible to define integrity constraints, derivation rules and
reacting rules. There already exist some corresponding
DTDs/Schemas, engines, translators, user interfaces and
rule libraries.
Policies will be included in the simplicity device to express
preferences of the user as well as in the terminal to define
terminal specific adaptation aspects. These policies have to
interact with the policies based technologies on the
network side which are related to the IETF policy
framework, the Ponder framework and the Policy
Description language. Furthermore the same policy
technology or a policy exchange language should be used
to get a consistent policy treatment.

III. SIMPLICITY DEVICE

The Simplicity Device (SD) is the part of the Simplicity
system that lies in the user side. Each user is equipped with

an SD pluggable to a multitude of terminal types that
allows the user to participate to policy-based configuration,
automatic service discovery and AAA mechanisms of his
Simplicity environment. It may be perceived as a
component that combines the functionality of a hardware
authentication token, a mobile storage device and a
portable processing utility able to perform trivial and
somewhat more complex tasks.
The SD could be realized in hardware, in which case it
could be a USB disk, an enhanced smart card, or it could
even be realized as a software agent for use in special
environments. A hardware implementation is however
preferable, and since mobile code execution capabilities
are desirable, the hardware realization that currently best
facilitates the abstract functionalities of the SD is a smart
card. Even though USB disks provide storage space
ranging from several hundred Mbytes up to a few Gbytes
and connectivity with most computing equipment, they
lack processing capabilities which is a desirable feature for
the SD. Smart Cards on the other hand are pluggable to
any terminal type that provides connectivity to some sort
of card reader equipment, they provide tamp er-resistant
storage space for sensitive personal identification
information and their much anticipated view as general
mobile code executing platforms [12] has recently been
realized through the fast paced advances in their
processing capabilities and the evolution of the embedded
software that supports them.
The following sections describe the state of the art in USB
devices and Smart Card technology, provide an overview
of Java Card architecture, one of the most important smart
card software platforms available today and argue in favor
of Java Card as the implementation solution for the SD.

A. USB Devices

In the last few months, a high diffusion of USB memory-
bar devices has taken place. The reason stands in the
lowering of prices due to the high progress done in the
manufacturing process of memory modules, in the growing
capacity that these devices offer and in the high flexibility
provided by USB interfaces
USB specifications [13] have gone through three steps:
ver. 1.0, that provides a bit-rate of 1.5Mbps, ver. 1.1, that
provides a bit-rate of 12Mbps and ver. 2.0 with a high bit-
rate of 480Mbps. Data transfer speed offered by USB
interfaces is fully compliant with SD requirements as
profile data occupies only a small amount of KB. The
storage capacity offered by USB memory-bar goes from
32MB up to 2GB which is very impressive if we think that
such a device has dimensions like a standard key. In
addition, it strikes the portability requirements of the SD
as, for example, we can bring it attached to a key-ring.
Integration of USB memory-bar devices with current
computing and communication equipment is very good.
Most of the current PC/PDA operating systems provide the
complete support for this kind of devices. The user has just
to plug the bar into a USB port of his equipment and the
service is immediately available. It aligns perfectly with

the concept of SD. Moreover, many set-top boxes are
introducing support for USB devices.
Reliability of USB memory-bar devices is a very important
issue. Data stored into a memory-bar have to be error-free
as it carries information that is very hard to retrieve from
another source. Nowadays, USB memory-bar devices have
a life-cycle of about 1.000.000 re-writes with 10 years of
data retention [14]. Some studies have demo nstrated that
the higher the number of re-write operations, the lower the
retention time. When maximum number of write
operations is reached, the retention time decreases at about
3-4 days.
There are a lot of USB memory-bar devices that implement
security mechanisms in order to assure user data
confidentiality. Some sample mechanisms are PIN-PUK
code, username/password and finger-print matching. An
example of algorithms used to encrypt data is AES-128bit.
These features provide the user data to be protected against
external attacks and un-authorized copies.
A critical aspect of USB memory-bar devices is that they
have no computational capabilities. It is very limitative for
the implementation of the SD since it cannot perform any
processing tasks required by the host systems.

B. Smart Card Technology

Smart Cards are often defined as an IC (integrated circuit)
chip embedded in a plastic card as a tamper-proof
hardware. In the market, there are two sizes of smart cards.
One is the same size with a credit card specified by
ISO/IEC 7816-4 [15], especially in the field of banking,
insurance and transportation. In the telecommunication
field, a different size of smart cards, 15mm*17mm, is used,
often called GSM SIM (Subscriber Identity Module) cards
or 3G UICC (Universal IC Card) standardized by 3GPP
and ETSI SCP (Smart Card Platform) [16].
A typical smart card is equipped with an 8-bit or 16-bit
processor clocked at the speed of a few MHz, a few
kilobytes of RAM memory, ROM memory with built-in
functionality and 32-64kb of non-volatile memory (e.g.
flash memory). Recently, high performance smart cards
have become available with attractive features, such as 32-
bit processors with an optional cryptographic co-processor
and up to a few Mbytes of storage (combined RAM and
flash memory). Smart Cards rely on special equipment, a
card reader, also called a card acceptance device, to
interface with terminals of various types. These interfaces
are governed by the series of international standards
ISO7816 [17] that rule all smart card features, from
physical characteristics to interaction mechanisms with an
external world.
Smart Card software has evolved along with the processing
capabilities of their embedded ICs. Four generations of
smart card software are described in [18], spanning from
monolithic embedded operating systems to today’s
modular, adaptable open platforms featuring secure multi-
application executing environments, post-issuance
application loading capabilities and object-oriented
development models. Examples of such platforms are the

Java Card Platform [19], a special subset of Java
technology for resource constrained devices and the Multi-
Application Operating system (MultOS) [20], which
provides a secure executing environment for multiple
applications on the same card. Such platforms rely on open
standards that ensure interoperability with operating
systems, the most important being the Microsoft PC/SC
Specifications [21] that standardize interaction of smart
cards with Microsoft operating systems, and the Open Card
Framework [22], that standardizes Java based smart card
solutions.
These smart card features, combined with their practical
nature as lightweight portable electronic devices, deem
smart cards as significant mobile code execution platforms.
Their value is further enhanced by active research on their
applications concerning user mobility [23], e-commerce
and personalized information services [24] [25], security
[26] and interoperability with agent technology [27]. The
experience on smart cards gained from these research
projects will be valuable for the implementation of the SD
as a smart card.

C. Java Card Platform

The Java Card Platform is an attractive choice for the
implementation of the SD, as it introduces the proven
value and quality of Java technology to the embedded
software scene, with features such as code portability,
enhanced security and object-oriented development
techniques. Java Card technology is widely supported in
the smart card industry and it is constantly evolving to take
advantage of the hardware advances of smart cards.
Java Card Technology is a subset of the Java technology,
suitable for resource constrained devices like smart cards.
Java Card provides a multi-application executing
environment inside the smart card that enforces strict
separation rules between applications, thus enhancing
security and integrity of data [28]. The Java Card
applications execute inside a virtual machine which in turn
executes on the card's specific operating system. The
development of Java Card applications, which are called
applets, follows an object-oriented methodology. Applets
are portable to cards from different manufacturers and can
be loaded after the card has been issued, a feature which
facilitates software updates and the development of new
services for Java Card users.
The Java Card Platform Specification [29] consists of three
parts; the specification of the Virtual Machine and the Java
language subset, the specification of the runtime
environment for applets, and the Java card API, the
framework for developing applets. A typical Java Card
application consists of a back-end information system that
interacts with a reader-side host application. The host
application exchanges commands and responses packed
into Application Protocol Data Units (APDU), which are
defined in the ISO7816-4 [15] set of standards, with the
Card Acceptance Device (CAD), and the CAD interacts
with the VM executing inside the Java card along with a
number of active applets. Besides the message passing

communication model that exchanges APDUs, Java Card
provides an alternative communication method using Java
Card Remote Method Invocation (JCRMI), a subset of the
RMI distributed object model technology.
The aforementioned Java Card technology features make it
an attractive solution for the realization of the SD. First of
all, Java Card meets the increased security requirements of
the SD which will store and process sensitive information
such as credit card numbers, authentication information for
online services, network access credentials and operator
contract information. The strict security requirements
should not, on the other hand, deprive from the SD features
such as flexibility and rich functionality, since its duties
include more than mere authentication. Java Card provides
the required extensible functionality with a sound security
mechanism.

IV. FLEXIBLE NETWORK SUPPORT

Flexible network support for context aware adaptation and
personalization of services and terminals is one of the main
goals of the Simplicity project. The envisaged technical
solution shows the following main characteristics:
• Adoption of a brokerage framework that employs

policy-based techniques for achieving an overall
control and adaptation platform

• The combination with flexible agent-based
technologies supporting the distribution and execution
of code across a variety of different terminals

• A distributed solution for service discovery as a key
element for a decentralized framework.

• Reliable data storage as a basic service for handling
distributed data, e.g. profile and context information.

The next subsections reviews in more detail the state of the
art regarding the four characteristics mentioned above.

A. Policy based brokerage framework

A broker is an entity that undertakes management action
on resources. A broker insulates his area of responsibility
from other entities so that all administrative actions are
performed through requests to the appropriate broker.
Overall administration of resources is achieved through
broker cooperation and coordination, with the aid of an
enabling technology that facilitates interaction of
distributed entities. The broker concept was initially
introduced by [30], where QoS was achieved through
interaction between brokers residing at the end points, and
was adopted in the MASA project applied on adaptive
multimedia services in mobile contexts [31] and extended
to include additional brokers (called network brokers)
residing not at the end points but in access and core
networks [32], [33].
According to this concept, a broker is responsible for
orchestrating different functions and subsystems within
one domain. The coordination of management efforts
across different domains happens by negotiations between
different brokers that are controlled by policy based
decision mechanisms. A broker itself consists of

independent but interworking subsystems. Again, the
operation and inter-working of these subsystems is
controlled and coordinated using policy rules. Of particular
importance is the modular nature of policies that allows
addition and elimination of policy rules without affecting
other parts of the rule base. The benefits of policy based
management of distributed systems arising from usage of
proper syntax and policy management tools have been
pointed out in [34].
By using ambient awareness mechanisms (e.g. based on
sensors), a broker can generate up-to-date context
information as a basis for negotiations with other brokers.
Context information in combination with policy based
decision mechanisms facilitates flexible adaptive end-to-
end management of services [35] [36]. Support of context
aware systems in smart spaces can be provided by Context
Brokers that employ common ontologies, a shared context
model and a common policy language [37].
A possible implementation of the broker concept within
Simplicity includes a terminal broker responsible for
orchestration of user preferences, terminal capabilities and
operation of locally running applications based on context
information regarding the user, the terminal, and the access
network. The terminal broker is supported by a system of
network brokers that are responsible for orchestration of all
network features. Different types of network brokers may
be introduced to account for specifics of different network
domains as access networks, core networks and service
provider domains. Network brokers may be replicated to
provide a scalable network infrastructure.

B. Mobile Agents Platforms

Mobile Agents are intelligent/autonomous software entities
able to migrate and execute their logic in several
computational nodes. They are considered as middleware
oriented technology enhancing distributed computing
technologies such as CORBA, RMI and Web Services
paradigm [38] [39] [40]. A Mobile Agent Platform (MAP)
enables the agents’ execution to distributed nodes. A MAP
consists of a set of APIs that exploit the underlying
middleware capabilities and mechanisms. Prominent
MAPs are the LEAP JADE, MicroFIPA-OS, AgentLight,
JACK, Grasshopper and April.
Benefits of mobile agents are communication and
execution state transparency, autonomous and intelligent
execution, programming and communication flexibility,
adaptability to specific conditions, life cycle management,
robustness and fault-tolerance, and interoperability. With
regard to Simplicity, these features are valuable for the
implementation of broker coordination procedures and
requirements such as service discovery and dynamic code
distribution. Accessing services in a visited network
environment requires often support of mobility in the form
of code download. JSR 24 (J2EE Client Provisioning) [49]
provides a configurable and extensible framework to
implement a context aware software distribution
mechanism. On the client side, standardization and
research work (e.g. [48]) is ongoing to define a more

flexible, robust Java-based execution platform for mobile
devices, supporting full component lifecycle management
(including secure download, activation and disposal).

C. Service Discovery Frameworks

Focusing on design of brokers that support a peer-to-peer
(P2P) communication paradigm is one of the directions
enabling a distributed system to be more flexible. In this
model, there is no longer central point to publish services
and information, and all brokers can transparently share
information in a global space.
Service discovery frameworks are conceived as a method
to discover available services and resources in a network.
The most emerging service discovery protocols relevant to
P2P communications are Universal Plug and Play (UPnP)
[41] and JXTA [42]. Both are a set of communication
protocols based on XML-encoding. At UPnP, Simple
Service Discovery Protocol (SSDP) enables devices to
publish their presence and service descriptions by
multicasting advertisements and clients to listen at the
multicast port to discover services, or alternatively clients
to search services by multicasting requests. JXTA further
supports community base activities across different P2P
systems. It enables peers to create peer groups providing a
common set of services. Peer Discovery Protocol is the
default protocol for all peers to support, allowing a peer to
find advertisements from other peers or peer groups.

D. Simple Storage Management

Technologies which aim at delivering network-based
reliable, secure storage services provide the ability of
storing and accessing personal data independent of user
location, network point of access and terminal. In case of
Simplicity user profile data, context data should be
possibly stored or replicated transparently to the user in the
network (as an alternative to keep such data in the SD).
Relevant projects in this area include OceanStore [43]
(backed by IBM), Microsoft FarSite, PAST [45], CFS.[44].
All of them are built on top of a DHT routing layer. DHT
middleware ([46]) provide an application-level routing
layer which can be exploited by higher level middleware
services and applications (such as event notification,
multicast, storage and file systems, and naming systems).
Since user data is distributed in the network, security and
integrity are primary concerns in these systems. Smart
Card mechanisms are typically used for this purpose (e.g.
to provide encryption, to generate and verify certificates, to
manage storage quotas etc.).Early attempts exist to build
on top of such infrastructures email services (POST [47],
MINO). These projects show how user metadata (folders,
preferences, contact lists) can be stored in the network so
that they can be available to the user independently from
the client attaching to the service.

V. FLEXIBLE NETWORK SUPPORT

Sal awakens: she smells coffee. A few minutes ago her
alarm clock, alerted by her restless rolling before waking,
had quietly asked "coffee?", and she had mumbled "yes."
"Yes" and "no" are the only words it knows...
These are the opening sentences of a powerful scenario
[55] that Mark Weiser used in 1991 to outline his vision of
a futuristic, computer-assisted world. His revolutionary
thoughts and ideas soon began to inspire researchers all
over the world and provided a foundation for emerging
areas of research, i.e. ubiqiutous computing and ambient
intelligence. Weiser envisioned a future where
computational power and intelligence would be embedded
into our everyday world in a seamless fashion. Hundreds,
possibly thousands of computational devices, sensors and
actuators would turn every physical space into a smart,
intelligent space. Doing so would create a world that had
the possibility to assist humans in their activities.
Examples of current state-of-the-art Ambient Intelligence
and Ubiquitous Computing projects include, but are not
limited to:
• Georgia Tech’s Aware Home [50] with a focus on

providing support for the elderly in their own homes.
• MIT’s Project Oxygen [53], trying to create smart

environments by using a variety of embedded or
handheld devices and adaptive networking
technologies. Particular highlights include new means
of human-computer interaction, e.g. via natural
language and gestures.

• The Interactive Workspaces Project [52] at Stanford
University, exploring the use of collaborative,
interactive workspaces.

• GAIA [54] at UIUC with a strong emphasis on
mobility support for people, devices and applications.

A key element in Weiser’s vision is the desire to minimise
explicit interactions between humans and their smart
environments. Smart spaces are expected to act proactively
instead of merely reacting to explicit input from users.
Systems are therefore required to be able to obtain and
process rich sets of contextual data, including information
about human users, physical objects and software entities.
Within this context, Simplicity will provide means for:
• storing and providing contextual information about its

owner, e.g. in the form of profiles
• authenticating users, either by directly using the

owner’s Simplicity ID or through credentials stored
within a user’s Simplicity device

• discovering and personalising services. For example,
Simplicity’s intelligent brokering framework will be
able to discover services that are relevant to the user’s
context, preferences and objectives.

Simplicity will need to operate within the context of smart
environments developed outside the project. For example,
services within these environments will have to be
discovered and interacted with. More specifically, we do
not expect Simplicity to advance the state of the art in
smart environments themselves, rather we expect the
project to provide a mechanism for easily customising
these environments. As a result we plan to base our
Simplicity prototypes on an existing smart environment

platform. Our requirements for this platform are that it
supports a decoupled, asynchronous communications
model in order that we can easily incorporate the additional
infrastructure elements of the Simplicity architecture
without impacting on the operation of the remainder of the
smart environment. Having reviewed the systems
presented earlier we have decided to base our work on the
iROS platform [52] developed at Stanford University,
extended with features to enable it to generalise beyond the
context of a meeting room for which it was developed.
The Interactive Room Operating System (iROS) is part of
the Interactive Workspaces Project. It comprises three
main subsystems: iCrafter (a framework for service
discovery and the dynamic composition of user interfaces),
the Data Heap (a shared data space with support for
transcoding) and the Event Heap. The Event Heap
represents the core component of the iROS system.
Extending the classic tuple-space paradigm [51], the Event
Heap provides an asynchronous, event-based
communication framework for interconnecting
components in distributed systems. It is suitable for
building loosely coupled applications, thereby catering for
important aspects of mobile and ubiquitous computing
systems such as fault-tolerance and support for mobility
and temporary disconnections. Furthermore, a loose
coupling of components facilitates the introduction of new
entities into existing systems, making iROS a suitable
platform for prototyping and research. It is therefore our
aim to investigate possible ways of using Simplicity for
customising iROS-based smart spaces.

REFERENCES

[1] “Composite Capabilities/Preference Profiles:

Requirements and Architecture”, Mikael Nilsson et
al. (eds). W3C Working Draft, 21 July 2000. See:
http://www.w3.org/Mobile/CCPP/

[2] Newman, C., et al., “ACAP – Application
Configuration Access Protocol, Internet Request for
Comments”, RFC 2244, November 1997. See:
http://www.ietf.org/rfc/rfc2244.txt

[3] “Resource Description Framework (RDF) Model and
Syntax Specification”,. Ora Lassila, et al., (eds.).
W3C Recommendation 22 February 1999. See:
http://www.w3.org/TR/REC-rdf-syntax

[4] 3GPP TS 22240-600: “3GPP GUP, Requirements,
Stage 1 Release 6”, March 2003. See: www.3gpp.org

[5] 3GPP TS 23240-110: “3GPP GUP, Architecture
Specifications, Stage 2 Release 6”, April 2003. See:
www.3gpp.org

[6] Patricia Lago, “A Policy-based Approach to
Personalization of Communication over Converged
Networks”, 3rd International Workshop on Policies
for Distributed Systems and Networks (POLICY'02),
2002.

[7] Lalitha Suryanarayana, Johan Hjelm, “Profiles for the
situated web”, in Proceedings of the eleventh

international conference on World Wide Web, 2002,
pp. 200-209

[8] Wireless Application Group, User Agent Profile
Specification, WAP Forum Approved Specification
WAP-174, 10 November 1999. See:
http://www1.wapforum.org

[9] RuleML, http://www.dfki.uni-kl.de/ruleml/
[10] Jess, http://herzberg.ca.sandia.gov/jess/
[11] Mandarax http://mandarax.sourceforge.net/
[12] Roger Kehr, Michael Rohs, Harald Vogt, "Mobile

Code as an Enabling Technology for Service-oriented
Smartcard Middleware", 2nd IEEE International
Symposium on Distributed Objects and Applications,
Antwerp, Belgium, 2000, p.2

[13] Universal Serial Bus, http://www.usb.org
[14] Aran Ziv, Tal Segalov, “FlashDrive Performance and

Reliability, White Paper”, September ’03
[15] ISO/IEC 7816-4:1995, “Information technology --

Identification cards -- Integrated circuit(s) cards with
contacts -- Part 4: Interindustry commands for
interchange”

[16] ETSI TS 102 221, “Smart Cards; UICC-Terminal
interface; Physical and Logical characteristics”,
V6.0.0, 02-2003

[17] ISO/IEC 7816, Information technology -
Identification cards - Integrated circuit(s) cards with
contacts, 1997-2004

[18] Damien Deville, Antoine Galland, Gilles Grimaud,
Sebastien Jean, "Smart Card Operating Systems: Past,
Present and Future", The 5th USENIX/NordU
Conference, 2003, pp. 2-4

[19] Java Card Technology,
http://java.sun.com/products/javacard/index.jsp
[20] Multi-Application Operating System (MULTOS),

http://www.multos.com
[21] PC/SC Workgroup, http://www.pcscworkgroup.com/
[22] Open Card Framework, http://www.opencard.org
[23] IST Project FASME, "Facilitating Administrative

Services for Mobile Europeans",
http://www.fasme.org

[24] IST Project SM-PAYSOC, "Secure Mobile
PAYments and Services On Chip", IST-2001-32526,
http://www.smpaysoc.org

[25] IST Project SMARTCITIES, “Multi-Application
Smart Cards in Cities”, IST-1999-12252

[26] IST Project VERIFICARD, “Tool-assisted
Specification and Verification of JavaCard
Programmes”, IST-2000-26328,
http://www.verificard.com

[27] IST ACTS-SCARAB, “Smart Card and Agent
enabled Reliable Access”

[28] Sun Microsystems Inc, "Java Card Platform
Security", Technical White Paper pp. 6-9,
http://java.sun.com/products/javacard/JavaCardSecuri
tyWhitePaper.pdf

[29] Sun Microsystems Inc, “ Specification for the Java
Card Platform, v2.2.1",
http://java.sun.com/products/javacard/specs.html

[30] Klara Nahrstedt, Jonathan M. Smith, “The QoS
Broker”, IEEE Multimedia, 2(1), Spring 1995.

[31] Hannes Hartenstein, Andreas Schrader, Andreas
Kassler, Michael Krautgärtner, Christoph
Niedermeier, “High Quality Mobile
Communication”, Kommunikation in Verteilten
Systemen 2001: 279-289.

[32] Andreas Kassler, Andreas Schorr, Christoph
Niedermeier, Reiner Schmid, Andreas Schrader:
“MASA - A scalable QoS Framework”, Proceedings
of Internet and Multimedia Systems and Applications
(IMSA) 2003, Honolulu, USA, August 2003.

[33] Andreas Kassler, Andreas Schorr, Lingang Chen,
Christoph Niedermeier, Carsten Meyer, Michael
Helbing, Michal Talanda: “Multimedia
Communication in Policy based Heterogeneous
Wireless Networks”, IEEE Vehicular Technology
Conference VTC2004-Spring, Milan, Italy, May
2004.

[34] Damian Marriott, Morris Sloman, “Management
Policy Service for Distributed Systems”, IEEE 3rd
Int. Workshop on Services in Distributed and
Networked Environments (SDNE’96), Macau, June
1996.

[35] M. E. Anagnostou, A. Juhola, E. D. Sykas. “Context
Aware services as a step to pervasive computing”,
Lobster Workshop on Location based Services for
accelerating the European-wide deployment of
Services for the Mobile User and Worker, Mykonos,
Greece, 4-5 October, 2002.

[36] John Keeney, Vinny Cahill: “Chisel: A Policy-
Driven, Context -Aware, Dynamic Adaptation
Framework”, Proceedings of the Fourth IEEE
International Workshop on Policies for Distributed
Systems and Networks (POLICY 2003), Lake Como,
Italy, June 2003.

[37] Harry Chen, Tim Finin, Anupam Joshi. “An
Intelligent Broker for Context Aware Systems”,
Adjunct Proceedings of Ubicomp 2003, Seattle,
Washington, USA, October 2003.

[38] P. Bellavista et al., “CORBA Solutions for
Interoperability in Mobile Agents Environments”,
International Symposium on Distributed Objects and
Applications, September 2000, Belgium.

[39] J. Delgado et al., “An Architecture for Negotiation
with Mobile Agents”, IFIP MATA02, October 2002,
Spain.

[40] I. Foukarakis, A. I. Kostaridis, C. G. Biniaris, D. I.
Kaklamani and I. S. Venieris, "Implementation of a
Mobile Agent Platform based on Web Services",
MATA, Marrakech, Morocco, October 8-10, 2003.

[41] UPnP, http://www.upnp.org/
[42] JXTA, Project JXTA, http://www.jxta.org

[43] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,
Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., and Zhao,
B. OceanStore: An architecture for global-scale
persistent storage. In Proceeedings of the Ninth
international Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 2000) (Boston, MA, November 2000), pp.
190-201.

[44] Dabek, F., Kaashoek, M. F., Karger, D., Morris, R.,
and Stoica, I. Wide-area cooperative storage with
CFS. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP '01) (Oct. 2001).

[45] Rowstron, A., and Druschel, P. Storage management
and caching in PAST, a large-scale, persistent peer-
to-peer storage utility. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles
(SOSP '01) (Oct. 2001).

[46] Hari Balakrishnan, M. Frans Kaashoek, David
Karger, Robert Morris, Ion Stoica ‘Looking Up Data
in P2P Systems’ Communications of the ACM, Vol.
46, No. 2, February 2003, pp. 43-48

[47] Alan Mislove, Ansley Post, Charles Reis, Paul
Willmann, Peter Druschel, Dan S. Wallach, Xavier
Bonnaire, Pierre Sens, Jean-Michel Busca, and
Luciana Arantes-Bezerra, "POST: A Secure,
Resilient, Cooperativse Messaging System"

[48] Java Mobile Operation Management. See:
http://www.jcp.org/jsr/detail/232.jsp

[49] J2EE Client Provisioning. See
http://www.jcp.org/jsr/detail/124.jsp

[50] G. ABOWD, A. BOBICK, I. ESSA, E. MYNATT
AND W. ROGERS: The Aware Home: Developing
Technologies for Successful Aging. Proceedings of
AAAI Workshop and Automation as a Care Giver –
held in conjunction with American Association of
Artificial Intelligence (AAAI) Conference. July.
2002..

[51] D. GELERNTER: Generative communication in
Linda. ACM Trans. Program. Lang. Syst., vol. 7(1):
pp. 80–112, 1985. ISSN 0164-0925.

[52] B. JOHANSON, A. FOX AND T. WINOGRAD: The
Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms. IEEE Pervasive
Computing Magazine, vol. 1(2), Apr. 2002.

[53] MIT – MASSACHUSETTS INSTITUTE OF
TECHNOLOGY: Project Oxygen.
http://oxygen.lcs.mit.edu/, Nov. 2002.

[54] M. ROMAN AND R. CAMPBELL: GAIA:
Enabling Active Spaces. 9th ACM SIGOPS European
Workshop. Sep. 2000. Kolding, Denmark.

[55] M. WEISER: The Computer for the 21st Century.
Scientific American, pp. 94–104, Sep. 1991.

[56] Website of the Simplicity project:
http://www.ist-simplicity.org

