
Dependability within Peer-to-Peer Systems

James Walkerdine, Lee Melville, Ian Sommerville
Computing Department, Lancaster University, Lancaster, LA1 4YR, UK

{walkerdi, l.Melville, is}@comp.lancs.ac.uk

Abstract
There is an increasing interest in using Peer-to-Peer

(P2P) architectures as a basis for software systems.
However, by their very nature, achieving dependability
within a P2P system can be difficult. This paper
provides an initial analysis of the main issues that need
to be considered when developing a dependable P2P
system. It examines the key properties that can influence
the dependability of a P2P system, and discusses the
relationship between system dependability and the
choice of logical network architecture.

1 Dependability and Peer-to-Peer
A system’s dependability can be thought of as being

its trustworthiness [9]. The difficulty when attempting
to measure dependability is that it is typically a context
sensitive property. While one user might regard a
system to be dependable for the particular activities they
use it for, another user might regard it to be
undependable for their activities. Traditionally
dependability has also been regarded as multi-
dimensional, in that it can be influenced by a variety of
other attributes. Key attributes include availability,
reliability, responsiveness, safety and security [9].

Peer-to-Peer (P2P) computing has become very
popular in recent years. Essentially it can be thought of
as a class of application that takes advantage of the
resources and services that are available at the edge of
the Internet [8]. There is an increasing interest in using
P2P as a basis for software systems within industry,
where it can be used to support activities such as
communication between workers. However for P2P
technology to be adopted within such an environment it
also needs to be dependable and achieving
dependability within a P2P system can be difficult.

In particular P2P systems possess a number of
specific properties that can have an influence on the
system's dependability attributes (security, reliability,
etc). For example, the type of peer discovery
mechanism used can influence the responsiveness of a
P2P system. A broadcast discovery mechanism can
result in slower performance than with using a
centralised peer lookup server. Consequently, when
considering dependability within P2P system design, it

is also becomes necessary to consider these specific P2P
properties.

Dependability within P2P systems is further
complicated by the numerous P2P logical network
architectures (abstractions of the underlying physical
network) that exist and no single architecture is likely to
be suitable for all application types. For example,
Napster [7] benefits most from a semi-centralised
architecture (provides more efficient resource
searching), whereas a decentralised architecture is more
suitable for FreeNet (better anonymity support) [2]. The
different types of logical network architecture can also
influence the P2P properties and general system
dependability. Decentralised P2P systems are likely to
be better suited at handling denial of service attacks, the
central authority provided by semi-centralised systems
would be better suited for handling peer certification.
Designers, when deciding on a suitable logical network
architecture, also need to take into account the
dependability requirements of the system. In some cases
this will restrict the logical network architecture options
that are available.

This paper describes some of our current work
within the EU funded P2P ARCHITECT project, which
seeks to develop methods and tools to support the
building of dependable P2P software systems. The
paper aims to identify the main properties (additional to
availability, reliability, responsiveness, safety and
security) that can influence a P2P systems
dependability, and how these in turn can be influenced
by or influence the choice of underlying logical network
architecture.

The paper begins by presenting the key P2P
dependability properties that we have derived from
studying existing dependability properties and applying
and analysing their importance within a P2P
environment. The paper then summarises the common
types of P2P logical network architectures, and provides
an initial discussion of the relationship between the
properties and architecture.

2 Dependability Properties of P2P Systems
To structure and help readability the key

dependability properties that we have identified have
been placed into three categories.

External properties – properties that can be only
viewed externally (for example, by the user).

Internal properties – properties that can be viewed
from within the system (for example, by a system
component).

Hybrid properties - properties that can be viewed
both internally and externally.

A brief summary of the properties is provided here.
A more detailed description is provided in [6].

2.1 External properties
Scalability - Scalability is the ability of a system to

operate without a noticeable drop in performance
despite increases or decreases in its overall operational
size. Peer-to-peer systems, by their very nature, are
designed to be distributed over many peers.
Accordingly, catering for scalability should play a
fundamental role when designing for a dependable peer-
to-peer system, and can have influences on
dependability attributes such as reliability, availability
and responsiveness.

Survivability - Survivability is the capability of a
system to fulfil its mission in a timely manner in the
presence of attacks, failures, or accidents [1].
Survivability in P2P systems raises some interesting
issues, as in some cases the inherent redundancy can
help attain survivability, whilst the lack of a central
control can hinder it. Furthermore a system's
survivability can also have an influence on its
dependability attributes such as reliability and
availability.

Maintainability - Maintainability represents the ease
in which the system can be changed after it has been
delivered and is in use [9]. A major issue with P2P
maintenance is updating peer software. It cannot be
assumed that all peers will be updated and this can be
particularly important for critical issues (for example
security patches). Given the range of issues that
maintainability can affect and given the distributed
nature of P2P, it should be viewed as being a critical
property when designing a dependable P2P system.

Manageability - Manageability reflects the ease in
which the system as a whole can be managed (which
can be important in business environments). Although
not an obvious dependability property, a system's
manageability can influence other issues such as
security and maintainability. Its importance is also
further raised given that it is often harder to control all
aspects of a P2P system.

Repairability - A system is regarded as being
repairable if it allows defect correction with minimal
effort. A repairable system needs to be able to detect the
faults and then perform corrective maintenance. As P2P
systems are distributed in nature the main difficultly is
how to identify and repair defects that can occur

throughout the network. This is especially the case for
decentralised systems and so can make repairability an
important property for when designing dependable P2P
systems.

Trust - Trust can depend on a range of properties.
For example, it can be influenced by the perceived
dependability of the system, its security measures, or
the behaviour of other users. Actually defining and
measuring trust is a difficult task due to its subjective
nature. As a result in terms of dependability it is a
complex property to consider. However there is a link
between trust and dependability, and within distributed
systems trust (of users and machines) can be a crucial
issue.

2.2 Internal properties
Network evolution - Studies of existing P2P systems

have shown that the logical network architecture used
can evolve over time [5]. Although P2P systems set out
to give all their peers equal status, in reality this is very
difficult to achieve due to the different resources
available to each peer. Because P2P systems are likely
to evolve during use, a dependable system would need
to be able to cater for this eventuality. The evolution of
the system could have implications for dependability
attributes such as security and maintainability.

Legacy versions - It is likely that as new versions of
the P2P software are released, not all peers within the
network will upgrade. Consequently you can have the
scenario where multiple versions of the software are run
across the network. A P2P system needs to be able to
still operate despite the different versions of the
software that might be running on the peers. For
designing a P2P system that is upgradeable whilst also
maintaining system dependability, legacy is going to be
an issue that needs to be tackled.

Fault Tolerance - Fault tolerance is the ability for a
system to continue giving a correct service following
the manifestation of a fault either through errors in the
system design, implementation or introduced following
an attack [9]. Fault tolerance is a particularly important
issue within P2P given its distributed nature. Designers
would need to decided how faults will be recognised
and dealt with in a distributed manner. Clearly the
ability of a system to resist and tackle faults will have
an influence on its perceived dependability.

Connection bandwidth - How peers are connected
together in a P2P network can vary considerably, from a
user connecting via a modem, to a machine connected
via a T3 connection. Consequently the amount of
network bandwidth available to a single peer can vary
considerably. Ideally a dependable P2P system should
be able to operate no matter the connection bandwidth,
and should be designed in such away to avoid hindering

system attributes such as reliability, availability and
responsiveness.

Intermittent peer connectivity - Due to the very
nature of peer-to-peer, it cannot be assumed that peers
within such a network are connected at all times. When
designing a peer-to-peer system, it is important to cater
for a peer’s intermittent connectivity and not assume
that a peer will always be connected. Likewise it is
important to make sure that intermittent connectivity
will not affect other system dependability attributes (for
example, reliability, availability and responsiveness).

Peer Discovery - P2P systems need the ability to
discover other peers that reside on the network.
Typically this is either achieved by using a central
lookup service, or by propagating discovery messages
around the network. The centralised approach tends to
be more efficient but less fault tolerant, and the
propagation approach is prone to poor responsiveness.
Consequently, the dependability of P2P system is going
to be influenced to an extent by the method of peer
discovery that is used.

Peer addressing - Due to the rapid uptake of the
Internet it is no longer feasible to guarantee every host
with a fixed IP address. Dynamic IP's are seen as a
possible solution; however within P2P systems their use
can result in peers becoming difficult to reach due to
their high dynamic IP address turnaround. P2P's
dynamic nature, and the lack of permanent IP's presents
a challenge that designers need to take into account.
Failure to properly tackle peer addressing can have an
influence on a number of dependability attributes (for
example, reliability, availability and responsiveness).

Load balancing - Load balancing is where the load
that is placed on components within a system is
balanced to ensure that a component is not overworked
or, alternatively, underused. Within P2P systems load
balancing can be important when deciding how much of
a peers’ resources to draw upon. The lack of load
balancing can have significant effect on the systems
dependability. For example, attributes such as
availability and responsiveness can all be affected due
to load imbalance resulting in certain peers being hard
to reach or simply failing due to overload.

2.3 Hybrid Properties
Responsibility, accountability and reputation - A key

challenge within P2P systems is enforcing rules of
social responsibility. To minimise breakdowns in this
(for example, spreading Spam) systems need to provide
means to track occurrences to the originator and also
provide mechanisms to make users accountable for their
actions. Responsibility and accountability are also
linked to trust, and can be applied from the hardware
level through to the user. Although difficult to quantify

they are, nevertheless, properties that can influence the
users perception of the dependability of a system.

Data integrity - It is important for the data that is
stored and manipulated by a system to maintain its
integrity. P2P systems provide both advantages and
disadvantages for maintaining data integrity. On the one
hand their decentralised nature increases the chances of
data becoming corrupted or invalid as it passed around,
on the other hand it also provides redundancy. Given
the importance of data integrity within a distributed
system, it is a property that must be considered when
designing a dependable system.

Adaptability - Adaptability is a systems ability to
adapt to a dynamically changing environment. P2P
networks are very unpredictable in nature; a P2P system
needs to be able to adapt when changes occur to ensure
its continued operation. Given the very dynamic nature
of most P2P systems, a dependable P2P system should
be able to easily adapt to change in order to ensure that
attributes such as reliability and responsiveness are not
compromised.

3 Dependability Properties and Logical Network
Architectures

Although the above properties are all issues that
designers should consider when developing a
dependable P2P system, they in turn are also influenced
by the type of logical network architecture that is used
as the basis for that system. For example, a semi-
centralised styled logical network architecture will be
better suited for use in a safety critical system due to the
fact that a central peer is able to monitor the whole
system. Consequently in order to meet the dependability
requirements for a system, designers will also need to
consider which logical network architecture can best
assist them in achieving this task.

3.1 Overview of P2P Logical Network Architectures
Peer-to-peer systems are built up around a collection

of nodes that are networked together in some fashion.
These nodes are typically personal computers but there
are no reasons why they cannot be anything with a
‘digital heartbeat’, be it PDA’s, sensors, consumer
electronics, network routers or storage systems.
Communication that passes between these nodes can,
for example, involve the transference of data or the
relaying of commands from a server node to a client
node.

Logical network architectures (or overlay) represent
an abstraction of the physical network architecture (the
physical network connections), and consider just the
nodes and connections between them.

From examining existing peer-to-peer systems it is
apparent that two core types of logical network
architecture exist. Pure P2P or Decentralised, where

each node within the network is regarded as an equal
and no control nodes exists, and Hybrid or Semi-
centralised, where there exists at least one control node
that performs an authoritative role within the network.
Within this paper we use the terms decentralised and
semi-centralised for the two architecture types.

(a) Direct Communication (b) Structured In-direct (c) Un-structured In-direct

(f) Computational
- autonomy

(g) Multiple Server(d) Index Server (e) Computational
- no autonomy

Figure 1 - P2P Logical Network Architectures

Figure 1 illustrates seven of the more commonly
used peer-to-peer logical network architectures. These
have been described in detail in our previous work [6],
but a summary is provided here.

Direct communication architectures (a) represent
those in which all peers can communicate directly with
each other and hence are also directly aware of each
other. The main disadvantage of this architecture is its
lack of scalability as it becomes unfeasible for each peer
to 'know' every other peer. Structured Indirect
communication architectures (b) differ in that it is not
necessarily the case that all peers can communicate
directly with one another. Instead, peers that are not
linked can communicate via other nodes. These types of
architectures are also structured so that they conform to
a type of network topology (for example, hierarchical,
ring, and star). Unstructured Indirect Communication
architectures (c) are essentially the same as their
structured counterparts with the difference being their
more freeform nature. Peers can be connected and
removed from any part of the network, resulting in a
varied density of peers throughout.

Single Centralised Index Server architectures (d)
possess a single peer that can act as a lookup for all
other peers within the system. Peers communicate
directly with each other, but with the aid of this central
index peer. Although having an index peer does provide
certain benefits, it also becomes a single point of
failure. The two computational architectures are similar
except that the server peer instead co-ordinates the
computation that is carried out within the system. With
Computational without Autonomy architectures (e), the
remaining peers of the network do not possess their own
autonomy and are essentially controlled by the server
peer. With Computational with Autonomy architectures
(f), the remaining peers maintain a degree of autonomy
(allowing them, for example to communicate with each
other). Finally, Multiple Server Node architectures (g)

represent the possibility of architectures that possess
more than one server peer. This can provide advantages
such as increasing a P2P systems reliability by
removing a potential single point of failure, or
improving Quality-of-Service should a single server
become overused.

3.2 The influence the architecture can have on a
system's dependability

To illustrate the relationship between the
dependability properties and the logical network
architectures, we provide a brief analysis involving two
of the above-discussed architectures. Due to the
subjective nature of a system's perceived dependability
and because it will also be significantly influenced by
the actual application or framework that is being used,
only a theoretical analysis is provided at this time. A
more detailed analysis that considers all the
architectures is provided in [6].

3.2.1 Using an Unstructured Indirect Communication
architecture

The main characteristics of this type of architecture
are the lack of server nodes and its free form nature.
This means that the individual peers that make up the
systems need to be independent and self-contained
(possess the functionality to operate independently). In
terms of providing a basis for a dependable system, this
provides both advantages and disadvantages.

The lack of server peers removes the problem of the
system possessing single points of failure. Should a peer
fail, the system should still continue to operate without
too significant a performance loss. Such a system is
more resilient to attacks and faults, thus potentially
making it better for tackling aspects of dependability
such as survivability and fault tolerance as well as
broader reliability, availability and security issues.

However, the lack of central points of control or
focus makes it difficult to monitor or control the system
as whole. This makes it less suitable for safety critical
systems where system monitoring is critical, as well for
supporting management and maintenance. Furthermore,
although this architecture may help a system survive a
fault or attack, because there is no central control when
such a fault/attack occurs there is nothing to monitor
and co-ordinate the recovery of the system.

The freeform nature of this architecture type means
that it can easily adapt to changes within the network. If
a routing peer is disconnected it should be possible to
route a message via another set of peers. Likewise the
architecture allows for network evolution so that issues
such as overload on peers, or inefficient use of
connection bandwidth can be addressed. Gnutella [3],
which uses such an architecture structure, is an example
of where network evolution has been seen to occur.

The main disadvantage of the architecture's flexible
nature, however, is that of scalability and system
responsiveness. The routing of messages between two
nodes from either side of the network can make the
responsiveness of the system very slow, if not
impossible (due message lifetimes, etc).

3.2.2 Using a Single Centralised Index Server
architecture

This type of architecture uses a server peer that acts
as a lookup for the rest of the network. This does mean,
however, that the 'client' peers typically rely on the
server peer in order for the system to properly operate.

Using a server peer provides a number of
advantages, in particular the fact that it can be used to
manage or control aspects of the system. This makes it
better suited for systems where safety, maintainability
or manageability are important. It also means that the
system as whole can better respond to attacks or faults.
Should such occur, the server peer could monitor this
and initiate suitable recovery procedures.

A server peer can also help in supporting trust within
a system, making it relatively easy to implement
accountability techniques. Using a server peer as a
lookup can also help system responsiveness particularly
with peer discovery. Rather than having to broadcast a
peer discovery message through the network, a peer can
directly lookup the target peer's address on the server.

The drawback of an architecture that uses a server
peer, is that it acts as a single point of failure. Due to the
rest of the networks reliance on the server, should it be
compromised then the dependability of the whole
system will be affected (in many cases it may mean the
system is unusable, a good example being of when the
servers go down with instant messenger applications
such as ICQ [4]). This single point of failure therefore
has a notable influence on the systems fault tolerance
and survivability, as well as on general system
reliability, availability and security issues.

4 Summary and Conclusions
This paper has examined key issues that should be

considered when developing a dependable P2P system.
Dependability is a difficult attribute to measure. Not

only is it context sensitive and subjective, it is also
influenced by a number of dependability attributes.
Achieving dependability within P2P systems is further
complicated by their distributed nature. This results in
the need to consider further properties, such as
intermittent peer connectivity and bandwidth, which can
also have an influence on system dependability. Finally,
the relationship that exists between system
dependability and the logical network architecture
types, also means that the choice of architecture used

can have an impact on a system's dependability (and
vice versa).

This paper has summarised key properties that can
influence a P2P system’s dependability. These
properties highlight additional issues that designers
should also consider when developing a dependable
P2P system. The paper has also provided a brief
overview of the more commonly used logical network
architectures, and illustrated, with initial theoretical
analysis, how the choice of architecture can help or
hinder some of these properties. This demonstrates the
importance of the logical network architecture within
the design process, and how that the designers should
choose the architecture based on the dependability
requirements of the system. Consequently when
developing a dependable P2P system the required
properties and how they relate to possible logical
network architectures should be considered at an early
stage.

It is our intention to extend the initial analysis work
that is presented here by assessing specific
implementations (for example, Napster) in more detail.
Although the results would be specific to the individual
implementation, they would go someway to quantifying
the initial analysis provided here and the effect the
choice of logical network architecture can have on
system dependability. The results of this work will be
presented in a future paper.

5 Acknowledgements
This work has been funded by the European Commission
within the P2P ARCHITECT project (IST-2001-32708).

6 References
[1] Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F.,
Longtaff, T. A., Mead, N. R., SURVIVABILITY: Protecting
Your Critical Systems, In IEEE Internet Computing, 3 (6), 55-63,
Nov/Dec, 1999.
[2] The Free Network P2P project (FreeNet). Anonymous file
sharing application. More information can be found at
http://freenet.sourceforge.net/
[3] Gnutella. File sharing application. More information at can be
found at http://www.gnutella.com
[4] ICQ. Instant Messenger Application. More information at the
URL http://www.icq.com
[5] Kan, G., Gnutella, in Peer-to-Peer: Harnessing the power of
Disruptive Technologies, Oram, A., (editor), O'Reilly publishing,
2001
[6]Melville, L., Walkerdine, J., Sommerville, I., Report on the
dependability properties of P2P architectures, Information
Societies Technology Institute, IST-2001-32708, 31st July, 2002
[7]Napster. MP3 file sharing application. More information can
be found at http://www.napster.com
[8]Shirky, C., Listening to Napster, in Peer-to-Peer: Harnessing
the power of Disruptive Technologies, Oram, A., (editor),
O'Reilly publishing, 2001
[9]Sommerville, I., Software Engineering, 6th Edition, Addison
Wesley publishing, 2000

http://www.icq.com/

	3.2 The influence the architecture can have on a system's de

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

