
In-line Service Measurements: An IPv6-
based Framework for Traffic Evaluation
and Network Operations

D. P. Pezaros, D. Hutchison F. J. Garcia, R. D. Gardner
Computing Department Agilent Laboratories, Scotland
Lancaster University Agilent Technologies
Lancaster, LA1 4YR, UK Edinburgh, EH30 9TG, UK
{dp, dh}@comp.lancs.ac.uk {frankie_garcia, robert_gardner}@agilent.com

J. S. Sventek
Department of Computing Science
Univeristy of Glasgow
Glasgow, G12 8QQ, UK
joe@dcs.gla.ac.uk

Abstract
The ability to measure, monitor and control the service quality experienced by
network traffic is becoming increasingly important as multiple traffic types are
aggregated onto IP networks. Assessing the real-time performance of the application
flows is an essential requirement for network operations and service management, as
well as for identifying how the different traffic types and transports interact and
behave, when they are carried over the end-to-end Internet infrastructure.
This paper introduces a novel measurement technique for assessing the performance
of IPv6 network flows. By exploiting IPv6 extension headers, measurement triggers
and the instantaneous measurement indications are carried in the same packets as the
payload data itself, providing a high level of probability that the behaviour of the real
user traffic flows is being observed. The measurement mechanism is applied at the
network layer and provides for a generic technique able to measure any type of
traffic, without depending on particular transports nor on specific measurement
architectures. A prototype implementation of this technique is also described and
evaluated by measuring performance properties of application flows, over different-
capacity IPv6 environments. End-to-end delay and jitter of video streams have been
measured, as well as the goodput for services operating on top of reliable transport.
This measurement technique can be the basis for low-overhead, scalable, transparent
and reliable measurement of individual and aggregate network flows, and can be
dynamically deployed where and when required in a multi-service IP environment.

Keywords
Active/passive measurements, IPv6, one-way delay/jitter/loss, throughput

1. Introduction
As the Internet grows larger and becomes increasingly heterogeneous, measuring the
real-time properties and the service quality experienced by user traffic becomes even
more challenging, and moreover, of critical importance. Traditional measurement
techniques have focused on providing fault management support for the network, and
usually adopt a link- or device-centric view in order to trace the sources of and
reasons for service degradation. More recent measurement infrastructures specialise
either in measuring the path properties of special-purpose, injected traffic (active
measurements) [1, 6, 9, 11, 12, 13, 18] or in correlating and analysing one-point link
traffic (passive measurements and standalone monitoring tools) [2, 3, 4, 8, 15].
Active measurement architectures produce results reflecting the performance
experienced by the synthetic traffic (mainly based on ICMP or other special-purpose
protocols), which is not necessarily identical to the performance experienced by the
real traffic flows. Also, the additional traffic associated with active measurements
obviously impacts the network and may itself be a factor in observing a poorer
performance than the network would otherwise deliver [13].
Passive measurements suffer from continuous increases in network speeds that make
the amount of measurement data that needs to be transferred across the monitored
links substantial; the consequential difficulty in targeting specific services, identifying
packets belonging to the same flows and inferring knowledge about them makes it
difficult to prove that contractual agreements are being met [11]. The need for
administrative access to network equipment limits the scope of passive measurements
to single links and networks, and hence, end-to-end traffic behaviour is difficult to
infer [2, 7, 8].
The Internet Protocol (IP) is evolving as the universal transport mechanism for the
continuing convergence of telephony with data communications, where there is
increasing aggregation of multi-service traffic onto IP networks carrying various
equivalence classes and network flows. The different Quality of Service (QoS)
requirements and different sensitivities to potential service degradation of these
equivalence classes make it essential to determine timely and accurate measurements
of the QoS of network flows. Measurements revealing the real service experienced by
user traffic can prove valuable for long and short term network design decisions, for
dynamic traffic engineering, for Service Level Agreement (SLA) negotiation and
policing, and for network operations and service management.
Whereas IPv4 is the current ubiquitously-deployed version of the Internet Protocol, it
is likely that IPv6 will increasingly be adopted as its advantages are revealed. Router
and client system vendors are building IPv6 implementations into their products, and
one of the biggest challenges will be the logistical problem of handover from v4 to
v6. But it is still not universally accepted that IPv6 should be adopted, and there needs
to be a convincing rationale for such acceptance: this paper investigates one possible
feature of IPv6 that could be seen as an advantage for network operators and users, in
the context of traffic evaluation and network operations.
The main contributions of this paper are the introduction, design and implementation
of a new, IPv6-based, in-line measurement technique, able to assess the performance
properties experienced by real user traffic transparently at the IP layer. The technique

exploits the inherent programmability of IPv6 [5], and performs two-point
measurements for any type of traffic carried over end-to-end or intermediate Internet
paths. The term ‘in-line’ implies that measurement triggers, which invoke
measurement activity and the instantaneous measurement indications, are
piggybacked onto real user packets. With low overhead and minimal impact on the
network traffic, the technique provides a high level of probability that the real user
experience is being measured and it is equally applicable to measuring aggregate
flows as it is to particular applications or protocols. Additionally, it is well-suited to
dynamic deployment and promises a scalable implementation. The technique is
facilitated by the steady introduction of IPv6 in research and academic networks; the
consumption of the IP address space primarily driven by the growth in mobile and
wireless markets requiring IP connectivity, also makes a strong case for widespread
operational deployment of IPv6.
This paper is organised as follows: Section 2, introduces in-line measurements and
the motivation and design decisions are presented. Section 3 describes the prototype
design and implementation. Section 4 discusses the results taken over different
experimental, IPv6 configurations. Section 5 contains concluding remarks and
indicates some of the future directions of this work.

2. In-line Measurement Technique
The acquisition of low-overhead, scalable, accurate, and service-oriented
measurements of network performance has led to the investigation of mechanisms
that can circumvent some of the inherent difficulties of active and passive techniques.
Indeed, the in-line measurement technique may be viewed as a hybrid of the
beneficial characteristics of active and passive measurement approaches, whereby the
measurement data and triggering mechanisms are piggybacked onto real user packets.
Through instrumentation of real network flows, it provides for accurate measurements
reflecting the performance offered by the network infrastructure; additionally, it
offers the flexibility of being able to target specific services, flows and/or aggregates.
In-line measurements are intrinsically multi-point measurements whereby packets are
tagged with information at one point in the network and this information is retrieved
and/or observed elsewhere.
Since it is the user traffic itself which carries the measurement and triggering
mechanism, it is guaranteed that the same packet has been observed at both ends.
Similarly, because any added data will be piggybacked onto real user traffic we can
assume with a high degree of probability that it will receive the same treatment and
follow the same path as the real user traffic. Unlike active measurements consisting of
injected packets, two-point in-line measurement results will more accurately reflect
the real characteristics of traffic flows with only a small additional systematic
processing delay and marginally larger overall packet length compared to unaffected
packets. This makes the reasonable assumption that, for appropriately selected
packets, the marginal increase in the packet header length does not change how the
packet is treated on its journey through the network.
Moreover, in contrast to two-point passive measurements, correlation of data from
path endpoints is not necessary, reducing the complexity of the measurement system,

potentially reducing the amount of measurement data that must be shipped across the
network and speeding up the availability of the measurement results. In fact, the total
amount of additional traffic transported across the network for measurement purposes
can be kept to a minimum.

2.1 IPv6 Enhancements
Native features of Internet Protocol version 6 (IPv6) can be conveniently used to
implement in-line measurements, potentially being fully integrated into the protocol
stack operation using IPv6 extension headers [5]. The protocol has a common, 40-
octet, fixed-sized protocol header that mainly deals with addressing, while the rest of
the functionality is implemented via a set of optional extensions headers containing
data structures called ‘options’. Unlike IPv4, where the options must be implemented
by all IP modules (host and gateways), IPv6 allows for certain options to be
implemented and processed only where necessary, at the edges of the network,
removing the complexity of option processing at every node en-route to the
destination. (Whereas in IPv4, what is optional is the transmission of the options in
any particular datagram, not their implementation - RFC 791.) In IPv6, intermediate
nodes do not have to deal with option processing, and the concern of treating packets
differently (fast/slow paths in routers) depending on whether they carry optional data
or not, is thereby eliminated.
Several extension headers (e.g. Routing, hop-by-hop options, destination options) and
corresponding options have already been defined in the IPv6 standard [5] and others
are currently being defined for dedicated purposes - e.g. within recent Mobile IPv6
IETF drafts. Optional extension headers are encoded between the main IPv6 header
and the transport layer header.
Each header is identified by the value of the Next Header field of the immediately
preceding header. The rules and semantics of each extension header determine
whether the receiving node will proceed to the next header or not. Figure 1(a) shows
the general format of the Destination Options extension header which is defined to
carry optional data to be examined by a datagram’s destination, indicated by the
destination address field of the main IPv6 header. The Next Header field contains a
value that identifies the type of the subsequent header, which could either be another
extension header or higher-layer protocol such as UDP or TCP. The Hdr Ext Len field
gives the total length in octets of the destination options header excluding the 8 bits
representing the Next Header Field.

Next Header Hdr Ext Len

Options

Next Header Hdr Ext Len

Options

 (a) (b)

Figure 1: (a) Destination options extension header and (b) options in the form of
TLV tuples.

Option Type Option Length Data

1 octet 1 octet variable number of octets

The options field is a variable length field in which options are encoded as type-
length-value (TLV) tuples, as shown in figure 1(b); these represent a suitable format
for the transportation of opaque objects.
The type uniquely identifies the option. The length indicates the length of the option
data field in octets, while the value represents the option specific data. Options are
processed in sequence and the option type also has two bits that specify the action to
be taken by an IPv6 node when it does not recognise a particular option in the
sequence - e.g. skip the option, discard the packet, etc. Another bit in the type field is
used to indicate whether the option data value may change en-route to its destination.
Padding options also exist to help with alignment issues when constructing a
destination options header to ensure that it represents a multiple of 8 octets in length.

2.2 IPv6 Extension Headers & Inline Measurements
In this paper, it is proposed that in-line measurements be implemented by exploiting
the IPv6 extension headers, in particular the Destination Options extension header.
Extension headers can be used within a measurement infrastructure to carry
measurement information in the form of TLV-encoded options, such as timestamps,
counters and trace information as well as other associated measurement system
traffic. Destination options on their own can be used to perform end-to-end in-line
service measurements along IPv6 network paths. With the addition of a routing
header, it is possible to target specific nodes en-route to enable the implementation of
more detailed service measurements as the user traffic crosses crucial points of a
network cloud. It would also be possible to use some of the flow-label bits to easily
identify and trigger measurement and monitoring behaviour as the user traffic with
the in-line data visits nodes en-route to its destination.
Performing service-centric, multi-point measurements at the IPv6 layer has the great
advantage allowing the instrumentation of various different types of traffic carried
over the (IPv6) Internet. Also, a generic, minimal measurement mechanism within the
protocol stack, which is decoupled from particular measurement architectures, can be
applicable to different application domains, such as traffic engineering, protocol
performance evaluation, dynamic SLA negotiation and policing, pricing and charging
for different services.
The insertion of the extension headers into real user traffic for the purpose of
measurement and monitoring can be dynamically controlled depending on a particular
management application requirement. Thus not all user packets need to carry this
data. Selection can be based on application and sampling can also be effectively used.
It is important to ensure that the addition of measurement data does not become
intrusive and therefore adversely affect the traffic being measured.
For example, the addition of measurement data should not cause a packet to exceed
the link/path maximum transmission unit (MTU), since the resulting
fragmentation/reassembly would influence the performance, and would introduce bias
into the measurement process.

2.3 One-Way Delay Destination Options Type-Length-Value (TLV)
Extensive experimentation towards the definition of measurements options (to be
processed as part of the destination options extension header) has been carried out,
and numerous TLVs have been designed to measure end-to-end one-way delay, delay
variations, throughput, packet loss, response time. In this paper the concentration is
on the one-way delay TLV-encoded option (Figure 2), and the associated metrics that
can be measured and deduced. The TLV has the following special-purpose fields:

• Pointer – 8-bit unsigned integer. Used to indicate the location of the next unused

slot in the option data, i.e. for storage of a timestamp.
• Overflow – 8-bit unsigned integer. Used to indicate if an attempt is made to store

more timestamps than there are slots to accommodate them.
• Flags – Octet comprising eight binary flags, for example for indicating the nature

of data stored elsewhere in the option data fields.
• Reserved – A zero-valued octet included for alignment purposes
• Source timestamp – Two 32-bit unsigned integers indicating time of forwarding

of the packet from the interface of the node where the extension header or option
was inserted. The two integers represent the seconds and microseconds portions
respectively of the time elapsed since 0000 hrs on 1st January 1970 Universal
Co-ordinated Time (UTC).

• Destination timestamp – Two 32-bit unsigned integers indicating time of receipt
of the packet at the interface of the node where the extension header is detected.

The Option Type identifier in the header is set to a value allocated to identify “one-
way end-to-end delay measurement”. In this prototype, this octet has been set to a
value 001000012 (33 in decimal), also ensuring that the option is skipped if it is an
unrecognised option and indicating that the data may change en-route.
This option can be used to measure one-way delay within a section of a network, such
as between ingress and egress points of a packet flow across the boundaries of a
section under the control of a single operator. However, this would involve
modification of the standard processing procedures for Destination options or a new
extension header to be defined. Note also that the option is equally applicable to “end-
to-end” measurements of one-way delay, such as from a server (e.g. serving website)
to a client (e.g. a wireless connected personal digital assistant (PDA) running a web
browser application).

Figure 2: One-way delay TLV-encoded option.

Source timestamp: seconds

Option data lenOption type
OverflowPointer (Reserved)Flags

Source timestamp: microseconds
Destination timestamp: seconds

Destination timestamp: microseconds

In the next section, the design, implementation and operation of such options is
described, as part of a working prototype in-line measurement framework that
facilitates various traffic measurements.

3. Prototype Design and Implementation

A core set of application frameworks have been developed to handle the initialisation,
control, co-ordination, and scheduling of tests in a distributed network. They provide
capabilities for collection, wire-format representation and streaming of measurement
samples to registered consumers. Underpinning this design philosophy is the notion
of telemetry modules which are the realisation of particular IPv6 measurement
options; these are the basic components employed in the prototype to instrument
nodes to facilitate in-line measurement techniques through the addition, modification
and removal of data in the extension headers. These modules are remotely configured,
managed and controlled. At a system level, the required functionality for performing
delay and other measurements can be implemented, for example, by using
dynamically loadable modules to provide additional processing logic for the
manipulation of packet extensions in headers and other supporting functions such as
the storage, retrieval, correlation and forwarding of measurement-related data. By
modularising the set of monitoring and measurement tasks it is possible to
dynamically load only those modules that are needed at a particular time and then
unload them once they are no longer required. The loadable modules may be remotely
delivered to the nodes, loaded and configured and, whilst in use, effectively become
an integral, embedded part of the node’s operating software.
A modular approach can reduce memory usage, minimise the actively used
processing logic, speed up processing time, and reduce overall subsystem complexity.
Another significant advantage of this approach is that it eliminates the need for
physical access to the links between network nodes in order to monitor passing data.
It instead makes use of spare programmable logic or processing capability within the
routers or other network devices, providing a more integrated, inherently powerful
solution. Upgrades involve delivering new modules to nodes (for example over the
network itself), which can either be directly loaded on delivery or be temporarily
stored on some form of local media (e.g. hard disk storage) for later use.
Figure 3 shows an illustrative architecture of a single network element with a number
of line interfaces and a controller comprising a processor, memory and program
software or firmware. The figure illustrates three different example integration points
where, depending on the design of the network element, dynamically loadable
modules can be accommodated:

 The modules may be loaded onto a line interface as dynamically reconfigurable
hardware (e.g. using Field Programmable Gate Arrays – FPGAs), as software or
as a hybrid combination of both options.

 The modules may exist as loadable software in the software operating system
‘kernel’ or equivalent for the controller;

 The modules may exist as loadable applications in ‘user’ space provided by the
controller’s operating system.

Figure 3: Abstract model of a network element.

3.1 Linux-based Prototype Implementation

A prototype implementation of this design philosophy has been realised on Linux
systems running kernel version 2.4.x; telemetry modules are implemented as
dynamically Loadable Kernel Modules (LKMs) that can be linked with a running
Linux kernel. These typically provide better processing performance compared to
applications executing in user space, and can easily be configured to add, remove and
modify extension headers as an integral part of the kernel’s implementation of the
network protocol stack. LKMs are loaded and unloaded using device-specific scripts,
and virtual devices are used for configuring the modules’ parameters and also for
obtaining the results from their operation. Filtering and sampling mechanisms that
can be initially and/or dynamically configured are in place, so that the modules can
instrument specific traffic of interest at certain rates. These mechanisms are
particularly useful when analysing aggregate or continuous media flows. The one-
way delay destination options header has been implemented as a pair of telemetry
modules, running at the source/ingress and destination/egress nodes of an
instrumented path, respectively (Figure 4). The source module operates on the IPv6
output routine, inspecting packets before they are forwarded on the network. For
packets that satisfy the filtering and sampling criteria in place, the one-way delay
option is generated, time-stamped and either appended to an existing destination
options header or one is created for it.
The destination module operates alongside the IPv6 input routine and looks for IPv6
packets whose protocol (next header) field is set to the value 60 indicating a
Destination Options header [5]. Once found, it processes the option with value 33 by
adding the second time-stamp. A copy of the IPv6 header, extension header, and
transport layer header is then added to a FIFO message queue, which can be accessed
from the user space. If required, the extension header may also be stripped from the

Line I/F

Line I/F

Line I/F

Line I/F

Line I/F

Line I/F

Line I/F

Line I/F

N etwork Elem ent

Physical
m edium

e.g. copper,
optical fibre

Controller
(Processor, m em ory, firm w are)

User program space
(if present)

Kernel space
(if present)

Figure 4: One-way delay source and destination modules in operation.

packet, or the particular option removed, returning the packet to its original form.
Figure 4 also shows how the source and destination telemetry modules can be
exploited to measure bi-directional properties of Internet paths, by combining two
unidirectional deployments.

4. Experimental Results
An experimental measurement testbed has been set up at Lancaster University
comprising a number of real PCs and virtual machines connected to several IPv6
networks with different characteristics. The testbed spans a public and two private
ethernet topologies, and also multiple operational wireless 802.11b networks. Lately,
the size and scope of the testbed was enhanced by the addition of IPv6-enabled
residential ADSL links. Representative types of traffic have been chosen to run over
the wired and wireless topologies; various indicative properties have been measured
and computed for traffic operating over connection-oriented and connectionless
transports, using the prototype one-way delay option. End-to-end one-way delay and
Inter-Packet Delay Variation (IPDV) are presented for video streaming on top of
UDP whereas application goodput is presented for interactive TCP applications, as a
more interesting property for reliable transports.
All systems synchronise using NTP [14]. One system synchronises with external
stratum 1/2 servers and the rest synchronise with this, now a stratum 3 NTP server.
Experimentation showed that this “hierarchy” produced better synchronisation for the
testbed than using (separate) external NTP servers for all the systems. Millisecond
accuracy was achieved by having a system clock as the preferred reference for the

rest of the workstations. This was empirically verified by experiments over delay-free
private IPv6 networks (100Mbps Ethernet). Including the clocks’ offset from the
single reference in the calculation was also feasible for better precision.
Improved synchronisation can potentially be provided by Global Positioning System
(GPS)-based timing at around 10 µs, but GPS installation can prove difficult and
costly. Also, software solutions for improving the clock rates can be investigated [17].
In order to emphasise the generalisation and applicability of in-line measurements,
and the decoupling of the technique from particular measurement infrastructures, it
was decided not to use measurement traffic from (even comparable) measurement
tools. Rather, the traffic for the experiments was generated by existing, open-source
application software. In the generation of all results that follow sampling was turned-
off, instrumenting all packets that satisfied the filtering criteria; filtering was applied
on the transport protocol (i.e. all TCP or all UDP traffic).

4.1 UDP Measurements
Streamed video data was monitored over both the wired and wireless topologies,
using the in-line measurement techniques and the prototype implementation described
previously. The main focus was on the properties of the wireless portion of the
network, since the private Ethernet networks constitute a relatively delay-free
topology and therefore useful for time synchronisation purposes.
The VideoLAN [19] server/client pair was used to stream MPEG video over IPv6
between the different nodes in the testbed. The software sent 1348-byte packets from
source to destination. One-way delay was measured as the difference between the
timestamps recorded at the source and the destination of the packet, respectively,
carried within every TLV-encoded option. Jitter was measured as the difference
between the delay indications of two successive packets, i.e. the Inter-Packet Delay
Variation (IPDV), as defined in a draft of the IETF IPPM working group [10].
Figure 5 shows a common case scenario of the one-way delay (a) and jitter (b),
measured for a video stream spanning through two wireless IPv6 networks. The
instantaneous one-way delay for this video stream varied from 8 to 89 milliseconds
and the average delay was 20.97 milliseconds. IPDV varied from -68 to 58 and its
average value was -0.00049. There is a high concentration of delay values close to
zero, but at the same time quite frequent sporadic delays, mainly in the interval 0-40
milliseconds. Figure 5 (c) and (d) shows a more interesting situation that arose during
a video streaming session (part of the same set of experiments): There is a huge
increase in the delay indications from less than 100 milliseconds up to more than 3
seconds, followed by an even more sudden decrease back to the flow’s normal values.
This fluctuation possibly occurred due to configuration changes taking place at the
time of the experiment, at the infrastructure of the wireless network. The one-way
delay varied from 5 to 3138 milliseconds and the average value was 148.16
milliseconds. IPDV took values from -192 to 29 with an average of 0.000443.
As expected, experiments over the two private networks revealed no particularly
interesting results. The one-way delay always assumed values between one and two
milliseconds and hence the jitter varied between -1 and 1.

 (a) (b)

 (c) (d)

Figure 5: (a, c) One-way Delay and (b, d) IPDV for video stream, over the wireless

topology.

The measurements take into account clock drifts in each system from the appropriate
NTP server. While running, NTP improves the clock’s accuracy, and as the polling
intervals increase (e.g. 1024 seconds), the clock drifts tend towards a fairly static and
stable value.

4.2 TCP Measurements

The TCP results were collected by running bi-directional delay source and destination
modules as previously illustrated in Figure 4. As aforementioned, the instrumented
sessions consisted of shortlived SSH and Telnet flows. All the running protocol stacks
within the testbed adhered to TCP with the NewReno and SACK extensions - see
RFCs 793, 1122 and 2001. From the collected traces, conversation dictionaries were

0 20 40 60 80 100 120

10
20

30
40

50
60

70

Goodput Vs. T ime (Telnet Stream)

Time(sec)

G
oo

dp
ut

(b
yt

es
/m

se
cs

)

built based on source/destination addresses and port numbers. These show
conversation set-up time (the time between a SYN packet sent from the client and a
SYN+ACK packet received from the server) and “Completeness” of a flow,
signifying that at least one FIN packet, sent in either direction, was observed.
Table 1 shows the output of the TCP conversation dictionary for the three
applications, running across the wireless networks. Application sessions are identified
by their well-known service ports; the client ports, conversation set-up times and
packets belonging to each flow can then be deduced.
Figure 6 shows the real goodput in bytes per millisecond experienced by the different
TCP applications. Dots indicate values for packets from the client to the server, and
‘x-points’ represent values for packets from the server to the client. Goodput is
defined as the number of payload bytes received per unit time in each direction, as
opposed to throughput, which measures the number of packets sent, regardless of
their eventual fate [16].
It is not envisaged that in-line measurements should instrument and be carried along
with every single packet across the network. Rather, they should serve as an
additional measurement tool deployed where and when required to perform service-
oriented measurements along Internet paths. For this reason, target application
domains need to be carefully addressed and evaluated.

Service Port Client Port Conv. Setup Time (µsec) Packets Completness
22 32790 3166 638 True
23 32789 3102 751 True

Table 1: Conversation Dictionary output for the measured TCP applications over the

wireless networks

(a) (b)

Figure 6: Goodput measured for (a) SSH and (b) Telnet over the wireless topology.

0 10 20 30 40 50 60 70

0
50

10
0

15
0

Goodput Vs. T ime (SSH Stream)

Time(sec)

G
oo

dp
ut

(b
yt

es
/m

se
cs

)

For example, for bulk TCP transfers, adding measurement options to the data packets
could cause MTU violation, since the protocol maximises its performance
(throughput) by sending the maximum possible packets sizes for data. It should be up
to the application and/or transport mechanism to judge, according to its requirements,
whether extra space for measurement instrumentation should be accommodated or
not.

5. Conclusions and Future Work
This paper introduced and demonstrated a novel in-line measurements technique,
which exploits the IPv6 extension headers to assess the performance properties of
application flows across the Internet. The benefits of in-line over traditional
measurement techniques were highlighted. The design of a prototype implementation
has been also presented, showing how the technique can be provisionally realised and
exploited to measure unidirectional and bi-directional traffic properties. Measurement
results have been presented, documenting properties of UDP and TCP data, over IPv6
topologies.
It is anticipated that the technique would be found useful by network operators in
assessing traffic performance, and in particular as part of their network operations and
management. The diversity and complexity of Internet traffic implies that network
operations need to include measurement-based techniques such as the one introduced
in this paper in order to monitor and control (literally, to manage) the behaviour of the
network and the services running on it.
Further work will concentrate on enhancing the scope and size of measurements and
performance metrics. Different measurement TLVs are currently being evaluated.
Experimentation also concentrates on filtering and sampling mechanisms to address
scalability and overhead issues, and the applicability of in-line measurements for
particular application domains and network operations.

ACKNOWLEDGMENTS

We are grateful to Agilent Technologies for the support of Dimitrios Pezaros’ work
through an industrial fellowship. Stefan Schmid, Steven Simpson, Joe Finney and
Andrew Scott provided invaluable support throughout this work. The authors are
deeply indebted to Barry Rowlingson for advising on the use of statistical packages.

References
[1]. Active Measurement Project (AMP), http://watt.nlanr.net//active/intro.html
[2]. Apsidorf, J., Claffy, K., C., Thompson, K., Wilder, R., OC3MON: Flexible,

affordable, high performance statistics collection, in Proc. of the seventh annual
conference of the Internet society (INET’97), Kuala Lumpur, Malaysia, 1997

[3]. Claffy, K., C., Miller, G., Thompson, K., The nature of the beast: recent traffic
measurements from an internet backbone, in Proc. of the eighth annual
conference of the Internet society (INET’98), Geneva, Switzerland, 1998

[4]. Cisco IOS NetFlow,
http://www.cisco.com/warp/public/732/Tech/nmp/index.shtml

[5]. Deering, S., Hinden, R., Internet Protocol version 6 (IPv6) specification, IETF,
IPNG Working Group, RFC 2460, December 1998

[6]. Downey, A., B., Using pathchar to estimate Internet link characteristics, in Proc.
of ACM SIGCOMM’99, Cambridge, MA, pp. 241-250, September 1999

[7]. Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., True, F.,
Deriving traffic demands for operational IP networks: methodology and
experience, in Proc. of ACM SIGCOMM’00, Stockholm, Sweden, 2000

[8]. Fraleigh, C., Diot, C., Lyles, B., Moon, S., Owezarski, P., Papagiannaki, D.,
Tobagi, F., Design and deployment of a passive monitoring infrastructure, in
Proc. of Passive and Active Measurement Workshop (PAM2001), Amsterdam,
NL, 2001

[9]. Georgatos, F., Gruber, F., Karrenberg, D., Santcroos, M., Susanj, A., Uijterwaal,
H., Wilhelm, R., Providing active measurements as a regular service for ISP's, in
Proc. of Passive and Active Measurement Workshop (PAM2001), Amsterdam,
NL, 2001

[10]. IETF IPPM Working Group,
http://www.ietf.org/html.charters/ippm-charter.html

[11]. Jain, R., Routhier, S., Packet trains – measurements and a new model for
computer network traffic, IEEE Journal on Selected Areas in Communications,
Vol.4, No.6, September 1986, pp. 986-995

[12]. Kalidindi, S., Zekauskas, M., J., Surveyor: an infrastructure for internet
performance measurement, in Proc. of the ninth Annual International
Networking Conference (INET’99), San Jose, CA, 1999

[13]. Matthews, W., Cottrell, L., The PingER project: active internet performance
monitoring for the HENP community, IEEE Communications Magazine, May
2000

[14]. Mills, D., Internet time synchronisation: the Network Time Protocol, IEEE
Trans. Communications, 39(10):1482-1493, October 1991

[15]. Multi-Router Traffic Grapher, http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
[16]. Padhye, J., Firoiu, V., Towsley, D., Kurose, J., Modelling TCP throughput: a

simple model and its empirical validation, in Proc. of ACM SIGCOMM’98,
Vancouver, Canada, 1998

[17]. Pásztor, A., Veicht, D., PC based precision timing without GPS, in Proc. of
ACM SIGMETRICS 2002, Marina Del Rey, California, 2002

[18]. RIPE NCC Test Traffic Measurements (TTM) Project,
http://www.ripe.net/ripencc/mem-services/ttm/index.html

[19]. VideoLAN Open Source Streaming Solution Homepage,
http://www.videolan.org

