
Complex Distributed Systems
The Need for Fresh Perspectives

 Gordon S. Blair
School of Computing and Communications,

Lancaster University,
Bailrigg, Lancaster, UK
g.blair@lancaster.ac.uk

Abstract—	Distributed systems are at a watershed due to their
increasing complexity. The heart of the problem is the extreme
level of heterogeneity exhibited by contemporary distributed
systems coupled with the need to be dynamic and responsive to
change. In effect, we have moved from distributed systems to
systems of systems. Following on from this, middleware is also at
a watershed. The traditional view of middleware is no longer
valid (i.e. as a layer of abstraction, masking the complexity of the
underlying distributed system and providing a high-level
programming model). In practice, middleware is often by-passed
with complex systems constructed in a rather ad hoc manner as a
mash-up of a variety of technologies. The end result is that
middleware is no longer sure of its form or purpose and this lack
of a viable approach is a huge barrier to the emergence of areas
such as smart cities and emergency response systems. This paper
argues that there is a need to fundamentally rethink the
middleware landscape related to complex distributed systems.
The core contribution of the paper is a set of fresh perspectives,
which lead us in turn to novel principles and patterns for
middleware and subsequently to new styles of platform. These
perspectives include a move to emergent middleware, seeking
flexible meta-structures for distributed systems, and a step away
from generic to domain-specific technologies. A number of case
studies are also presented to demonstrate what this might mean
for future distributed systems.

Keywords—	 distributed systems, systems of systems,
middleware, complexity, systems integration.

I. INTRODUCTION
Distributed systems are at a watershed due to their

increasing complexity. The heart of the problem is the extreme
level of heterogeneity exhibited by contemporary distributed
systems coupled with the need to be dynamic and responsive to
change. In effect, we have moved from distributed systems to
systems of systems. Following on from this, middleware is also
at a watershed. The traditional view of middleware is no longer
valid (i.e. as a layer of abstraction, masking the complexity of
the underlying distributed system and providing a high-level
programming model). In practice, middleware is often by-
passed with complex systems constructed in a rather ad hoc
manner as a mash-up of a variety of technologies. The end
result is that middleware is no longer sure of its form or
purpose and this lack of a viable approach is a huge barrier to
the emergence of areas such as smart cities and emergency
response systems.

The author argues that there is a need to fundamentally
rethink the landscape of distributed systems in what the paper
refers to as complex distributed systems. The overall vision of
the paper is therefore to examine the problem through fresh
perspectives, that lead us in turn to novel principles and
patterns for middleware and subsequently to new styles of
platform. The fresh perspectives include a move to emergent
middleware, seeking flexible meta-structures for distributed
systems, and a step away from generic to domain-specific
technologies. These findings are strongly influenced by recent
work by the author in applying distributed systems technology
in understanding and managing the natural environment as it
experiences pressures such as climate change.

The paper is structured as follows. The arguments in this
paper are derived from experience in applying distributed
systems principles and techniques in a real-work problem
domain, that of supporting environmental scientists in
understanding and managing the natural environment. Section
II discusses this motivation, highlighting the intrinsic
complexities in both the resultant underlying distributed
systems and also associated with supporting environmental
science. Section III then discusses the state of the art in
complex distributed systems, examining in detail how existing
middleware approaches support such complexities and also
what can be learned from research in systems of systems. The
section concludes that there are serious problems in the state of
the art and a need for fresh perspectives and insights to drive a
new approach to complex distributed systems. Section IV then
moves on to the solution space by discussing five potential
fresh perspectives on the problem that individually and/or
collectively may point to new solutions and approaches to
middleware design. Section V then presents four case studies
that build selectively on the fresh perspectives in different
combinations, thus further developing the potential solution
space. Section VI presents some concluding remarks
highlighting the need for greater focus on complexity in
distributed ssytems and its application.

II. MOTIVATION: DISTRIBUTED SYSTEMS IN THE REAL WORLD

A. Background
This paper is motivated by recent research by the author in

applying distributed systems technology in a real world setting,
namely supporting environmental scientists in their quest to
both understand the complexities of the natural environment

under periods of change (incl. climate change) and in
developing well-founded mitigation and adaptation strategies.

Previous research includes the Environmental Virtual
Observatories project, which examined the support offered by
cloud computing for a more open and collaborative style of
science, and also the Environmental Internet of Things project
which addressed the potential role of Internet of Things (IoT)
technology in supporting catchment management by providing
real-time streaming data on a number of environmental facets
including concerning soils, hydrology and animal movements.

Ongoing work is examining the natural synergy between
IoT technology, cloud computing and data science in
environmental science (generating rich data-sets, having the
capacity to analyse such data sets, and also providing
innovative techniques to make sense of this complex
environmental data). Experience from this work has
highlighted the complexities of working in this area. The rest of
this section unpicks these complexities in more detail.

B. Complex Distributed Systems
The underlying distributed systems are intrinsically

complex in terms of their design, programming, deployment
and maintenance. They are classic examples of systems of
systems architectures as recognised for example by the GEOSS
project (Global Earth Observation Systems of Systems) [1].
GEOSS has the goal of bringing together a rich range of
observational data and associated processing systems to
provide a comprehensive and coordinated resource for a range
of stakeholders, public and private, related to the state of the
Earth (see Fig. 1).

Fig. 1. GEOSS System of Systems

Such systems typical involve rich architectures for data
capture operating at different scales including ground-based
sensors, e.g. exploiting emerging IoT technology, coupled with
airborne sensors on aircraft and drones, and supplemented by
remote sensing from satellites. Focusing on ground-based
sensors, there will not just be one Internet of Things, but a
cascade of deployments examining different environmental
facets again at different scales. There is then a need to store this
data and support subsequent discovery and manipulation,
potentially using cloud technology to provide, e.g., the elastic
capacity to manage such large volumes of data. Additional
distributed systems elements may also be introduced. For
example, there may be the need to support access to the data
and services from mobile devices, implying support for context

awareness. Similarly, in emergency response systems, it may
be necessary to base elements of the design on ad-hoc
networking principles to support self-organisation of a system.
More generally, in such systems there is a need for dynamicity
and to adapt to changes in the operating environment. There is
also a need to enforce security and dependability across such
systems. In other words, there is a need to embrace and build
on many of the developments from the distributed systems
community over the past 30-years. A key difference is that this
has to be achieved in a single architecture embracing all of
these aspects and this raises profound questions:

• what tools and techniques do we have to design such an
architecture recognising its intrinsic systems of systems
nature;

• what programming paradigms and languages are
available to develop such complex distributed systems
in a well-founded manner and that supports reasoning
about end-to-end properties and evolution of such
systems;

• how do we support a basic property of interoperability
across such a complex architecture;

• how do we support more demanding properties of such
systems such as meeting the end-to-end security and
dependability requirements of such systems;

• how do you support adaptation and an ability to respond
to changes in needs and/or context?

(Note that this complexity is not unique to earth
observation and management; indeed, a similar case could be
made for many other areas of real-world application e.g. in
smart cities and digital health.)

C. Complex Science
There are also intrinsic complexities associated with the

application domain that amplify the difficulties in building
appropriate systems architectures. As raised above, there has
been a significant shift in earth and environmental sciences
towards approaches that are more integrated and collaborative
and this often has gone hand in hand with more open
approaches to science (hence the focus on cloud computing as
a single, logical place to host the science). This stems from the
need to answer ‘big; scientific questions around for example,
climate change and the impacts this might have on national and
international policy and on more local issues such as catchment
management. This is most evident in the move towards natural
capital and ecosystem services [2, 3]. Natural capital is
concerned with the world’s stocks of natural assets, including
its soil, water, air, energy sources and all living entities on the
planet. The study of ecosystem services then investigates the
sustainable and integrated management of complex ecosystems
in the support of the services we need to live, hence reifying
the complexity of this management in all its facets including
environmental, social, health and economic considerations [4].

There are a number of intrinsic difficulties that stem from
the move towards an assessment of ecosystems in all their
complexities. Many of these are related to the need for, and
difficulties associated with, integration. First of all, there is a

need to integrate data from a variety of sources and support the
subsequent analysis of this data. Environmental data is
however highly heterogeneous and this is much more difficult
to deal with. In the data science domain, data is often described
using the four ‘V’s of data: volume, velocity, variety and
veracity [5]. In many areas of data science, volume and
velocity dominate, and hence there is a need to design
underlying distributed systems that scale in terms of space and
time, and this is actually relatively well-understood. In the
earth and environmental sciences, variety and veracity (cf.
Accuracy or precision) often dominate. This is not to diminish
the first two ‘V’s as there are areas where these can be very
important, e.g. in climate science where models can generate
massive data-sets but this only exacerbates the heterogeneity
that you encounter. Some observers refer to the long tail of
science whereby there are a number of very large data sets in
the environmental sciences but equally there is a long tail of
much smaller data-sets that can still be very important to the
overall process of scientific discovery.

Veracity is equally important in this area of science as data
is intrinsically linked to its source (cf. accuracy of
instrumentation, the increasing importance of citizen science
data, etc.).

The other key requirement is to support integrated
modelling, that is the combination of multiple environmental
models to solve complex real-world problems. This may
include linking models that focus on different environmental
facets to understand inter-dependencies, e.g. understanding the
impact of climate change scenarios on soils and the resultant
impacts of biodiversity [6]. In additional, individual models
may be run very large numbers of times to understand potential
uncertainties in model prediction and sensitivities to different
parameters. Integrated modelling is complicated further by the
existence of different styles of model including process models
(capturing the underlying physical or chemical processes
inherent in the system being modelled), statistical models
(derived from the data) and agent-based models (increasingly
used to capture complex behaviours in such systems).

Blair et al. [7] contains a more in depth analysis of the
challenges associated with managing complex data and its
analysis. The clear message that emerges though is that
heterogeneity dominates and that designing for variety and
veracity (effectively a dimension of heterogeneity) is much
more difficult and less well understood than designing for
volume and velocity. Equally importantly, this cannot be
separated from the design of the underlying distributed system
as they are intrinsically linked; the underlying distributed
system platforms and services must support heterogeneity in
the same way that they often successfully support scalability.

III. STATE-OF-THE-ART IN COMPLEX DISTRIBUTED SYSTEMS
This section presents an analysis of the state-of-the-art in

distributed systems, arguing that we are entering a world of
increasing complexity, partly due to the extreme level of
heterogeneity in contemporary distributed systems and
magnified by the move towards systems of systems, and partly
due to the complexity in the application domains we seek to
support. The end result is a crisis in distributed systems, and an

associated crisis in middleware as it struggles to deal with this
complexity.

A. Middleware for Complex Distributed Systems
Middleware refers to a software layer that sits between

applications/ services and the underlying physical distributed
systems architecture, that provides appropriate programming
abstractions and that masks out the heterogeneity and
complexity of the underlying physical distributed systems
infrastructure [8, 9]. As such, middleware has a crucial role to
play in modern software architecture as we move to a world
where distributed systems are ubiquitous. The earliest
middleware focused on providing suitable communications
primitives such as RPC [10, 11] or group communication [12]
but these solutions lacked abstraction. In this respect, OMG
CORBA [13] represented a major breakthrough offering a
higher level programming abstraction based on distributed
objects.

One of the key goals of middleware is to manage
heterogeneity (in terms of underlying networks, machine
architectures, operating systems and programming languages),
but very quickly middleware heterogeneity itself became a
major problem. In other words, the intended solution is now
part of the problem. This is partly due to competition in the
marketplace given the importance of middleware in the
software industry and partly due to technical innovation. The
first step towards middleware heterogeneity was when
Microsoft introduced DCOM [14] as a direct competitor to
CORBA and this competition between major industry players
has continued to this day. In terms of technical developments,
there have been two key areas of innovation:

• The search for appropriate programming abstractions.
It became clear, for example, that distributed object
technology suffered from a number of significant
shortcomings, particularly in larger-scale and more
dynamic and evolving environments [15], and this led
to consideration of component technologies as an
alternative approach, including lightweight component
technologies to support configurable distributed systems
[16, 17], and more heavyweight Enterprise platforms
combining component technology with the concepts of
containers to introduce a more managed approach to
distributed systems [18, 19]. Following on from this,
web services were introduced as an approach that is
more in line with web standards and hence better
aligned with Internet-scale distributed systems [20].

• The search for appropriate communication
abstractions. The earliest middleware technologies
were based on client-server communication in the form
of remote procedure calls or remote method invocation.
These styles of communication are still important but
they suffer from a number of drawbacks due to the tight
coupling between communicating parties, leading to
fragility in the underlying distributed systems. As such,
researchers have investigated more indirect
communication paradigms and these include message
passing, group communication, publish-subscribe

systems, message queues, distributed shared memory,
and tuple-space communication [8].

These two areas are not independent and the different
solutions can be combined in different ways to provide a rather
bewildering range of middleware options. The range of options
(and associated level of heterogeneity) becomes even broader
in systems of systems.

B. Middleware for Distributed Systems of Systems
As argued above, distributed systems are becoming even

more complex. While some researchers emphasise the
challenge of scale, as we move towards exascale distributed
systems [21, 22], the author argues that the real complexity
stems mainly from heterogeneity and the move from
distributed systems to (distributed) systems of systems.
According to Jamshidi [23], systems of systems are “large-
scale integrated systems which are heterogeneous and
independently operable on their own, but are networked
together for a common goal”. This style of architecture is
prevalent in many important areas of application including
smart cities, intelligent energy management and emergency
response systems.

The underlying systems that constitute a ‘systems of
systems’ architecture can vary enormously. One common
pattern is the bringing together of cloud computing [24] and
Internet of Things (IoT) technology [25]. Indeed these two
great pillars of innovation are highly synergistic, with the IoT
providing fine-grained and real-time streaming data for a large
number of facets, but without the capacity to store, process or
generally make sense of this data. In contrast, cloud computing
provides large and elastic storage and processing capabilities
and also the potential for higher level services to analyse and
visualise and generally make sense of the vast amounts of data
that will be generated by the Internet of Things. It is also
common to extend such systems of systems to support mobility
[26], whereby users can access information on the move from
smart phones or tablets. We now look at the state-of-the-art in
middleware for each of these areas independently and then
consider solutions for (systems of systems) integration.

• Middleware for cloud computing. Cloud computing is
arguably the most transformative development in
distributed systems with its move towards computing as
a utility, making computational resources from
(physical or virtualised) infrastructure through
platforms to software applications available as services
in the Internet [24]. There has been a corresponding
burst of innovation in middleware for cloud computing.
A number of commercial middleware solutions are
available including Amazon Web Services, Microsoft
Azure and the Google App Engine. Open source
solutions are also available including Hadoop [27] and
OpenStack [28]. There has also been a range of more
specific innovations in areas such as consistency [29],
software frameworks for computation [30], and data-
storage services [31, 32]. Again, a prevalent trend is
increasing heterogeneity with different vendors offering
different middleware solutions, each with their own
computational paradigm and set of APIs, leading to a

real danger of vendor lock-in. While technologies such
as jclouds [33] have emerged to tackle this problem,
these are limited in scope, e.g. focusing on basic
compute and data storage abstractions. Consequently,
the area of cross-cloud management is now an
important topic with researchers working on the concept
of cross-cloud brokerage [34]. Note that the author has
been heavily involved in such initiatives, organising a
series of recent workshops on the topic of cross-cloud
management (at IEEE Infocom’14 and Middleware’14)
and carrying out research on the broker concept [35].

• Middleware for the Internet of Things. The Internet of
Things is a second area of intense innovation in
distributed systems with its emphasis on extending the
scope of distributed systems to encompass not just
computers but also physical objects with embedded
sensors, actuators and computational/ communication
capability [25]. Middleware for the Internet of Things is
in its infancy, certainly when compared to the explosion
of research in cloud computing. There have though been
quite a number of projects looking at middleware for
wireless sensors networks (a key enabling technology
for the Internet of Things) [36, 37]. A significant
number of projects have examined programming
abstractions for wireless sensor networks, generally
taking a more data-oriented approach based on SQL-
like queries [38], tuple-spaces [39] or publish-subscribe
[40]. Macroprogramming, i.e. programming for the
network as a whole, is an associated interesting
development [41]. There is also a plethora of research
projects looking at underlying systems components that
contribute to middleware architectures, such as
operating system libraries [42, 43] or ad hoc routing
protocols [44]. This work is feeding into middleware for
the Internet of Things and a number of experimental
platforms [45, 46, 47, 48] have been developed. There
is generally a lack of maturity in this work, and again
we see a high-level of heterogeneity at the middleware
level (and also incidentally in the underlying operating
systems, machine architectures and programming
languages used).

• Middleware for mobile computing. Mobile computing is
concerned with providing access to distributed services
from mobile devices such as smart phones and tablets
[26]. Once again, a large number of projects have
looked at the design of suitable middleware abstractions
and techniques to encompass mobile elements.
Important developments include: i) communication
paradigms to deal with disconnection, including the use
of indirect communication technologies such as tuple-
spaces or publish-subscribe [49, 50]; ii) support for
spontaneous interaction through dynamic service
discovery [51, 52]; iii) support for location- or context-
awareness [53]; iv) associated techniques to support
adaptation to varying context [54]. Compared to the
Internet of Things, this area is more mature and many of
the techniques developed are available in commercial
products. Again though, there is a significant level of
heterogeneity introduced, most notably in the areas of

service discovery and subsequent interaction where
multiple approaches co-exist.

With the move to systems of systems [55], systems
integration is crucial. In particular, there is a pressing
requirement for middleware that spans the different systems
and manages end-to-end properties of the system [56]. In
particular, there is a need for techniques to support: i) end-to-
end interoperability; ii) end-to-end quality of service (QoS),
including key properties such as (real-time) performance,
security and dependability; iii) overall programmability of the
integrated system; iv) its subsequent management, including
dealing with changing context. Despite the importance of this
area, research is absolutely in its infancy. The tendency has
been for researchers to focus on middleware for the given
domains (cloud computing, the Internet of Things and mobile
computing) and to ignore the crucial aspects of systems
integration across these domains. It is interesting to note that
there are two communities involved in this work: a community
looking at systems of systems engineering and one looking at
distributed systems/ middleware, and it is striking that there is
little or no overlap between these communities. As an
indication, if you carry out a Google search for middleware and
“systems of systems”, you get surprisingly few meaningful
results despite its obvious importance (with a few notable
exceptions incl. the work of my own group [57] and that of
Doug Schmidt [58]). Similarly, looking at the major conference
in systems of systems, the IEEE Conference on Systems of
Systems Engineering [59], the technical programme
emphasises topics such as areas of application, modelling and
analysis methods, and control techniques, with little attention
to distributed systems or middleware topics. A number of
European projects have been launched in this area, including
COMPASS [60], DANSE [61], Road2SoS [62] and T-AREA-
SoS [63] but again distributed systems perspectives are
missing. There is clearly a need for further research on
middleware for systems of systems.

C. Overall Analysis
The overwhelming conclusion from this survey is that there

is an explosion in heterogeneity and this is true in two
dimensions: i) in the underlying network technologies,
computer architectures, operating systems and programming
languages used, and ii) in the middleware itself where there is
an explosion in styles of middleware used in terms of
programming abstractions, communication abstractions and
underlying systems principles and techniques. The author
refers to this as extreme heterogeneity and argues that this is a
major problem for distributed systems. There is also a problem
of dynamism with such systems operating in volatile
environments, having to respond to changing context.

This leads the author to the conclusion that, despite its
many achievements and breakthroughs, distributed systems is
in crisis in that there is little understanding of how to achieve
end-to-end interoperability, quality of service, programmability
or management in such complex distributed systems. This is a
crisis of complexity. Following on from this, the author also
argues that middleware is in crisis, and that this is a crisis of
identity. The traditional approaches to middleware of offering
generic, layered solutions, simply do not work in the complex

distributed systems of today: i) such solutions only really work
in the middle range in multi-scale systems, failing completely
to address the needs smaller-scale IoT technology or indeed
large-scale cloud-based environments; ii) they also fail to
address a systems of systems perspective and the need to span
multiple domains of usage; iii) they lack support for dynamism
and the ability to respond to changing context. The end result is
that developers operating in this space often by-pass
middleware and develop applications in an ad hoc manner,
creating mash-ups using a variety of different technologies, and
being exposed to and having to manage the underlying
complexity of distributed systems. This leads in turn to the
crisis of identity, whereby middleware is no longer sure of its
form or purpose, and this lack of effective solutions is a major
barrier to the emergence of the areas such as smart cities,
precision agriculture or emergency response systems.

It is clear that the solution is not just about making ‘better’
middleware. Rather, the author argues that there is a need to
fundamentally rethink the role of middleware in what we
refer to as complex distributed systems. This echoes the overall
vision of this paper to examine the problem through fresh
perspectives, that lead us in turn to novel principles and
patterns for middleware and subsequently to new styles of
platform. This paper is intended to provoke the distributed
systems community to stand back from the body of work
amassed over the last 30 years or so, and to go back to basics,
to rethink the very foundations of distributed systems and
middleware (and associated areas such as interoperability,
quality of service, programmability and management) and to
seek such fresh perspectives.

IV. FRESH PERSPECTIVES
As mentioned above, the goal of this paper is to stand back

from the plethora of work in distributed systems (including the
key area of middleware) and re-examine the area through fresh
perspectives/ new lenses. In particular, four fresh perspectives
are proposed, having been distilled following a period of deep
reflection by the author, motivated by personal experiences in
applying distributed systems in environmental science and also
by the associated perception of a crisis of middleware. These
are introduced briefly below and expanded on below:

• from design-time to run-time – the search for emergent
middleware;

• from software platform to software frameworks – meta-
structures for distributed systems;

• from generic to domain-specific – reasoning about
domains and boundaries;

• from systems-oriented to application-oriented – raising
the level of abstraction.

We look at each of these areas in more detail below.

A. Emergent Middleware
Middleware is generally considered as a technology that is

designed in advance and then deployed as a fixed entity. With
an emergent middleware approach, middleware is viewed as a
run-time entity where middleware solutions are generated on-

demand for the current context. Such an approach inevitably
involves a strong element of machine learning to determine the
most appropriate structures for different contexts.

This generative approach offers a radically new perspective
on middleware design. The advantage of an emergent
middleware approach is that it is more naturally adaptive and
able to react to change, including changes not previously seen
or observed. Initial work was carried out in this area by the
Connect project (discussed below).

B. Software Frameworks
Software frameworks emerged in the software engineering

community, offering a given behaviour but where key parts of
the implementation can be specialised or altered [64]. They
offer a balance between reusability, in that large parts of the
framework can be used as is, and customisability, in that key
parts can be specialised, e.g. through over-riding or
specialisation. They also offer an inversion of control whereby
the software framework takes responsibility for what
behaviours should be invoked for a given operation [65]. While
they have been used extensively in some fields of application,
their use in distributed systems or middleware is somewhat
limited. Bertran et al. [66] experiment with the use of software
frameworks in the design of sense/ compute/ control
applications in distributed systems. The cloud computing
platform, MapReduce, can also be seen as a limited form of
software framework allowing significant re-use around the
areas of distributed systems management, and also
customisation of application behaviour through appropriate
map() and reduce() functionality [30]. Other aspects though
remain static. In this paper, we suggest going much further
whereby the software framework concept acts as a scaffolding
or meta-structure that can be instantiated in potentially
radically different ways, achieving a sophisticated balance
between reusability and customisation.

C. Domain-Specific Solutions
The dominant approach in the middleware community has
been to seek generic platforms and interfaces that can be
applied everywhere, hence offering portability and
interoperability. It is clear though that this generic approach
no longer works given the level of heterogeneity and the
challenges of dealing with multi-scale environments. We are
therefore looking at a move from generic to domain specific
solutions that, in turn, will imply reasoning about domains and
their boundaries. The field of domain specific languages is
increasingly being used in distributed systems to capture
specific behaviour [67, 68, 69]. This can also potentially help
with the reasoning about boundaries between domains,
particularly if languages share a common meta-model to
support this reasoning. In	general, though, there is less work
on dealing with boundaries between domains. Lee et al.
introduce the concept of a TerraSwarm, describe highly
heterogeneous cyber-physical systems where systems must
deal dynamically with resources they encounter at run-time
[70]. This is though only at the vision stage. The Dionasys
project, featured in Section V below, have introduced a
generalised approach to the programming of systems of

systems, based around the abstraction of holons (with holons
meeting in real-time and having to dynamically reason about
properties such as interoperability) [71]. Dionescu et al. [72]
have also experimented with such a holonic abstraction for the
goal-oriented self-management of complex systems. Finally,
the ANA project introduces a similar concept called
compartments but this only operates at the network level [73].

D. Raising the Level of Abstraction
There has been surprisingly little research on raising the

level of abstraction in middleware. One notable exception is
the vertical CORBA Facilities, which are functionalities that
are useful to particular vertical application domains, including
manufacturing, distributed simulation and accounting.
Compared to the rest of the CORBA architecture, this though is
rather under-developed and is now quite old.

It is though becoming increasingly important to offer higher
levels of abstraction in middleware given the complexity of
both the underlying distributed systems and also the
applications and services being developed on these complex
distributed environments. This is particularly true in the
environmental science domain as discussed in Section II where
it is essential to provide more abstract interfaces whereby
scientists can focus on their science and not on the
complexities of the underlying distributed systems.

The work on domain specific languages mentioned above is
highly relevant in this context. Domain specific languages
alongside associated model-driven engineering techniques have
the capability to offer higher levels of abstraction that are more
tailored towards given areas of application. An example of
using such technologies is given in Section V.

E. Summary
In summary, while there have been some developments in

each of these areas, work is generally at an infancy and no-one
has looked at all these perspectives in tandem. Taken together,
the author argues that this offers a manifesto for a new
landscape for complex distributed systems and a new kind of
middleware designed specifically to address the complexity in
such systems.

To take this further, also implies a new style of working.
Historically, the distributed systems community has been quite
siloed in its approach, working on principles and techniques in
isolation from other disciplines. To address the challenges in
this paper, this must change. This paper promotes a more
holistic approach whereby software engineering
methodologies and systems principles are developed in tandem.
It is too often the case that methodologies, systems platforms,
and indeed programming languages are developed in isolation
from each other and this is untenable given the complexity of
contemporary distributed systems. There are some notable
positive examples in this area. The long-running SEAMS
workshop (Software Engineering for Self-Adaptive Systems)
has also helped to bring the two communities together [74].
Equally, there is a need for more cross-disciplinary initiatives
where complex distributed systems are developed alongside
their end users so that we offer solutions that meet their
increasingly sophisticated needs.

V. EXPERIMENTS IN COMPLEX DISTRIBUTED SYSTEMS
The following projects have all been selected to illustrate

the potential of the four proposed fresh perspective either
individually or in combination. All projects have included the
author and his research team, in collaboration with others.

A. Connect: An Experiment in Emergent Middleware
1) Motivation
The Connect project was a consortial project funded under

the EU Framework 7 programme, under Future and Emerging
Technologies (FET) [75, 76]. The project focused on
interoperability recognizing the increasing level of
heterogeneity in future systems and also the needs to adapt to
change. Motivations include the emergence of ubiquitous
computing and increasing use of mobile devices.

The project pioneered the concept of emergent middleware,
seeking to develop an approach to synthesizing connectors at
run-time instead of relying on static middleware to perform this
role. Particular attention was paid to ensuring the resultant
connectors also met specified security and reliability
constraints. The consortium was cross-disciplinary in that it
brought together experts in distributed systems, theory,
software synthesis, machine learning and dependability.

2) Technical Approach
The overall Connect approach is captured in Fig. 2.

	
Fig. 2. The overall Connect process, including enablers

In this approach, connectors are developed through a
comprehensive dynamic process, which is supported by
dedicated middleware functions (referred to as enablers) that:

• “Extract knowledge from, Learn about, and Reason
on the interaction behaviour of networked systems, so
as to:

• Synthesize new interaction behaviours out of the ones
exhibited by the systems, and further:

• Generate and deploy corresponding connector
implementations to actually realize interoperability in
the involved systems; and

• Analyze dependability/security of the realized system
at predeployment time and runtime.” [75]

Through this approach, Connect generates an appropriate
connector dynamically that works for that context with this
also being constantly re-evaluated over time. The intention is to
have an approach that is better able to manage change,
including the emergence of new protocols, standards and
modes of interaction.

An underlying middleware technology called Starlink [77]
was developed to support the dynamic deployment of
connectors. This middleware is based on the concept of k-
coloured automata as a concrete model representing the output
of the synthesis project, which is the mediation solution
designed to overcome the heterogeneity in the networked
system. The underlying architecture of Starlink is as shown in
Fig. 3.

	

Fig. 3. The Starlink middleware technology

Connect was evaluated through two case studies, one on
systems of systems for forest fire management, and another
supporting mobile, collaborative working where heterogeneous
mobile platforms interact with an increasingly diverse range of
applications and services, including cloud services. Further
details on Connect can be found on the project webpage:
https://www.connect-forever.eu/.

3) Lessons Learned
Connect is important as it pioneered the concept of

emergent middleware in the context of interoperability. The
project also provided real insights into the underlying
technology (enablers) that are required to support an emergent
middleware approach, including crucial support for learning
and synthesis, alongside a target environment for deployment.
The case studies also demonstrated that the approach could be
effective in dealing with important problem areas, notably
related to extreme heterogeneity. Connect was a long-term
research project and clearly significant research problems
remain with further work needed in particular in the key
enabling technologies including learning and synthesis. It
would also be interesting going forward to look at broader
areas of distributed systems and also application domains to
provide more experience of using this style of emergent
middleware in different settings.

B. Emergent Software Systems: The Role of Self-adaptation
1) Motivation
Emergent software systems is a recently completed PhD

project by Roberto Rodrigues at Lancaster University. In this
work, Emergent Software Systems are defined as “systems
built from small and reusable units of software behaviour, and
are capable of self-compose and self-optimise as a result of the
characteristics of its operating environment” [78]. The

realisation of the concept relies on the brining together of
component technology with machine learning techniques. The
key motivation for the work is the sheer complexity of
contemporary software systems that typically consist of
millions of lines of code and operate over complex and
potentially highly distributed infrastructures that are also prone
to change. The work is therefore closely related to the Connect
project but looking more generally at discovery of optimal
software architecture at run-time without human intervention.

2) Technical Approach
The implementation work is carried out using Dana, a

multi-purpose programming language developed at Lancaster
featuring a fine-grained component model and offering run-
time support for component configuration and re-configuration
[79].

The framework to support Emergent Software Systems then
consists of two parts: a local framework supporting the concept
on a single machine instance, followed by an extension to
allow this to extend to a distributed setting.

The local framework consists of three key modules, namely
Perception, Assembly and Learning (PAL), with the overall
approach summarized in Fig. 4 below.

	
Fig. 4. The PAL Architecture (Perception, Assembly and Learning)

The Assembly module searches for components in an
underlying repository of possible component implementations
of different functions, creates an in-memory representation of
all available architectural compositions the system can be
assembled into, and supports composition changes at runtime.
The Perception module generates and adds proxy components
to the system's architectures to monitor the system health status
and the operating environment. Finally, the Learning module
leads the overall autonomous design process, based on a
reinforcement learning algorithm. This overall approach is
referred to in the thesis as design by composition. The
approach is then extended to operate in a distributed setting by
the introduction of a hierarchical coordination strategy. Further
details of this can be found in [78, 80].

The approach has been evaluated through a substantive case
study, the development of an emergent web server, that is a
web server that can autonomously adapt its own software
architecture acceding to current operational conditions. The	
results	 from this case study are strongly encouraging,
demonstrating that the PAL architecture is capable of
successfully configuring and reconfiguring the web server
under changing operational environments.	

3) Lessons Learned
This project takes the concept of emergent middleware

further. Whereas Connect focused on the specific function of
connectors to provide interoperability, the emergent software
systems project takes this a stage further by seeing to assembly
arbitrary software architectures for arbitrary purposes. The
successful implementation of an emergent web server has
shown that the approach is feasible and that it can work in both
local and distributed settings. This is promising research and
further work is now required to prove and refine the concept in
other areas of application.

C. Dionasys: Programming for Systems of Systems
1) Motivation
The DIONASYS project is a joint initiative of four research

institutions (Universities of Neuchâtel, Bordeaux, Lancaster
and Technical University of Cluj-Napoca) in four countries,
funded by the CHIST-ERA ERA-NET. The goal of
DIONASYS is to make the programming of complex and
heterogeneous Systems-of-Systems simpler, more
straightforward by allowing a higher level of abstraction and
allowing advanced features such as automatic adaptation,
automatic interoperation, and support of programmable
networks for these tasks. The project started in January 2015.

2) Technical Approach
The research carried out in Dionasys is wide-ranging,

covering a number of different aspects related to systems-of-
systems and full details can be found on the website:
http://www.dionasys.eu/. Here, we focus on the core approach
to programming systems of systems, namely the use of a
holons abstraction to offer a systematic way of composing
systems of systems.

Our first principle is to model a given distributed system as
a unitary first-class programmatic entity that we call a holon,
that can be specified, manipulated, and reasoned about in a
program; and then to provide programmatic concepts that
enable a developer to construct systems of systems through
programmatic holon composition. This composition process is
intended to be very simple and straightforward, requiring only
a few program lines or simple graphical tools. An important
aspect of holons is that it allows us to abstract away from the
node-level detail and focus on the behaviour of a given
system/subsystem and use this as the basis of reasoning when it
interacts with other holons. This is therefore a direct realisation
of what was discussed in Section IV, in terms of reasoning
about given domains and their boundaries, and how they then
interact with other domains. As concrete examples, holons can
be used to specify how different mobile ad-hoc networks
(MANETs) should interact if they meet dynamically. Other
examples can be found in Blair et al. [81].

In more detail, a holon is recursive, hierarchical
composition of other systems or holons, with holons at the
level below referred to as sub-holons The hierarchy bottoms
out with leaf holons representing the smallest possible systems
in our model. A given holon also has an associated service, that
is a specification of the value-added functionality that a holon
offers over and above its sub-holons. Holons are subject to
both vertical composition and horizontal composition allowing

the construction of arbitrarily complex distributed systems of
systems.

Blair et al takes this concept further by presenting a systems
architecture for the specification, implementation, management
and deployment of systems of systems using holons, with this
architecture showing in Fig. 5.

	
Fig. 5. Supporting holons

3) Lessons Learned
The research in the Dionasys project has shown that is

increasingly important to deal with level of complexity of
contemporary distributed systems structures and that it is
becoming increasingly imperative to provide architectures and
approaches that allows us to reason about such systems as
systems of systems, abstracting away from detail and also
allowing such systems to reason about how they may
interoperate if they encounter each other dynamically. Holons
represent one potential abstraction that serves this purpose. In
comparison to other perspectives introduced in this paper, this
is perhaps the most demanding and immature and further
research is required to gain experiences of reasoning over
complex systems of systems.

D. Models in the Cloud: Raising the Level of Abstraction
1) Motivation
The ‘models in the cloud’ project is a 3-year EPSRC-

funded initiative involving computer scientists and
environmental scientists at Lancaster University. The central
hypothesis underlying the research is that a combination of
model-driven engineering and software frameworks will enable
a paradigm shift in terms of the flexible and tailored support
offered by cloud computing for given application domains,
including the key area of environmental modelling.

Environmental modelling is a large and diverse research
field, spanning many areas of environmental management (e.g.
weather or climate prediction, flood prediction) and at different
scales (e.g. global, national and local). For a given area, there
are many models with different assumptions, level of
parameterisation, modelling approach and complexity. Some
models run on individual workstations while others execute on
dedicated supercomputers. In addition, model simulations are
often combined as ensembles: i) through running the same
model multiple times while varying the starting point or
assumptions; or ii) through running multiple (distinct) models
with different parameters and assumptions but which predict

the same output variables. Additionally, different models can
be combined in predictive cascades (e.g. cascading climate and
hydrology models to project future flooding).

Moving environmental models to the cloud has the
potential to revolutionise Environmental Science through
supporting a more open, collaborative and integrative
approach. This area, however, is in its infancy. In order to
achieve out vision of ‘models in the cloud’, it is necessary to
significantly raise the abstraction of the underlying cloud
services, to manage the distributed computation and to allow
scientists to operate in their domain and express their domain
specific knowledge, effectively allowing scientists to do their
science rather than spending too much time dealing with low
level details of the distributed infrastructure.

2) Technical Approach
The overall approach is as shown in Fig. 6.

	
Fig. 6. Models in the cloud – overall approach

This highlights the central role of model driven engineering
in supporting the execution of environmental model runs. The
initial scientific objectives and experiment are described
through a domain specific language. From this, an appropriate
model execution setup is generated and passed on to the cloud
for execution making use of appropriate software frameworks
in the cloud (cf. Platform as a Service).

More specifically, two domain specific languages are used:

• DSL for scientific experiment. This DSL captures the
scientific intend in terms of the environmental models
to be used and associated assumptions. This may be a
single model run or could involve arbitrarily complex
configurations of models including ensemble models
and/or predictive cascades. The experiment may also
involve additional elements to reason about uncertainty.
The design of this DSL is informed by a series of in-
depth interviews with environmental modellers [82].

• DSL for cloud deployment. This DSL captures details
of how the environmental models should be deployed
into the cloud including consideration of mapping to
containers and possibly micro-services and also the
style and number of virtual machines required. This
may also include additional elements to manage the
execution, including exploiting the natural elasticity in
the cloud.

The first case study, which is nearing completion, provides
support for the cloud deployment of the Weather Research and
Forecasting model (WRF), a complex atmospheric numerical
weather prediction system. This was initially deployed on
Microsoft Azure but we are now utilising the container
technology, Docker, to provide platform independence.

Current work is looking at the role of machine learning to
further raise the level of abstraction of the DSLs. For cloud
deployment, this would allow the scientific team to express
their desired performance and indeed cost vs. performance
trade-offs in terms of goals allowing underlying machine
learning modules to determine how to achieve these multi-
criteria goals (with this building on previous work by Samreen
et al. [83]). For scientific experimentation, machine learning
also potentially has a role in determining how a model should
be set up in terms of parameterisation, configuration and
assumptions to best match the characteristics of a given place
of study, cf. Beven’s Models of Everywhere philosophy
whereby models are trained automatically to best fit a given
place or situation of use. Future research will involve
additional case studies featuring different environmental
models operating at different scales, and also examining in
more depth ensemble modelling and model cascades.

3) Lessons Learned
This work is a relatively early stage but the results so far

have been strongly encouraging. The research has strongly
reinforced our view that we need to raise the level of
abstraction of distributed systems technologies and it is
particularly striking how long a scientific team will spend on
getting environmental models to execute correctly and
efficiently on distributed infrastructure. Automating this
deployment and execution is therefore a huge step forward for
the environmental modelling community, and DSLs have the
potential to go significantly further in capturing scientific
processes in a more sophisticated manner with this also
supporting a step towards reproducibility in science.

E. Overall Reflections
The intention of the four perspectives in this paper is to

stimulate thinking about new principles and patterns for
distributed systems and subsequently to new styles of
middleware platform. The four projects described above
provide more concrete glimpses about what this may entail.
They all apply one or two of the perspectives (see Fig. 7) but
interestingly no one project embraces all four perspectives.

Perspective Connect Emergent
Software
Systems

Dionasys Models in
the cloud

Emergent
middleware

✔

✔

Software
frameworks

 ✔

Domain-specific
solutions

 ✔

Raising the level
of abstraction

 ✔

Fig. 7. Projects vs. perspectives

This opens the door for researchers to experiment further
with the four perspectives and to see what might emerge.
Interestingly, all four projects have embraced cross-disciplinary
thinking as a fundamental part of their research design and this
has contributed to the level of innovation in the projects.

VI. CONCLUSIONS
This paper has examined the increasing complexity in

distributed systems both in terms of the underlying distributed
systems architectures and their areas of application. It has been
argued that, while distributed systems have responded
successfully to demands over scalability, the extreme level of
heterogeneity is proving to be much more challenging. There is
also a pressing need to address the fact that we are dealing with
distributed systems of systems. This paper argues that the field
of distributed systems is at a watershed and that new
approaches are urgently needed. The main contribution of the
paper is four fresh perspectives on distributed systems,
emphasizing: i) the importance of run-time techniques and
emergent middleware; ii) the role of software frameworks as
meta-strictures; iii) modeling systems as domains and
reasoning about boundaries; iv) raising the level of abstraction
in distributed systems. The paper concluded with a set of four
projects that pick up on one or more of the perspectives,
offering insights into what this might mean for platform design.
Clearly, this work is at an early stage and the author concludes
the paper by calling out to others in the community to
collaborate and seek new insights and principles of distributed
systems going forward that in turn will lead to a new
generation of middleware technologies.

ACKNOWLEDGMENTS
The work presented in this paper is partially supported by

the following three grants: DT/LWEC Senior Fellowship
(awarded to Blair) in the Role of Digital Technology in
Understanding, Mitigating and Adapting to Environmental
Change, EPSRC: EP/P002285/1; Models in the Cloud:
Generative Software Frameworks to Support the Execution of
Environmental Models in the Cloud, EPSRC: EP/N027736/1;
Declarative and Interoperable Overlay Networks, Applications
to Systems of Systems (the Dionasys Project),
EPSRC/Chistera: EP/M015734/1; Emergent Connectors for
Eternal Software intensive Networked Systems (the Connect
Project), EU FP7/FET Proactive grant 231167.

The author would like to thank colleagues in the Ensemble
and MetaLab research initiatives at Lancaster for many
stimulating discussions and insights on the topic of this paper.
He would also like to thank the many people associated with
the projects featured in Section V (Connect, Dionasys, Models
in the Cloud, and the PhD work of Roberto Rodrigues that have
all contributed hugely to the argumentation in this paper. And
finally, I would like to thank Maarten van Steen for
encouraging me to put together this “vision” paper. It has been
a very stimulating and enjoyable experience, drawing on
various strands of my recent work. We also thank Microsoft for
the Azure for Research award that supported the
experimentation with environmental models in the cloud.

REFERENCES
[1] The GEOSS Project, http://www.earthobservations.org/geoss.php.
[2] Helm, D. (2015). Natural Capital - Valuing Our Planet. Yale University

Press.
[3] Potschin, M., Haines-Young, R., Fish, R., Kerry Turner, R., Routledge

Handbook of Ecosystem Services. Routledge (2016).
[4] Muller, F, de Groot, R, Willemen, L. (2010). Ecosystem services at the

landscape scale: the need for integrative approaches. Landscape Online.
23, 1-11. DOI:10.3097/LO.201023

[5] Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel,
J.M., Ramakrishnan, R., Shahabi, C. (2014). Big data and its technical
challenges. Commun. ACM. 57:7, 86-94. DOI:
https://doi.org/10.1145/2611567.

[6] Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P.,
Whelan, G., Geller, G., Quinn, N., Blind, M., Peckham, S., Reaney, S.,
Gaber, N., Kennedy, R., Hughes, A. (2013). Integrated environmental
modeling: a vision and roadmap for the future, Environmental Modelling
& Software. 39, 3-23. DOI: 10.1016/j.envsoft.2012.09.006

[7] Blair, G.S., Henrys, P., Leeson, A., Watkins, J., Eastoe, E., Jarvis, S.,
Young, P. (2017). Data science of the natural environment: a research
roadmap. Unpublished.

[8] Coulouris, G., Dollimore, J., Kindberg, T., Blair, G. (2011). Distributed
Systems: Concepts and Design, 5th Edition, Addison-Wesley.

[9] Tanenbaun, A., Van Steen, M. (2007). Distributed Systems: Principles
and Paradigms, 2nd Edition, Prentice-Hall.

[10] Birrell, A.D, Nelson, B.J. (1984). Implementing remote procedure calls.
ACM Transactions on Computer Systems (ACM TOCS), 2(1), pp. 39-
59.

[11] The Open Group, Distributed Computing Environment (DCE):
http://www.opengroup.org/dce/

[12] Birman, K.P. (1993). The process group approach to reliable distributed
computing. Comm. ACM, 36(12), pp. 36–53.

[13] Vinoski, S. (1997). CORBA: integrating diverse applications within
distributed heterogeneous environments. Communications Magazine,
IEEE, 35(2), 46-55.

[14] Sessions, R. (1997). COM and DCOM: Microsoft's vision for distributed
objects. Wiley.

[15] Szyperski, C. (2002). Component software: beyond object-oriented
programming. Pearson.

[16] Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama,
J., Sivaharan, T. (2008). A generic component model for building
systems software. ACM Transactions on Computer Systems (ACM
TOCS), 26(1), pp. 1-42.

[17] Blair, G., Coupaye, T., Stefani, J. B. (2009). Component-based
architecture: the Fractal initiative. Annals of
Telecommunications, 64(1), 1-4.

[18] Emmerich, W., Kaveh, N. (2002). Component technologies: Java beans,
COM, CORBA, RMI, EJB and the CORBA component model.
In Proceedings of the 24th International Conference on Software
Engineering (ICSE’02), pp. 691-692).

[19] Fleury, M., Reverbel, F. (2003). The JBoss extensible server. In
Proceedings of the ACM/IFIP/USENIX International Conference on
Middleware, Springer-Verlag, pp. 344-373).

[20] Alonso, G., Casati, F., Kuno, H., Machiraju, V. (2004). Web services,
Springer.

[21] Dongara, J., et al. (2011).The International Exascale Software Project
Roadmap, http://www.exascale.org/mediawiki/images/2/20/IESP-
roadmap.pdf

[22] Northrup, L. et al. (2009). Ultra-Large-Scale Systems The Software
Challenge of the Future. Software Engineering Institute, Carnegie
Mellon. 134 pages.

[23] Jamshidi, M. (Ed.). (2008). Systems of systems engineering: principles
and applications. CRC.

[24] Zhang, Q., Cheng, L., Boutaba, R. (2010). Cloud computing: state-of-
the-art and research challenges. Journal of internet services and
applications, 1(1), 7-18.

[25] Atzori, L., Iera, A., Morabito, G. (2010). The internet of things: A
survey. Computer networks, 54(15), pp. 2787-2805.

[26] Forman, G. H., Zahorjan, J. (1994). The challenges of mobile
computing. Computer, 27(4), pp. 38-47.

[27] Apache Hadoop: https://hadoop.apache.org/
[28] OpenStack: https://www.openstack.org/
[29] Chandra, T. D., Griesemer, R., Redstone, J. (2007). Paxos made live: an

engineering perspective. In Proceedings of the twenty-sixth annual ACM
symposium on principles of distributed computing (pp. 398-407).

[30] Dean, J. Ghemawat, S. (2010). MapReduce: a flexible data processing
tool. Comm. ACM, 53(1), pp. 72-77.

[31] DeCandia, G., et al. (2007). Dynamo: Amazon's highly available key-
value store. In ACM SIGOPS Operating Systems Review, 41(6), pp.
205-220).

[32] Cassandra: http://cassandra.apache.org.
[33] Petcu, D. (2011). Portability and interoperability between clouds:

challenges and case study. In Towards a Service-Based Internet, pp. 62-
74, Springer.

[34] Petcu, D., Di Nitto, E., Ardagna, D., Solberg, A., Casale, G. (2014).
Towards multi-clouds engineering. In IEEE Conf. on Computer
Communications (INFOCOM) Workshop), pp. 1-6.

[35] Samreen, F., Blair, G. S., Rowe, M. (2014). Adaptive decision making in
multi-cloud management. In Proceedings of the 2nd International
Workshop on CrossCloud Systems.

[36] Mottola, L., Picco, G. P. (2011). Programming wireless sensor networks:
fundamental concepts and state of the art. ACM Computing Surveys,
43(3), 19pp.

[37] Mottola, L., Picco, G.P. (2012). Middleware for wireless sensor
networks: an outlook. Journal of Internet Services and Applications,
3(1), pp. 31-39.

[38] Madden, S. R., Franklin, M. J., Hellerstein, J. M., Hong, W. (2005).
TinyDB: an acquisitional query processing system for sensor
networks. ACM Trans. on database systems, 30(1), pp. 122-173.

[39] Costa, P., Mottola, L., Murphy, A. L., Picco, G. P. (2006). TeenyLIME:
transiently shared tuple space middleware for wireless sensor networks.
In Proceedings of the international workshop on Middleware for sensor
networks, pp. 43-48. ACM.

[40] Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz,
C., Kelner, J. (2006). Mires: a publish/subscribe middleware for sensor
networks. Personal and Ubiquitous Computing, 10(1), pp. 37-44.

[41] Gummadi, R., Gnawali, O., Govindan, R. (2005). Macro-programming
wireless sensor networks using Kairos. In Distributed Computing in
Sensor Systems, pp. 126-140, Springer.

[42] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K. (2000).
System architecture directions for networked sensors. Proc. of the 9th
Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), pp. 94-104.

[43] Dunkels, A., Gronvall, B., Voigt, T. (2004). Contiki-a lightweight and
flexible operating system for tiny networked sensors. In Proc. 29th
Annual IEEE International Conference on Local Computer Networks,
pp. 455-462.

[44] Akkaya, K., Younis, M. (2005). A survey on routing protocols for
wireless sensor networks. Ad hoc networks, 3(3), pp. 325-349.

[45] Teixeira, T., Hachem, S., Issarny, V., Georgantas, N. (2011). Service
oriented middleware for the internet of things: a perspective. Towards a
Service-Based Internet, pp. 220-229, Springer.

[46] Hughes, D., Thoelen, K., Horré, W., Matthys, N., Cid, J. D., Michiels,
S., Joosen, W. (2009). LooCI: a loosely-coupled component
infrastructure for networked embedded systems. In Proceedings of the
7th ACM International Conference on Advances in Mobile Computing
and Multimedia, pp. 195-203.

[47] Eisenhauer, M., Rosengren, P., Antolin, P. (2010). Hydra: A
development platform for integrating wireless devices and sensors into
ambient intelligence systems. In The Internet of Things, pp. 367-373.
Springer.

[48] Song, Z., Cárdenas, A.A., Masuoka, R. (2010). Semantic middleware for
the Internet of Things. In IoT.

[49] Kistler, J. J., Satyanarayanan, M. (1992). Disconnected operation in the
Coda file system. ACM Transactions on Computer Systems
(TOCS), 10(1), pp. 3-25.

[50] Fiege, L., Gärtner, F. C., Kasten, O., Zeidler, A. (2003). Supporting
mobility in content-based publish/subscribe middleware. In Proceedings
of the ACM/IFIP/USENIX International Conference on Middleware, pp.
103-122. Springer-Verlag.

[51] Bromberg, Y. D., Issarny, V. (2005). INDISS: Interoperable discovery
system for networked services. In Proceedings of the
ACM/IFIP/USENIX 2005 international Conference on Middleware, pp.
164-183. Springer-Verlag.

[52] Flores, C., Grace, P., Blair, G. S. (2011). Sedim: A middleware
framework for interoperable service discovery in heterogeneous
networks. ACM Trans. Autonomous and Adaptive Systems, 6(1).

[53] Capra, L., Emmerich, W., Mascolo, C. (2003). Carisma: Context-aware
reflective middleware system for mobile applications. IEEE Trans.
Software Engineering, 29(10), pp. 929-945.

[54] Grace, P., Blair, G. S., Samuel, S. (2005). A reflective framework for
discovery and interaction in heterogeneous mobile environments. ACM
Mobile Computing and Communications Review, 9(1), pp. 2-14.

[55] Luzeaux, D. and Ruault, J.-R. (eds) (2013). Systems of Systems, John
Wiley & Sons.

[56] Saltzer, J. H., Reed, D. P., Clark, D. D. (1984). End-to-end arguments in
system design. ACM Transactions on Computer Systems (TOCS), 2(4),
pp. 277-288.

[57] Grace, P., Bromberg, Y. D., Réveillere, L., Blair, G. (2012). Overstar:
An open approach to end-to-end middleware services in systems of
systems. In Proceedings of the ACM/IFIP/USENIX Middleware
Conference, pp. 229-248, Springer.

[58] Schmidt, D. C., Gokhale, A. S., Schantz, R. E., Loyall, J. P. (2004).
Middleware R&D challenges for distributed real-time and embedded
systems. SIGBED Review, 1(1), pp. 6-12.

[59] IEEE Systems of Systems Engineering Conference:
http://sosengineering.org/

[60] The COMPASS Project: http://www.compass-research.eu/
[61] The DANSE Project: http://www.danse-ip.eu/home/
[62] The Road2Sos Project: http://road2sos-project.eu/
[63] The T-Area-SoS Project: https://www.tareasos.eu/
[64] Johnson, R.E. (1997). Frameworks = (components +

patterns). CACM 40(10), pp. 39-42.
[65] Fayad, M., Schmidt, D.C. (1997) Object-oriented application

frameworks. Commun. ACM, 40(10), pp. 32-38.
[66] Bertran, B., Bruneau, J., Cassou, D., Loriant, N., Balland, E., Consel, C.

(2014). DiaSuite: A tool suite to develop sense/compute/control
applications. Science of Computer Programming, 79, pp. 39-51.

[67] Brandtzæg, E., Mohagheghi, P., Mosser, S. (2012). Towards a domain-
specific language to deploy applications in the clouds. In Proc. Third
International Conference on Cloud Computing, GRIDs, and
Virtualization, pp. 213-218.

[68] Bissyandé, T. F., Réveillère, L., Lawall, J. L., Bromberg, Y. D., Muller,
G. (2015). Implementing an embedded compiler using program

transformation rules. Software: Practice and Experience, 45(2), 177-
196.

[69] Burgy, L., Réveillère, L., Lawall, J., Muller, G. (2011). Zebu: A
language-based approach for network protocol message processing.
IEEE Trans. Software Engineering, 37(4), 575-591.

[70] Lee, E.A., et al. (2014). The swarm at the edge of the cloud. Design &
Test, IEEE, 31(3), pp. 1-13.

[71] Coulson, G., Blair, G.S., Elkhatib, Y., Mauthe,. A. (2015). The design of
a generalised approach to programming systems of systems. To appear:
Proc. IEEE WoWMoM.

[72] Diaconescu, A., Frey, S., Müller-Schloer, C., Pitt, J., Tomforde, S.
(2016). Goal-oriented holonics for complex system (self-)Integration:
concepts and case studies. In: Proc. IEEE 10th Int. Conference on Self-
Adaptive and Self-Organizing Systems (SASO’16), 100-109.
10.1109/SASO.2016.16.

[73] Schmid, S., Schuetz, S., Zimmermann, K., Nunzi, G., Brunner, M.
(2007) Autonomic and decentralized management of wireless access
networks. IEEE Transactions on Network and Service Management,
4(2), pp. 96-106.

[74] SEAMS Workshop Series: https://www.hpi.uni-
potsdam.de/giese/public/selfadapt/seams/

[75] Grousset, E., Issarny, V., Bennaceur, A., Bertolino, A., Mulas, D., et al.
(2012) Project Final Report Final Publishable Summary Report.
Available from: https://hal.inria.fr/hal-00805639.

[76] Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V.,
Nundloll, V., Paolucci. M., (2011). The role of ontologies in emergent
middleware: supporting interoperability in complex distributed systems.
In Proceedings of the 12th International Middleware
Conference (Middleware '11). International Federation for Information
Processing, Laxenburg, Austria, Austria, 400-419.

[77] Bromberg, Y-D, Grace, P., Réveillère, L. (2011.) Starlink: runtime
interoperability between heterogeneous middleware protocols. The 31st
International Conference on Distributed Computing Systems (ICDCS
2011), Jun 2011, Minneapolis, United States. 2011.

[78] Rodrigues, R. (2018). Emergent software ssytems. PhD theses,
Lancaster University, UK, unpublished.

[79] The Dana Programming Language, http://www.projectdana.com/.
[80] Rodrigues, R., Porter, B. (2017). Defining emergent software using

continuous self-assembly, perception, and Learning. ACM Trans. Auton.
Adapt. Syst. 12, 3, Article 16 (September 2017), 25 pages. DOI:
https://doi.org/10.1145/3092691.

[81] Blair, G., Bromberg, Y-D., Coulson, G., Elkhatib, Y., Réveillère, L.,
Ribeiro, H.BEtienne Rivière,E., Taïani, F. (2015). Holons: towards a
systematic approach to composing systems of systems, In Proceedings
of the 14th International Workshop on Adaptive and Reflective
Middleware (ARM 2015).

[82] Simm, W., Samreen, F., Ferrario, M.A., Bassett, R., Young, P., Whittle,
J., Blair, G.S. (2018). SE in ES: Opportunities for Software Engineering
and Cloud Computing in Environmental Science, Unpublished.

[83] Samreen, F., Elkhatib, Y., Rowe, M., Blair, G.S. (2016). Daleel:
Simplifying Cloud Instance Selection Using Machine Learning. In Proc.
IEEE/IFIP Symposium on Network Operations and Magamenet
(NOMS.16).

