
Adaptive Deep Learning Model Selection on
Embedded Systems

ABSTRACT
The recent ground-breaking advances in deep learning
networks (DNNs) make them attractive for embedded
systems. However, it can take a long time for DNNs to make
an inference on resource-limited embedded devices.
Offloading the computation into the cloud is often infeasible
due to privacy concerns, high latency, or the lack of
connectivity. As such, there is a critical need to find a way
to effectively execute the DNN models locally on the devices.
This paper presents an adaptive scheme to determine

which DNN model to use for a given input, by considering
the desired accuracy and inference time. Our approach
employs machine learning to develop a predictive model to
quickly select a pre-trained DNN to use for a given input and
the optimization constraint. We achieve this by first training
off-line a predictive model, and then use the learnt model to
select a DNN model to use for new, unseen inputs. We apply
our approach to the image classification task and evaluate it
on a Jetson TX2 embedded deep learning platform using the
ImageNet ILSVRC 2012 validation dataset. We consider a
range of influential DNN models. Experimental results show
that our approach achieves a 7.52% improvement in
inference accuracy, and a 1.8x reduction in inference time
over the most-capable, single DNN model.

CCS CONCEPTS
• Computer systems organization → Embedded
software; • Computing methodologies → Parallel
computing methodologies;

ACM Reference Format:
. 2018. Adaptive Deep Learning Model Selection on Embedded
Systems. In Proceedings of (LCTES ’18). ACM, New York, NY, USA,
12 pages. https://doi.org/10.475/123_4

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LCTES ’18, June 2018, Pennsylvania, USA
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

1 INTRODUCTION
Recent advances in deep learning have brought a steep
change in the abilities of machines in solving complex
problems like object recognition [8, 17], facial
recognition [34, 44], speech processing [10], and machine
translation [2]. Although many of these tasks are important
on mobile and embedded devices, especially for sensing and
mission critical applications such as health care and video
surveillance, existing deep learning solutions often require a
large amount of computational resources to run. Running
these models on embedded devices can lead to long runtime
and the consumption of abundant amounts of resources,
including CPU time, memory, and power, even for simple
tasks [5]. Without a solution, the hoped-for advances on
embedded sensing will not arrive.
A common approach for accelerating DNN models on

embedded devices is to compress the model to reduce its
resource and computational requirements [11, 14, 15, 19],
but this comes at the cost of a loss in precision. Other
approaches involve offloading some, or all, computation to a
cloud server [25, 46]. This, however, is not always possible
due to constraints on privacy, when sending sensitive data
over the network is prohibitive, and latency, where a fast,
reliable network connection is not always guaranteed.

This paper seeks to offer an alternative to enable efficient
deep inference1 on embedded devices. Our goal is to design
an adaptive scheme to determine, at runtime, which of the
available DNN models is the best fit for the input and the
precision requirement. This is motivated by the observation
that the optimum model2 for inference depends on the input
data and the precision requirement. For example, if the
input image is taken under good lighting conditions and has
a simple background, a simple but fast model would be
sufficient for identifying the objects in the image –
otherwise, a more sophisticated but slower model will have
to be employed; in a similar vein, if we want to detect
certain objects with a high confidence, an advanced model
should be used – otherwise, a simple model would be good
enough. Given that DNN models are becoming increasingly
diverse – together with the evolving application workload
and user requirements, the right strategy for model

1Inference in this work means applying a pre-trained model on an input to
obtain the corresponding output. This is different from statistical inference.
2In this work, the optimum model is the one that gives the correct output
with the fastest inference time.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

LCTES ’18, June 2018, Pennsylvania, USA

M o b i l e n e t R e s N e t _ v 1 _ 5 0 I n c e p t i o n _ v 2 R e s N e t _ v 2 _ 1 5 20 . 0
0 . 5
1 . 0
1 . 5
2 . 0

+ *+
*

+ *
+ B e s t t o p - 5 s c o r e m o d e l

Inf
ere

nc
e T

im
e (

s) I m a g e 1 I m a g e 2 I m a g e 3
B e s t t o p - 1 s c o r e m o d e l*

(a) Image 1 (b) Image 2 (c) Image 3 (d) Inference time

Figure 1: The inference time (d) of four CNN-based image recognition models when processing images (a) - (c).
The target object is highlighted on each image. This example (combined with Table 1) shows that the best model
to use (i.e. the fastest model that gives the accurate output) depends on the success criterion and the input.

selection is likely to change over time. This ever-evolving
nature makes automatic heuristic design highly attractive
because the heuristic can be easily updated to adapt to the
changing application context.
This paper presents a novel runtime approach for DNN

model selection on embedded devices, aiming to minimize
the inference time while meeting the user requirement. We
achieve this by employing machine learning to
automatically construct predictors to select at runtime the
optimum model to use. Our predictor is first trained off-line.
Then, using a set of automatically tuned features of the DNN
model input, the predictor determines the optimum DNN
model for a new, unseen input, by taking into consideration
the precision constraint and the characteristics of the input.
We show that our approach can automatically derive
high-quality heuristics for different precision requirements.
The learned strategy can effectively leverage the prediction
capability and runtime overhead of candidate DNN models,
leading to an overall better accuracy when compared with
the most capable DNN model, but with significantly less
runtime overhead. Using our approach, one can also first
apply model compression techniques to generate DNN
models of different capabilities and inference time, and then
choose a model to use at runtime. This is a new way for
optimizing deep inference on embedded devices.
We apply our approach to the image classification

domain, an area where deep learning has made impressive
breakthroughs by using high-performance systems and
where a rich set of pre-trained models are available. We
evaluate our approach on the NVIDIA Jetson TX2
embedded deep learning platform and consider a wide
range of influential DNN models. Our experiments are
performed using the 50K images from the ImageNet ILSVRC
2012 validation dataset. To show the automatic portability
of our approach across precision requirements, we have
evaluated it on two different evaluation criteria used by the
ImageNet contest. Our approach is able to correctly choose
the optimum model to use for 95.6% of the test cases, and
never picks a model that would give an incorrect inference

Table 1: List of models that give the correct prediction
per image under the top-5 and the top-1 scores.

top-5 score top-1 score

Image 1 MobileNet_v1_025,
ResNet_v1_50, Inception_v2,
ResNet_v2_152

MobileNet_v1_025,
ResNet_v1_50, Inception_v2,
ResNet_v2_152

Image 2 Inception_v2, ResNet_v1_50,
ResNet_v2_152

Inception_v2,
ResNet_v2_152

Image 3 ResNet_v1_50,
ResNet_v2_152

ResNet_v2_152

output. Overall, it improves the inference accuracy by 7.52%
over the most-capable, single model but with 1.8x less
inference time.

This paper makes the following contributions:
• We present a novel machine learning based approach
to automatically learn how to select DNN models based
on the input and precision requirement (Section 3);

• Our work is the first to leverage multiple DNN models
to improve the prediction accuracy and reduce
inference time on embedded systems (Section 5). Our
automatic approach allows developers to easily
re-target the approach for new DNN models and user
requirements;

• Our system has little training overhead as it does not
require any modification to pre-trained DNN models.

2 MOTIVATION AND OVERVIEW
2.1 Motivation
As a motivating example, consider performing object
recognition on a NVIDIA Jetson TX2 platform.
Setup. In this experiment, we compare the performance of
three influential Convolutional Neural Network (CNN)
architectures: Inception [23], ResNet [18], and
MobileNet [19]3. Specifically, we used the following

3 Each model architecture follows its own naming convention.
MobileNet_vi_j , where i is the version number, and j is a width
multiplier out of 100, with 100 being the full uncompressed model.
ResNet_vi_j , where i is the version number, and j is the number of layers
in the model. Inception_vi , where i is the version number.

Adaptive Deep Learning Model Selection on Embedded Systems LCTES ’18, June 2018, Pennsylvania, USA

models: MobileNet_v1_025, the MobileNet architecture
with a width multiplier of 0.25; ResNet_v1_50, the first
version of ResNet with 50 layers; Inception_v2, the
second version of Inception; and ResNet_v2_152, the
second version of ResNet with 152 layers. All these models
are built upon TensorFlow [1] and have been pre-trained by
independent researchers using the ImageNet ILSVRC 2012
training dataset [39]. We use the GPU for inference.
Evaluation Criteria. Each model takes an image as input
and returns a list of label confidence values as output. Each
value indicates the confidence that a particular object is in
the image. The resulting list of object values are sorted in
descending order regarding their prediction confidence, so
that the label with the highest confidence appears at the
top of the list. In this example, the accuracy of a model is
evaluated using the top-1 and the top-5 scores defined by
the ImageNet Challenge. Specifically, for the top-1 score, we
check if the top output label matches the ground truth label
of the primary object; and for the top-5 score, we check if
the ground truth label of the primary object is in the top 5
of the output labels for each given model.
Results. Figure 1d shows the inference time per model
using three images from the ImageNet ILSVRC validation
dataset. Recognizing the main object (a cottontail rabbit)
from the image shown in Figure 1a is a straightforward task.
We can see from Figure 1 that all models give the correct
answer under the top-5 and top-1 score criterion. For this
image, MobileNet_v1_025 is the best model to use under
the top-5 score, because it has the fastest inference time –
6.13x faster than ResNet_v2_152. Clearly, for this image,
MobileNet_v1_025 is good enough, and there is no need to
use a more advanced (and more expensive model) for
inference. If we consider a slightly more complex object
recognition task shown in Figure 1b, we can see that
MobileNet_v1_025 is unable to give a correct answer
regardless of our success criterion. In this case
Inception_v2 should be used, although this is 3.24x slower
than MobileNet_v1_025. Finally, consider the final image
shown in Figure 1c, intuitively it can be seen that this would
be a more difficult image recognition task, this main object
is a similar color to the background. In this case the model
we should use changes depending on our success criterion.
ResNet_v1_50 is the best model to use under the top-5
score, completing inference 2.06x faster than
ResNet_v2_152. However, if we instead use top-1 for
scoring we must use ResNet_v2_152 to obtain the correct
label, despite that it’s the most expensive model. Inference
time for this image is 2.98x and 6.14x slower than
MobileNet_v1_025 for top-5 and top-1 scoring
respectively.

Feature
Extraction Inference

1 2 3 4

Offline
Profiling RunsMemory footprint

Training programs

Model Fitting

Feature
Extraction

f
Memory function

Feature values

5

Model
SelectionImage Labels

Figure 2: Overview of our approach

Y
Model 1

Input
features

Distance
calculation Model 1?

N
Model 2?

Model 2

N
Model n?

Model n

N
KNN-1 KNN-2 KNN-n

all models
will fail

...

Y Y

Figure 3: Our premodel, made up of a series of KNN
models. Each model predicts whether to use an image
classifier or not, our selection process for including
image classifiers is described in Section 3.2.

Lessons Learned. This example shows that the best model
depends on the input and the evaluation criterion. Hence,
determining which model to use is non-trivial. What we
need is a technique that can automatically choose the most
efficient model to use for any given input. In the next section,
we describe our adaptive approach that solves this task.

2.2 Overview of Our Approach
Figure 2 depicts the overall work flow of our approach. While
our approach is generally applicable, to have a concrete,
measurable target, we apply it to image classification. At the
core of our approach is a predictive model (termed premodel)
that takes a new, unseen image to predict which of a set of pre-
trained image classification models to use for the given input.
This decision may vary depending on the scoring method
used at the time, e.g., either top-1 or top-5, and we show
that our approach can adapt to different metrics.
The prediction of our premodel is based on a set of

quantifiable properties – or features such as the number of
edges and brightness – of the input image. Once a model is
chosen, the input image is passed to the selected model,
which then attempts to classify the image. Finally, the
classification data of the selected model is returned as
outputs. Use of our premodel will work in exactly the same
way as any single model, the difference being we are able to
choose the best model to use dynamically.

3 OUR APPROACH
Our premodel is made up of multiple k-Nearest Neighbour
(KNN) classification models arranged in sequence, shown in
Figure 34. As input our model takes an image, from which
it will extract features and make a prediction, outputting a
label referring to which image classification model to use.

4In Section 5.2, we evaluate a number of different machine learning
techniques, including Decision Trees, Support Vector Machines, and CNNs.

LCTES ’18, June 2018, Pennsylvania, USA

web
content

Parsing Style Resolution Layout Paint Display

DOM Tree

Style Rules

Render Tree

Training
Images

Inference
Profiling

Feature
extraction

optimum model

feature values

Learning
A

lgorithm

Predictive Model

Kernel on
CPU

Kernel on
Accelerator

CPU config.

accelerator
config.

host CPU
config.

Figure 4: The training process. We use the same
procedure to train each individual model within the
premodel for each evaluation criterion.

3.1 Model Description
There are two main requirements to consider when
developing an inferencing model selection strategy on a
embedded device: (i) fast execution time, and (ii) a high level
of accuracy. Having a premodel which takes much longer
than any single model would outweigh the benefit of using
it. We also require high accuracy to choose the optimum
inferencing model, therefore reducing the oveall cost.

Following the above goals we chose to implement a series
of simple KNN models, where each model predicts whether
to use a single image classifier or not. We chose KNN as it
has a quick prediction time (less than 1ms) and achieves a
high accuracy for our problem. Finally, we chose a set of
features to represent each image, the selection process of
these features is described in more detail in Section 3.4.

Figure 3 gives an overview of our premodel architecture.
For each DNN model we wish to include in our premodel, we
use a separate KNN model. As our KNN models are going to
contain much of the same data we begin our premodel by
calculating our K closest neighbours. Taking note of which
record of training data each of the neighbours corresponds to,
we are able to avoid recalculating the distancemeasurements;
we simply change the labels of these data-points. KNN-1 is
the first KNNmodel in our premodel, through which all input
to the premodel will pass. KNN-1 is used to predict whether
the input image should use Model-1 to classify it or not,
depending on the scoring criterion the premodel has been
trained for. If KNN-1 predicts that Model-1 should be used,
then the premodel returns this label, otherwise the features
are passed on to the next KNN, i.e. KNN-2. This process carries
on until the image reaches KNN-n, the final KNNmodel in our
premodel. In the event that KNN-n predicts that we should
not use Model-n to classify the image, the next step will
be one of two depending on the user’s declared preference:
(i) using a pre-specified model, so the user can have some
output to work with; or (ii) do not perform inference and
simple informing the user of the failure.

3.2 Inference Model Selection
In Algorithm 1 we describe our selection process for
choosing which inference models to include in our
premodel. Essentially, this algorithm involves choosing the
first model to include, which is always the one which is

Algorithm 1 Inference Model Selection Process
Model_1_class =most_optimum_class(data)
curr_class .add(Model_1_class)
curr_acc = дet_acc(curr_class)
acc_diff = 100
while acc_diff > θ do

failed_cases = get_fail_cases(curr_class)
next_class = most_acc_class(failed_cases)
curr_class .add(next_class)
new_acc = дet_acc(curr_class)
acc_diff = new_acc - curr_acc
curr_acc = new_acc

end while

optimal for the most of our training data, then iteratively
adding the most accurate model on the remainder of the
training data until our accuracy improvement is lower than
a threshold θ . Below we will walk through the algorithm to
show how we chose the model to include in our premodel.
We have chosen to set our threshold value, θ to 0.5,

which is empirically decided during our pilot experiments.
Figure 5 shows the percentage of our training data which
considers each of our CNNs to be optimal. There is a clear
winner here, MobileNet_v1_100 is optimal for 70.75% of
our training data, therefore it is chosen to be Model-1 for
our premodel. If we were to follow this convention and
then choose the next most optimal CNN, we would choose
Inception_v1. However, we do not do this as it would
result in our premodel being formulated of many cheap, yet
inaccurate models. Instead we choose to look at the training
data on which our initial model (Model-1) fails; the
remaining 29.25% of our data.
From here on when adding new CNNs to our premodel

we exclusively consider the accuracy of each on the
currently failing training data. Figure 6b shows the accuracy
of our remaining CNNs on the 29.25% cases where
MobileNet_v1_100 fails. We can see that Inception_v4
clearly wins here, correctly classifying 43.91% of the
remaining data; creating a 12.84% increase in premodel
accuracy, and leaving 16.41% of our data failing. We then
repeat this process, shown in Figure 6c, where we add
ResNet_v1_152 to our premodel seeing an increase in total
accuracy of 2.55%. Finally we repeat this step one more time,
to achieve a premodel accuracy increase of <0.5, therefore
<θ , and terminate here.

The result of this is a premodel where: Model-1 is
MobileNet_v1_100, Model-2 is Inception_v4, and, finally,
Model-3 is ResNet_v1_152.

3.3 Training the premodel
Training our premodel follows the standard procedure, and
is a multi-step process. We describe the entire training

Adaptive Deep Learning Model Selection on Embedded Systems LCTES ’18, June 2018, Pennsylvania, USA

Table 2: All features considered in this work.
Feature Description Feature Description

n_keypoints # of keypoints avg_brightness Average brightness
brightness_rms Root mean square of brightness avg_perceived_brightness Average of perceived brightness
perceived_brightness_rms Root mean square of perceived brightness contrast The level of contrast
edge_length{1-7} A 7-bin histogram of edge lengths edge_angle{1-7} A 7-bin histogram of edge angles
area_by_perim Area / perimeter of the main object aspect_ratio The aspect ratio of the main object
hue{1-7} A 7-bin histogram of the different hues

M . n e t _ v 1 _ 1 0 0

I n c e p t i o n _ v 1

R e s n e t _ v 1 _ 5 0

I n c e p t i o n _ v 2

R e s n e t _ v 2 _ 5 0

I n c e p t i o n _ v 3

R e s n e t _ v 1 _ 1 0 1

I n c e p t i o n _ v 4

R e s n e t _ v 2 _ 1 0 1

R e s n e t _ v 2 _ 1 5 2

R e s n e t _ v 1 _ 1 5 20
2 0
4 0
6 0
8 0

%
of

be
ing

 op
tim

al

Figure 5: How often a CNN model is considered to be
optimal under the top-1 score on the training dataset.

process in detail below, and provide a summary in Figure 4.
Generally, we need to figure out which candidate inferecing
model is optimum for each of our training example (i.e.,
images), we then train our model to predict the same for
any new, unseen inputs.
Generate Training Data. Our training dataset consists of
the feature values of a set of images and the corresponding
optimum model for each image under an evaluation
criterion. To evaluate the performance of the candidate DNN
models, they must be applied to unseen images. We choose
to use ILVRSC 2012 validation set, which contains 50k
images, to generate training data for our premodel. This
dataset provides a wide selection of images containing a
range of topics and complexities. We then exhaustively
executed each image on each candidate model, measuring
the inference time and prediction results. Inference time is
measured on an unloaded machine to reduce noise, and is a
one-off cost – it only needs to be completed once. Because
the relative runtime of models is stable, training data
generation can be performed on a high-performance server
to speedup the training data generation process. It is to note
that adding a new image classifier, simply requires
executing all images on the new image classifier while
taking the same measurements described above.
Taking the execution time, top-1, and top-5 results we

are able to generate a best image classifier for each image;
that is, the model which achieves the accuracy goal (top-1
or top-5) in the least amount of time. Finally, we extract the
feature values (described in Section 3.4) from each image,
and pair the feature values to the best image classifier for
each image, resulting in our complete training dataset.
Building theModel. The training data is used to determine
which classification models should be used and the optimal

Table 3: Correlation values (absolute) of removed
features to the kept ones.

Kept Feature Removed Feature Correl.

perceived_brightness_rms 0.98
avg_brightness 0.91avg_perceived_brightness
brightness_rms 0.88
edge_length4 0.78
edge_length5 0.85
edge_length6 0.82edge_length1
edge_length7 0.77

hue1 hue{2-6} 0.99

hyper-parameters of the model. Since we chose to use KNN
models to construct our premodel, the generated training
data is used to train our model using a standard supervized
learning method. In KNN classification the training data is
used to give a label to each point in the model, then during
prediction the model will use a distance measure (in our case
we use Euclidian distance) to find the K nearest points (in
our case K=5). The label with the highest number of points
to the prediction point is the output label.
Training Cost. Total training time of our premodel is
dominated by generating the training data. Generating the
training data took less than a day using a NVIDIA P40 GPU
on a multi-core server. This can vary depending on the
number of image classifiers to be included. In our case, we
had an usually long training time as we considered 12 DNN
models. We would expect in deployment that the user has a
much smaller search space for image classifiers. The time in
model selection and parameter tuning is negligible (less
than 2 hours) in comparison. See also Section 5.5.

3.4 Features
One of the key aspects in building a successful predictor is
developing the right features in order to characterize the
input. In this work, we considered a total of 30 candidate
features, shown in Table 2. The features were chosen based
on previous image classification work [16] e.g., edge based
features, as well as intuition based on our motivation
(Section 2.1), e.g., contrast.

3.4.1 Feature selection. The time spent in making a
prediction is negligible in comparison to the overhead of
feature extraction, therefore by reducing our feature count
we can decrease the total execution time of our premodel.
Moreover, by reducing the number of features we are also

LCTES ’18, June 2018, Pennsylvania, USA

M . n e t _ v 1 _ 1 0 0
I n c e p t . _ v 1

I n c e p t . _ v 2
I n c e p t . _ v 4

R e s n e t _ v 1 _ 5 0

R e s n e t _ v 1 _ 1 0 1

R e s n e t _ v 1 _ 1 5 2

R e s n e t _ v 2 _ 5 0

R e s n e t _ v 2 _ 1 0 1

R e s n e t _ v 2 _ 1 5 20 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4

Inf
ere

nc
e T

im
e (

s) I n f e r e n c e t i m e

0
2 0
4 0
6 0
8 0
1 0 0 T o p - 1 a c c u r a c y

 To
p-1

 Ac
cu

rac
y (

%)

I n c e p t i o n _ v 1
I n c e p t i o n _ v 2

I n c e p t i o n _ v 4

R e s n e t _ v 1 _ 5 0

R e s n e t _ v 1 _ 1 0 1

R e s n e t _ v 1 _ 1 5 2

R e s n e t _ v 2 _ 5 0

R e s n e t _ v 2 _ 1 0 1

R e s n e t _ v 2 _ 1 5 20
1 0
2 0
3 0
4 0
5 0

To
p-1

 Ac
cu

rac
y (

%)

R e s n e t _ v 1 _ 5 0

R e s n e t _ v 1 _ 1 0 1

R e s n e t _ v 1 _ 1 5 2

R e s n e t _ v 2 _ 5 0

R e s n e t _ v 2 _ 1 0 1

R e s n e t _ v 2 _ 1 5 20
5

1 0
1 5
2 0
2 5

To
p-1

 Ac
cu

rac
y (

%)

(a) top-1 accuracy and inference time (b) top-1 accuracy on the cases where MobileNet fails (c) top-1 accuracy on the cases where Mobilnet & Inception fails

Figure 6: (a) Shows the top-1 accuracy and average inference time of all CNNs considered in this work across our
entire training dataset. (b) Shows the top-1 accuracy of all CNNs on the images on which MobileNet_v1_100 fails.
(c) Shows the top-1 accuracy of all CNNs on the images on which MobileNet_v1_100 and Inception_v4 fails.

Table 4: The chosen features.

n_keypoints avg_perceived_brightness hue1
contrast area_by_perim edge_length1
aspect_ratio

improving the generalization ability of our premodel, i.e.
reducing the likelihood of over-fitting on our training data.
Initially, we use correlation-based feature selection. If

pairwise correlation is high for any pair of features, we drop
one of them and keep the other in order to retain most of
the information. We performed this by constructing a
matrix of correlation coefficients using Pearson
product-moment correlation. The coefficient value falls
between −1 and +1. The closer the absolute value is to 1,
the stronger the correlation between the two features being
tested. We set a threshold of 0.75 and removed any features
that had an absolute Pearson correlation coefficient higher
than the threshold. Table 3 summarizes the features we
removed at this stage, leaving 17 features.
Next we evaluated the importance of each of our

remaining features. To evaluate feature importance we first
trained and evaluated our premodel using K-Fold cross
validation (see also Section 5.5) and all of our current
features, and recording premodel accuracy. We then
remove each feature and re-evaluate the model on the
remaining features, taking note of the change in accuracy. If
there is a large drop in accuracy then the feature must be
very important, otherwise, the features does not hold much
importance for our purposes. Using this information we
performed a greedy search, removing the least important
features one by one. By performing this search we
discovered that we can reduce our feature count down to 7
features (see Table 4) while having very little impact on our
model accuracy. Removing any of the remaining 7 features
resulted in a significant drop in model accuracy.

3.4.2 Feature scaling. The final step before passing our
features to a machine learning model is scaling each of the
features to a common range (between 0 and 1) in order to
prevent the range of any single feature being a factor in its
importance. Scaling features does not affect the distribution

a s p e c t _ r a t i o
n _ k e y p o i n t s

a v g _ p e r c . _ b r i g h t . c o n t r a s t
e d g e _ l e n g t h 10

5
1 0
1 5
2 0

los
t a

ccu
rac

y (
%)

Figure 7: The top five features which can lead to a high
loss in accuracy if they are not used in our premodel.

or variance of their values. To scale the features of a new
image during deployment we record the minimum and
maximum values of each feature in the training dataset, and
use these to scale the corresponding features.

3.4.3 Feature analysis. Figure 7 shows the top 5
dominant features based on their impact on our premodel
accuracy. We calculate feature importance by first training a
premodel using all 7 of our chosen features, and note the
accuracy of our model. In turn, we then remove each of our
features, retraining and evaluating our premodel on the
other 6, noting the drop in accuracy. We then normalize the
values to produce a percentage of importance for each of
our features. It can be seen that each of our features hold a
very similar level of importance, ranging between 18% and
11% for our most and least important feature respectively.
The similarity of our feature importance is an indication
that each of our features is able to represent distinct
information about each image. all of which is important for
the prediction task at hand.

3.5 Runtime Deployment
Deployment of our proposed method is designed to be
simple and easy to use, similar to current image
classification techniques. We have encapsulated all of the
inner workings, such as needing to read the output of the
premodel and then choosing the correct image classifier. A
user would interact with our proposed method in the same
way as any other image classifier: simply calling a
prediction function and getting the result in return as
predicted labels and their confidence levels.

Adaptive Deep Learning Model Selection on Embedded Systems LCTES ’18, June 2018, Pennsylvania, USA

4 EXPERIMENTAL SETUP
4.1 Platform and Models
Hardware.We evaluate our approach on the NVIDIA Jetson
TX2 embedded deep learning platform. The system has a
64 bit dual-core Denver2 and a 64 bit quad-core ARM Cortex-
A57 running at 2.0 Ghz, and a 256-core NVIDIA Pascal GPU
running at 1.3 Ghz. The board has 8 GB of LPDDR4 RAM
and 96 GB of storage (32 GB eMMC plus 64 GB SD card).
System Software. Our evaluation platform runs Ubuntu
Ubuntu 16.04.3 LTS with Linux kernel v4.4.15. We use
Tensorflow v.1.0.1, cuDNN (v6.0) and CUDA (v8.0.64). Our
premodel is implemented using the Python scikit-learn
machine learning package. Our feature extractor is built
upon OpenCV and SimpleCV.
Deep Learning Models. We consider 14 pre-trained CNN
models for image recognition from the TensorFlow-Slim
library [40]. The models are built upon TensorFlow and
trained on the ImageNet ILSVRC 2012 training set.

4.2 Evaluation Methodology
Model Evaluation. We use 10-fold cross-validation to
evaluate our premodel on the ImageNet ILSVRC 2012
validation set. Specifically, we partition the 50K validation
images into 10 equal sets, each containing 5K images. We
retain one set for testing our premodel, and the remaining 9
sets are used as training data. We repeat this process 10
times (folds), with each of the 10 sets used exactly once as
the testing data. This standard methodology evaluates the
generalization ability of a machine-learning model.

We evaluate our approach using the following metrics:
• Inference time (lower is better). Wall clock time
between a model taking in an input and producing an
output, including the overhead of our premodel.

• Energy consumption (lower is better). The energy
used by a model for inference. For our approach, this
also includes the energy consumption of the
premodel. We deduct the static power used by the
hardware when the system is idle.

• Accuracy (higher is better). The ratio of correctly
labeled images to the total number of testing images.

• Precision (higher is better). The ratio of a correctly
predicted images to the total number of images that
are predicted to have a specific object. This metric
answers e.g., “Of all the images that are labeled to have
a cat, how many actually have a cat?".

• Recall (higher is better). The ratio of correctly
predicted images to the total number of test images
that belong to an object class. This metric answers
e.g., “Of all the test images that have a cat, how many
are actually labeled to have a cat?".

• F1 score (higher is better). The weighted average of
Precision and Recall, calculated as 2× Recall×Precision

Recall+Precision .
It is useful when the test datasets have an uneven
distribution of object classes.

Performance Report. We report the geometric mean of
the aforementioned evaluation metrics across the
cross-validation folds. To collect inference time and energy
consumption, we run each model on each input repeatedly
until the 95% confidence bound per model per input is
smaller than 5%. In the experiments, we exclude the loading
time of the CNN models as the model only need to be loaded
once in practice. However, we include the overhead of our
premodel in all our experimental data. To measure energy
consumption, we developed a lightweight runtime to take
readings from the on-board energy sensors at a frequency
of 1,000 samples per second. We then matched the energy
readings against the time stamps of model execution to
calculate the energy consumption.

5 EXPERIMENTAL RESULTS
5.1 Overall Performance
Inference Time. Figure 8a compares the inference time
among individual DNN models and our approach. MobileNet
is the fastest model for inferencing, being 2.8x and 2x faster
than Inception and ResNet, respectively, but is least
accurate (see Figure 8c). Our premodel alone is 3x faster
than MobileNet. Most the overhead of our premodel comes
from feature extraction. The average inference time of our
approach is under a second, which is slightly longer than
the 0.7 second average time of MobileNet. Our approach is
1.8x faster than Inception, the most accurate inference
model in our model set. Given that our approach can
significantly improve the prediction accuracy of Mobilenet,
we believe the modest cost of our premodel is acceptable.
Energy Consumption. Figure 8b gives the energy
consumption. On the Jetson TX2 platform, the energy
consumption is proportional to the model inference time.
As we speed up the overall inference, we reduce the energy
consumption by more than 2x compared to Inception and
Resnet. The energy footprint of our premodel is small,
being 4x and 24x lower than MobileNext and ResNet
respectively. As such, it is suitable for power-constrained
devices, and can be used to improve the overall accuracy
when using multiple inferencing models. Furthermore, in
cases where the premodel predicts that none of the DNN
models can successfully infers an input, it can skip
inference to avoid wasting power. It is to note that since our
premodel runs on the CPU, its energy footprint ratio is
smaller than that for runtime.

LCTES ’18, June 2018, Pennsylvania, USA

M o b i l e n e t I n c e p t i o n R e s n e t O u r s0

1

2

Inf
ere

nc
e T

im
e (

s) i n f e r . m o d e l P r e m o d e l

M o b i l e n e t I n c e p t i o n R e s n e t O u r s0
1
2
3
4
5 I n f e r . m o d e l P r e m o d e l

Jo
ule

s

M o b i l e n e t I n c e p t i o n R e s n e t O u r s O r a c l e4 0
6 0
8 0

1 0 0

Ac
cu

rac
y (

%)

 T o p - 1 T o p - 2

P r e c i s i o n R e c a l l F 1 - s c o r e0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

 M o b i l e n e t I n c e p t i o n
 R e s n e t O u r s

(a) Inference Time (b) Energy Consumption (c) Accuracy (d) Precision, Recall & F1 score

Figure 8: Overall performance of our approach against individual models for inference time (a), energy
consumption (b), accuracy (c), precision, recall and F1 score (d). Our approach gives the best overall performance.

C N N K N N D e c i s i o n T r e e s S V M0 . 0
0 . 2
0 . 4
0 . 6
0 . 8

Ru
nti

me
 (s

) R u n t i m e

0
2 0
4 0
6 0
8 0
1 0 0

 To
p-1

 Ac
cu

rac
y (

%) T o p - 1 A c c u r a c y

Figure 9: Comparison of alternative predictive
modeling techniques for building the premodel.

Accuracy. Figures 8c compares the top-1 and top-5
accuracy achieved by each approach. We also show the best
possible accuracy given by a theoretically perfect predictor
for model selection, for which we call Oracle. Note that the
Oracle does not give a 100% accuracy because there are
cases where all the DNN models fail. By effectively
leveraging multiple models, our approach outperforms all
individual inference models. It improves the accuracy of
MobileNet by 16.6% and 6% respectively for the top-1 and
the top-5 scores. It also improves the top-1 accuracy of
ResNet and Inception by 10.7% and 7.6% respectively.
While we observe little improvement for the top-5 score
over Inception – just 0.34% – our approach is 2x faster
than it. Our approach delivers over 96% of the Oracle
performance (87.4% vs 91.2% for top-1 and 95.4% vs 98.3%).
Moreover, our approach never picks a model that fails while
others can success. This result shows that our approach can
improve the inference accuracy of individual models.
Precision, Recall, F1 Score. Finally, Figure 8d shows our
approach outperforms individual DNN models in other
evaluation metrics. Specifically, our approach gives the
highest overall precision, which in turns leads to the best F1
score. High precision can reduce false positive, which is
important for certain domains like video surveillance
because it can reduce the human involvement for inspecting
false positive predictions.

5.2 Alternative Techniques for Premodel
Figure 9 shows the top-1 accuracy and runtime for using
different techniques to construct the premodel. Here, the
learning task is to predict which of the inference models,
MobileNet, Inception, and ResNet, to use. In addition to
KNN, we also consider CNNs, Decision Trees (DT) and Support

Vector Machines (SVM). We use the MobileNet structure,
which is designed for embedded inference, to build the
CNN-based premodel. We train all the models using the
same training examples. We also use the same feature set
for the KNN, DT, and SVM. For the CNN, we use a
hyperparamter tuner [26] to optimize the training
parameters, and we train the model for over 500 epochs.
While we hypothesized a CNN model to be effectively in

predicting from an image to the output, the results are
disappointing given its high runtime overhead. We suspect
the low accuracy of the CNN is because the size of our
cross-validation training set (that contains 45K images) is
not sufficient for learning an effective CNN. Our chosen KNN
model has a overhead that is comparable to the DT and the
SVM, but has a higher accuracy. It is possible that the best
technique can change as the application domain and
training data size changes, but our generic approach for
feature selection and model selection remains applicable.

Figure 10 shows the runtime and top-1 accuracy by using
the KNN, DT and SVM to construct a hierarchical premodel
of three levels. A configuration is denoted as X .Y .Z , where
X , Y and Z indicates the modeling technique for the first,
second and third level of the premodel, respectively. The
result shows that our chosen premodel organization, (i.e.,
KNN.KNN.KNN), has the highest top-1 accuracy (87.4%) and
the fastest running time (0.20 second). One of the benefits
of using a KNN model in all levels is that the neighboring
measurement only needs to be performed once as the results
can be shared among models in different levels. This means
the runtime overhead is nearly constant if we use the KNN
across all hierarchical levels.

5.3 Impact of Inference Model Sizes
In Section 3.2 we describe the method we use to chose which
DNN models to include. Using this method, and temporarily
ignoring the model selection threshold θ in Algorithm 1, we
constructed Figure 11, where we compare the top-1 accuracy
and execution time using up to 5 KNNmodels. As we increase
the number of inference models, there is an increase in the
end to end inference time as expensive models are more

Adaptive Deep Learning Model Selection on Embedded Systems LCTES ’18, June 2018, Pennsylvania, USA

kn
n.k

nn
.kn

n
kn

n.k
nn

.dt
kn

n.k
nn

.sv
m

kn
n.d

t.k
nn

kn
n.d

t.d
t

kn
n.d

t.s
vm

kn
n.s

vm
.kn

n
kn

n.s
vm

.dt
kn

n.s
vm

.sv
m

dt.
kn

n.k
nn

dt.
kn

n.d
t

dt.
kn

n.s
vm

dt.
dt.

kn
n

dt.
dt.

dt
dt.

dt.
svm

dt.
svm

.kn
n

dt.
svm

.dt
dt.

svm
.sv

m
svm

.kn
n.k

nn
svm

.kn
n.d

t
svm

.kn
n.s

vm
svm

.dt
.kn

n
svm

.dt
.dt

svm
.dt

.sv
m

svm
.sv

m.
kn

n
svm

.sv
m.

dt
svm

.sv
m.

svm

0 . 0

0 . 2

0 . 4

0 . 6

Ru
nti

me
 (s

)

 R u n t i m e

0
2 0
4 0
6 0
8 0
1 0 0

To
p-1

 Ac
cu

rac
y (

%) T o p - 1 A c c u r a c y

Figure 10: Using different modeling techniques to
form a 3-level premodel.

1 2 3 4 50 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4

Inf
ere

nc
e T

im
e (

s)

I n f e r e n c e M o d e l s

 I n f e r e n c e t i m e

0
2 0
4 0
6 0
8 0
1 0 0 T o p - 1 a c c u r a c y

 To
p-1

 Ac
cu

rac
y (

%)
Figure 11: Overhead and achieved performance when
using different numbers of DNNmodels for inferencing.
The min-max bars show the range of inference time
across testing images.

n _ k e y p o i n t s
a s p e c t _ r a t i o

c o n t r a s t h u e 1
a r e a _ b y _ p e r i m

a v g _ p e r c e i v e d _ b r i g h t n e s s
e d g e _ l e n g t h 1 h u e 7

e d g e _ a n g l e 5
e d g e _ l e n g t h 3

e d g e _ a n g l e 3
e d g e _ a n g l e 6

e d g e _ a n g l e 4
e d g e _ a n g l e 7

e d g e _ a n g l e 1
e d g e _ l e n g t h 2

e d g e _ a n g l e 20

6

1 2

1 8

los
t a

ccu
rac

y (
%)

Figure 12: Accuracy loss if a feature is not used.

5 6 7 8 9
0 . 1 6
0 . 1 8
0 . 2 0
0 . 2 2
0 . 2 4

To
p-1

 ac
cu

rac
y (

%)

Ru
nti

me
 (s

)

F e a t u r e s

 R u n t i m e

0
2 0
4 0
6 0
8 0
1 0 0

 T o p - 1 a c c u r a c y

Figure 13: Impact of feature sizes.

likely to be chosen. At the same time, however, the top-1
accuracy reaches a plateau of (≈87.5%) by using three KNN
models. We conclude that choosing three KNN models would
be the optimal solution for our case, as we are no longer
gaining accuracy to justify the increased cost. This is in line
with our choice of a value of 0.5 for θ .

5.4 Feature Importance
In Section 3.4 we describe our feature selection process,
which resulted in using 7 features to represent each image
to our premodel. In Figure 12 we show the importance of
all of our considered features which were not removed by
our correllation check, shown in Table 3. Upon observation
it is clear that the 7 features we have chosen to keep are the
most important; there is a sudden drop in feature

importance at feature 8 (hue7). Furthermore, in Figure 13
we show the impact on premodel execution time and top-1
accuracy when we change the number of features we use.
By decreasing the number of features there is a dramatic
decrease top-1 accuracy, with very little change in
extraction time. To reduce overhead, we would need to
reduce our feature count to 5, however this comes at the
cost of a 13.9% decrease in top-1 accuracy. By increasing
the feature count it can be seen that there is minor changes
in overhead, but, surprisingly, there is actually also a small
decrease in top-1 accuracy of 0.4%. From this we can
conclude that using 7 features is ideal.

5.5 Training and Deployment Overhead
Training the premodel is a one-off cost, and is dominated by
the generation of training data which takes in total less than a
day (see Section 3.3). This overhead can be speeded up using
multiple machines. However, compared to the training time
of a typical DNN model, our training overhead is negligible.
The runtime overhead of our premodel is minimal, as

depicted in Figures 8a. Out of a total average execution time
of less than a second to classify an image, our premodel
accounts for only 20%. In comparison to the most
(ResNet_v2_152) and least (MobileNet) expensive models
we consider in this work, this translates to 9.52% and 27%,
respectively. Furthermore, our energy footprint is much
smaller, making up 11% of the total cost. Comparing this to
the most and least expensive models, again, gives an
overhead of 7% and 25%, respectively.

6 DISCUSSION
Naturally there is room for further work and possible
improvements. We discuss a few points here.
Alternative Domains. This work focuses on CNNs because
it is a commonly used deep learning architecture. To extend
our work to other domains and recurrent neural networks
(RNN), we would need a new set of features to characterize
the input, e.g., text embeddings for machine translation [48].
However, our automatic approach on feature selection and
premodel construction remains applicable.
Feature Extraction. The majority of our overhead is
caused by feature extraction for our premodel. Our
prototype feature extractor is written in Python; by
re-writing this tool in a more efficient language can reduce
the overhead. There are also hotshots in our code which
would benefit from parallelism.
Processor Choice. By default, inference is carried out on
a GPU, but this may not always be the best choice. Previous
work has already shown machine learning techniques to be
successful at selecting the optimal computing device [45].
This can be integrated into our existing learning framework.

LCTES ’18, June 2018, Pennsylvania, USA

Model Size. Our approach uses multiple pre-trained DNN
models for inference. In comparison to the default method
of simply using a single model, our approach would require
more storage space. A solution for this would involve using
model compression techniques to generate multiple
compressed models from a single accurate model. Each
compressed model would be smaller and is specialized at
certain tasks. The result of this is numerous models share
many weights in common, which allows us to allowing us
to amortize the cost of using multiple models.

7 RELATEDWORK
Deep neural networks (DNN) have shown astounding
successes in various complex tasks that previously seemed
difficult [7, 27, 30]. Despite the fact that many embedded
devices require precise sensing capabilities, adoption of DNN
models on such systems has notably slow progress. The
main cause of this slow progress is that DNN-based inference
is typically a computation intensive task, which inherently
runs slowly on embedded devices due to limited resources.
Numerous methods have been proposed to reduce the

computational demands of a deep model by trading
prediction accuracy for runtime, via compressing a
pre-trained network [6, 15, 21, 24, 36, 42, 47], training small
networks directly [11, 37], or a combination of both [19].
Using these approaches, a user now needs to decide when to
use a specific model, in order to meet the prediction
accuracy requirement with minimal latency. This is because
different models have different characteristics in terms of
prediction accuracy and running time. It is a non-trivial task
to make such a crucial decision as the application context
(e.g. the model input) is often unpredictable and constantly
evolving. Our work alleviates the user burden by
automatically selecting the most appropriate model to use
based on the application constraint and input context.
Neurosurgeon [25] identifies when it is beneficial to

offload a DNN layer to be computed on the cloud. Unlike
Neurosurgeon, we aim to minimize the on-device inference
time without compromising prediction accuracy. Our work
is useful in scenarios when sending data to the cloud is
prohibitive due to e.g. poor network connectivity or privacy
concerns. The Pervasive CNN framework [41] generates
multiple computation kernels for each layer of a CNN, which
are then dynamically selected according to the inputs and
user constraints. A similar approach [38] trains a model
twice, once on shared data and again on personal data, in an
attempt to prevent personal data being sent outside the
personal domain. In contrast to the latter two works, our
approach allows having a diverse set of networks, by
choosing the most effective network to use at runtime. They,
however, are complementary to our approach, by providing
the capability to fine-tune a single network structure.

Recently, numerous software-based approaches have
been proposed to accelerate CNN models on embeded
devices. They aim to accelerate inference time by exploiting
parameter tuning [29], computational kernel
optimization [3, 14], task parallelism [32] and
partition [28, 35], and trading precision for time [20] etc.
Since a single model is unlikely to meet all the constraints
of accuracy, inference time and energy consumption across
inputs [5, 13], it is attractive to have a strategy to
dynamically select the appropriate model to use. Our work
provides such a capability and is thus complementary to
existing approaches on DNN model acceleration.
Off-loading computation to the cloud can accelerate DNN

model inference [46], but this is not always applicable due
to privacy, latency or connectivity issues. The work
presented by Ossia et al. partially addresses the issue of
privacy-preserving when offloading DNN inference to the
cloud [33]. Our adaptive model selection approach allows
one to select which model to use based on the input, and is
also useful when cloud offloading is prohibitively because of
the latency requirement or the lack of connectivity.

Predictive modeling has been employed in prior works to
perform various optimization tasks, including application
scheduling [12], approximate computing [22], code
optimization [43] and hardware-software co-design [4]. No
work so far has applied this technique to dynamically select
deep learning models to run on embedded devices. Our
approach is also closely related to ensemble learning where
multiple models are used to solve an optimization problem.
This technique is shown to be useful on scheduling parallel
tasks [9] and optimize application memory usage [31]. This
work is the first attempt in applying this technique to
optimize deep inference on embedded devices.

8 CONCLUSION
This paper has presented an adaptive scheme to
dynamically select a deep learning model to use on an
embedded device. Our approach provides a significant
improvement over individual deep learning models in terms
of accuracy, inference time, and energy consumption.
Central to our approach is a machine learning based method
for deep learning model selection based on the model input
and the precision requirement. The prediction is based on a
set of features of the input, which are tuned and selected by
our automatic approach. We apply our approach to the
image recognition task and evaluate it on the Jetson TX2
embedded deep learning platform using the ImageNet
ILSVRC 2012 validation dataset. Experimental results show
that our approach achieves an overall top-1 accuracy of
above 87.44%, which translates into an improvement of
7.52% and 1.8x reduction in inference time when compared
to the most-accurate single deep learning model.

Adaptive Deep Learning Model Selection on Embedded Systems LCTES ’18, June 2018, Pennsylvania, USA

REFERENCES
[1] JJ Allaire, Dirk Eddelbuettel, Nick Golding, and Yuan Tang. 2016.

TensorFlow for R. https://tensorflow.rstudio.com/
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural

machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473 (2014).

[3] Sourav Bhattacharya and Nicholas D Lane. 2016. Sparsification and
separation of deep learning layers for constrained resource inference
on wearables. In Conference on Embedded Networked Sensor Systems.
ACM, 176–189.

[4] Bruno Bodin et al. 2016. Integrating Algorithmic Parameters
into Benchmarking and Design Space Exploration in 3D Scene
Understanding. In PACT.

[5] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. 2016. An
Analysis of Deep Neural Network Models for Practical Applications.
CoRR abs/1605.07678 (2016).

[6] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger,
and Yixin Chen. 2015. Compressing Neural Networks with the Hashing
Trick. In ICML.

[7] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine
translation. In EMNLP.

[8] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning
Zhang, Eric Tzeng, and Trevor Darrell. 2014. DeCAF: A Deep
Convolutional Activation Feature for Generic Visual Recognition. In
ICML (Proceedings of Machine Learning Research), Eric P. Xing and
Tony Jebara (Eds.), Vol. 32. PMLR, 647–655.

[9] Murali Krishna Emani and Michael O’Boyle. 2015. Celebrating
Diversity: A Mixture of Experts Approach for Runtime Mapping in
Dynamic Environments. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15). 499–508.

[10] Dario Amodei et al. 2016. Deep Speech 2: End-to-End Speech
Recognition in English and Mandarin. In ICML (Proceedings of Machine
Learning Research), Maria Florina Balcan and Kilian Q. Weinberger
(Eds.), Vol. 48. PMLR, New York, New York, USA, 173–182.

[11] Petko Georgiev, Sourav Bhattacharya, Nicholas D. Lane, and Cecilia
Mascolo. 2017. Low-resource Multi-task Audio Sensing for Mobile and
Embedded Devices via Shared Deep Neural Network Representations.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3 (2017), 50:1–
50:19.

[12] Dominik Grewe et al. 2013. Portable mapping of data parallel programs
to OpenCL for heterogeneous systems. In CGO.

[13] Tian Guo. 2017. Towards Efficient Deep Inference for Mobile
Applications. CoRR abs/1707.04610 (2017).

[14] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. 2016. EIE: efficient inference engine
on compressed deep neural network. In 43rd International Symposium
on Computer Architecture. IEEE Press, 243–254.

[15] Song Han, Jeff Pool, John Tran, andWilliam Dally. 2015. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems. 1135–1143.

[16] M Hassaballah, Aly Amin Abdelmgeid, and HammamAAlshazly. 2016.
Image features detection, description and matching. In Image Feature
Detectors and Descriptors. 11–45.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Conference on computer
vision and pattern recognition (CVPR). 770–778.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016.
Identity mappings in deep residual networks. In European Conference
on Computer Vision. Springer, 630–645.

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017).

[20] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon:
Mobile GPU-based Deep Learning Framework for Continuous Vision
Applications. In MobiSys. 82–95.

[21] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,
William J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <1MB model size. CoRR
abs/1602.07360 (2016).

[22] Mohsen Imani, Yeseong Kim, Abbas Rahimi, and Tajana Rosing. 2016.
ACAM: Approximate Computing Based on Adaptive Associative
Memory with Online Learning. In ISLPED.

[23] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization:
Accelerating deep network training by reducing internal covariate
shift. In ICML.

[24] Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. 2015.
Flattened Convolutional Neural Networks for Feedforward
Acceleration. (2015).

[25] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. 2017. Neurosurgeon:
Collaborative Intelligence Between the Cloud and Mobile Edge. In
ASPLOS.

[26] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and
Frank Hutter. 2016. Fast bayesian optimization of machine learning
hyperparameters on large datasets. arXiv preprint arXiv:1605.07079
(2016).

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012.
ImageNet classification with deep convolutional neural networks. In
NIPS.

[28] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio
Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A
software accelerator for low-power deep learning inference on mobile
devices. In Conference on Information Processing in Sensor Networks
(IPSN). IEEE, 1–12.

[29] Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi,
and Soheil Ghiasi. 2016. Cnndroid: GPU-accelerated execution of
trained deep convolutional neural networks on android. InMultimedia
Conference. ACM, 1201–1205.

[30] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y. Ng.
2009. Unsupervised Feature Learning for Audio Classification Using
Convolutional Deep Belief Networks. In NIPS.

[31] Vicent Sanz Marco, Ben Taylor, Barry Porter, and Zheng Wang. 2017.
Improving Spark Application Throughput via Memory Aware Task
Co-location: AMixture of Experts Approach. InMiddleware Conference.
95–108.

[32] Mohammad Motamedi, Daniel Fong, and Soheil Ghiasi. 2017. Machine
Intelligence on Resource-Constrained IoT Devices: The Case of Thread
Granularity Optimization for CNN Inference. ACM Trans. Embed.
Comput. Syst. 16 (2017), 151:1–151:19.

[33] Seyed Ali Ossia, Ali Shahin Shamsabadi, Ali Taheri, Hamid R Rabiee,
Nic Lane, and Hamed Haddadi. 2017. A Hybrid Deep Learning
Architecture for Privacy-Preserving Mobile Analytics. arXiv preprint
arXiv:1703.02952 (2017).

[34] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. 2015. Deep
Face Recognition. In BMVC, Vol. 1. 6.

[35] Sundari K. Rallapalli, H. Qiu, Archith John Bency, S. Karthikeyan, and
R. B. Govindan. 2016. Are Very Deep Neural Networks Feasible on Mobile
Devices? Technical Report 16-965. University of Southern California.

[36] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. 2016. XNOR-Net: ImageNet Classification Using Binary

https://tensorflow.rstudio.com/

LCTES ’18, June 2018, Pennsylvania, USA

Convolutional Neural Networks. CoRR abs/1603.05279 (2016).
[37] Sujith Ravi. 2015. ProjectionNet: Learning Efficient On-Device Deep

Networks Using Neural Projections. arXiv:1708.00630 (2015).
[38] Sandra Servia Rodríguez, LiangWang, Jianxin R. Zhao, RichardMortier,

and Hamed Haddadi. 2017. Personal Model Training under Privacy
Constraints. CoRR abs/1703.00380 (2017).

[39] Olga Russakovsky et al. 2015. ImageNet Large Scale Visual Recognition
Challenge. In IJCV.

[40] Nathan Silberman and Sergio Guadarrama. 2013.
TensorFlow-slim image classification library.
https://github.com/tensorflow/models/tree/master/research/slim.
(2013).

[41] Mingcong Song, Yang Hu, Huixiang Chen, and Tao Li. 2017. Towards
Pervasive and User Satisfactory CNN across GPU Microarchitectures.
In HPCA.

[42] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and
Martin A. Riedmiller. 2014. Striving for Simplicity: The All
Convolutional Net. CoRR abs/1412.6806 (2014).

[43] Kevin Stock, Louis-Noël Pouchet, and P. Sadayappan. 2012. Using
machine learning to improve automatic vectorization. ACM
Transactions on Architecture and Code Optimization (2012).

[44] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. 2014. Deep
learning face representation by joint identification-verification. In
Advances in neural information processing systems. 1988–1996.

[45] Ben Taylor, Vicent Sanz Marco, and Zheng Wang. 2017. Adaptive
Optimization for OpenCL Programs on Embedded Heterogeneous
Systems. In 18th ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES 2017). 11–20.

[46] Surat Teerapittayanon, Bradley McDanel, and HT Kung. 2017.
Distributed deep neural networks over the cloud, the edge and end
devices. In ICDCS. 328–339.

[47] Min Wang, Baoyuan Liu, and Hassan Foroosh. 2016. Factorized
Convolutional Neural Networks. CoRR abs/1608.04337 (2016).

[48] Will Y Zou, Richard Socher, Daniel Cer, and Christopher D Manning.
2013. Bilingual word embeddings for phrase-basedmachine translation.
In Conference on Empirical Methods in Natural Language Processing.
1393–1398.

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 Motivation
	2.2 Overview of Our Approach

	3 Our Approach
	3.1 Model Description
	3.2 Inference Model Selection
	3.3 Training the premodel
	3.4 Features
	3.5 Runtime Deployment

	4 Experimental Setup
	4.1 Platform and Models
	4.2 Evaluation Methodology

	5 Experimental Results
	5.1 Overall Performance
	5.2 Alternative Techniques for Premodel
	5.3 Impact of Inference Model Sizes
	5.4 Feature Importance
	5.5 Training and Deployment Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

