
Adaptation as an Aspect in Pervasive Computing 

Awais Rashid, Gerd Kortuem 

Computing Department, Lancaster University, Lancaster LA1 4YR, UK 
{awais | kortuem} @comp.lancs.ac.uk 

Abstract. Adaptation is one of the key characteristics of pervasive computing 
applications. However, implementing adaptation using conventional 
development techniques is challenging as adaptation requirements tend to affect 
multiple elements of a pervasive environment. In this paper, we present our 
experience with implementing adaptation using aspect-oriented programming 
(AOP). We argue that the use of AOP not only provides an improved 
modularisation of the adaptation concern but also makes it easier to adapt the 
pervasive application to both changes in data and reorganisation of the 
pervasive environment itself. 

1. Introduction 
Pervasive computing aims at realising the vision of the information society where 
computers are embedded within the environment and applications seamlessly interact 
and exchange information with each other and the users. Though most modern day 
software systems, especially those servicing volatile business domains such as 
banking and e-commerce, need to be adaptable to changing requirements, adaptation 
is an even more crucial characteristic of pervasive computing applications. New 
interaction mechanisms, devices or services may be added to a pervasive environment 
requiring them to be adapted to the specific characteristics of the environment. 
Similarly, the existing elements may be reorganised or adapted on the fly to react to 
changes in user behaviour and data/information imparted or manipulated by the 
pervasive environment. This last characteristic of pervasive computing environments 
is often referred to as context-awareness [4, 5] and is a major focus of research in 
pervasive computing. 
Implementing adaptation in a pervasive environment is a challenging task as the 
adaptation concern affects multiple elements (devices, services, etc.) in the 
environment. The problem is further compounded by the fact that the elements are 
geographically distributed and in many instances there is no central node controlling 
the operation of the pervasive environment.  
Aspect-oriented programming (AOP) [3, 7] has been proposed as a means to 
effectively modularise such crosscutting properties, i.e., properties that have a broadly 
scoped effect on a system. AOP techniques provide abstractions and constructs to 
modularise such properties, specify their composition relationships and compose them 
with other elements of a system. The composition relationships are specified using a 
join point model which identifies well-defined points within a system where an aspect 
may be composed. The composition process is often referred to as weaving. 
In this paper we present our experience with using AOP to modularise adaptation in a 
pervasive environment supporting users to navigate their way to destinations and 
events across the Lancaster University campus. We have chosen to use AspectJ [1], 
an aspect language for Java to implement our application. Our choice is driven by the 



maturity of the language, its compiler and availability of effective tool support1. 
Section 2 in this paper describes the pervasive navigation environment in more detail. 
Section 3 discusses the aspectisation of the adaptation concern using AspectJ. Section 
4 reflects on our experience and concludes the paper. 

2. Navigation Application 
The pervasive environment we are developing involves a set of display devices (e.g., 
flat LCD panels, PDAs, etc.) to be deployed at strategic public locations across the 
Lancaster University campus. The environment is aimed at supporting a range of 
applications including, but not limited to, displaying news, disseminating information 
on upcoming events and assisting visitors (and also staff and students) in navigating 
their way around campus. We have chosen to focus on the navigation application for 
the purpose of the prototype aspect-oriented implementation discussed in this paper.  
Visitors, staff and students often need to find their way to various destinations around 
campus. The destination can be a physical location such as a building, department or a 
lecture theatre or it can be an event such as a conference being hosted in a particular 
building. The destination is often dynamic as a particular event may have been moved 
to a different building or various sessions relating to the same event might be taking 
place in multiple buildings or the event may be held in different buildings on different 
days of the week. Similarly, though less dynamic than navigation information relating 
to events, a department may move to a different building or expand to take up 
additional space in another building. Similarly, alternative routes may need to be 
displayed in case a particular path is blocked due to building or renovation works or 
when the navigating person has special requirements such as wheelchair accessibility. 
Furthermore, each new display added to the environment must adapt its specific 
properties to those of the environment. Displays may also be moved as the 
environment expands or new applications, usage scenarios and services are added. 
The UML diagram of the environment is shown in Fig. 1.  
 

Arrow

Destination Location
Located_at

n n

Display

Flat Panel PDA

Display Location
Installed_at

111 1
Displayed_on

Location VectorProperties

Here all attribute 
&  method sections 
are suppressed

 

Fig. 1. UML diagram of the pervasive environment 
 
The objects represented by the various classes in Fig. 1 are as follows: 
• Destination: A destination on campus, e.g., building, department, event, etc. 
• Location: A location based on coordinates on the campus map. 

                                                           
1 Due to limited space, we do not provide an introduction to the AspectJ syntax. Readers not familiar 

with AspectJ should refer to [1] for details of the language. 



• Display Location: The location on the campus map where a display has been 
installed. 

• Location Vector: A vector pointing outwards from the display. Used to determine 
which way a display is facing and whether it has been moved. 

• Display: An abstract class representing a display in the environment. 
• Flat Panel: A specific type of display, the flat LCD panel. 
• PDA: A specific type of display, personal digital assistant. 
• Properties: The specific characteristics of an individual display. 
• Arrow: The data to be displayed to assist with navigation (in this case a simple 

arrow pointing in the direction to be followed). 

3. Aspectising Adaptation 
When modularising adaptation we need to address three specific facets of adaptation 
within our pervasive environment. The first two are application independent and 
relate to any application deployed in the environment while the third is specific to the 
navigation application: 
1. Display management: As the environment expands more displays will be 

incorporated into it. All new displays must have their specific properties adapted 
for use within the pervasive environment. Furthermore, although the UML diagram 
in Fig. 1 only shows two specific types of displays, Flat Panel and PDA, it is 
conceivable that other types of display devices may be added to the environment as 
they become available. 

2. Content management: The navigation content (an arrow in this case) is only one 
type of content to be displayed on the devices. There are other types of content that 
also need to be delivered to the devices. Furthermore, as new displays are added, 
the content already being displayed within the environment has to be made 
available on them as well. 

3. Display adaptation: As a new destination is added or an existing destination 
changed (e.g., change of venue for an event), the displays need to be adapted to 
guide the users to the correct destination. Furthermore, if a display is moved to a 
different location it should be adapted to display the content in a correct fashion 
based on its new location. 

We have modularised each of these facets of the adaptation concern using AspectJ 
aspects. 

3.1 Display Manager Aspect 
The ���������	�
�� aspect (cf. Fig. 2) encapsulates all functionality relating to 
incorporation of new displays or adaptation of their properties to the pervasive 
environment. The aspect maintains a collection of all 
������� incorporated into the 
environment and has a public method to traverse the collection (cf. label (A) in Fig. 
2). This is useful for other elements of the system, especially the ��	��	���	�
�� 
aspect, which needs to access all the displays in the system from time to time as new 
content becomes available. 
The three inter-type declarations (cf. label (B) in Fig. 2) introduce display 
incorporation functionality into the abstract ������� class. Two final static variables 
representing the two available display types are introduced. As new display types 
become available, they can be introduced in a similar fashion. The introduced static 



�	���������������� method instantiates the right type of class as a new display is 
incorporated. If a suitable display type does not exist, a 
�����������������	
��������	 is thrown. 
The 
�������	����������	 pointcut (cf. label (C) in Fig. 2) captures all calls to 
the static method introduced into the ������� class. An ����� advice then adds the 
incorporated display to the 
������� collection in the aspect as well as adapts the 
properties of the newly incorporated display to the pervasive environment. 
Note that although the ���������	�
�� aspect affects only a single class, 
nevertheless it encapsulates a coherent concern. This use of an aspect is, therefore, 
very much in line with good separation of concerns practice. 
 

SXEOLF�DVSHFW 'LVSOD\0DQDJHU ^

SULYDWH�9HFWRU�GLVSOD\V� �QHZ�9HFWRU���

SXEOLF�(QXPHUDWLRQ�GLVSOD\V���^
���FRGH

`

SXEOLF�VWDWLF�ILQDO LQW 'LVSOD\�3'$� ���
SXEOLF�VWDWLF�ILQDO LQW 'LVSOD\�)/$7B3$1(/� ���

SXEOLF�VWDWLF�'LVSOD\�'LVSOD\�LQFRUSRUDWH'LVSOD\�LQW LG��
'LVSOD\/RFDWLRQ ORFDWLRQ�
LQW�GLVSOD\7\SH��

WKURZV�'LVSOD\7\SH1RW)RXQG([FHSWLRQ ^
���FRGH

`

SRLQWFXW�GLVSOD\,QFRUSRUDWLRQ����
FDOO�SXEOLF�VWDWLF�'LVSOD\�'LVSOD\�LQFRUSRUDWH'LVSOD\������

DIWHU���UHWXUQLQJ�'LVSOD\�GLVSOD\�� GLVSOD\,QFRUSRUDWLRQ���^

���FRGH
`

`

A

B

C

 

Fig. 2. The Display Manager aspect 
 

3.2 Content Manger Aspect 
The ��	��	���	�
�� aspect is shown in Fig. 3. It declares that all types of content 
must implement the ��	��	� interface (cf. label (A) in Fig. 3). Note that in this case 
there is only one type of content, �����, shown but in practice the pervasive 
environment displays a variety of content. The ��	��	� interface provides an 
application independent point of reference for the two pointcuts within the aspect, 
hence decoupling content management from the type of content being managed. The 
��	��	��

����	 pointcut (cf. label (B) in Fig. 3) traps calls to �

��	��	� 
methods in all application classes. An ����� advice for the pointcut then traverses all 
the displays registered with the ���������	�
�� and updates them with the new 
content. The ������	��	��	�����������pointcut (cf. label (C) in Fig. 3) captures 



the instantiation of all sub-classes of the ������� class. An ����� advice then 
pushes the available content onto the newly instantiated display. 
 

SXEOLF�DVSHFW &RQWHQW0DQDJHU ^

GHFODUH�SDUHQWV��$UURZ�LPSOHPHQWV�&RQWHQW�

SRLQWFXW�FRQWHQW$GGLWLRQ�&RQWHQW�F���
FDOO�SXEOLF�
�
�DGG&RQWHQW�&RQWHQW���		 DUJV�F��

DIWHU�&RQWHQW�F�� FRQWHQW$GGLWLRQ�F��^

���FRGH
`

SRLQWFXW�SXVK&RQWHQW2Q1HZ'LVSOD\����FDOO�'LVSOD\��QHZ������

DIWHU���UHWXUQLQJ�'LVSOD\�GLVSOD\�� DGDSW1HZ'LVSOD\3URSHUWLHV���^

���FRGH
`

`

A

B

C

 

Fig. 3. The Content Manager aspect 

3.3 Display Adaptation Aspect 
While the ���������	�
�� and ��	��	���	�
�� aspects are application 
independent and handle adaptation facets that span across applications in the 
pervasive environment, the ��������
�������	 aspect, shown in Fig. 4, is specific 
to the navigation application. The 
����	����	���	
�
 pointcut in this aspect (cf. 
label (A) in Fig. 4) captures the change in location of an existing destination or the 
creation of a new destination. An ����� advice for the pointcut invokes the 
adaptation rules for the displays to adapt the content accordingly.  
 

SXEOLF�DVSHFW 'LVSOD\$GDSWDWLRQ ^

SRLQWFXW�GHVWLQDWLRQ&KDQJHG���
H[HFXWLRQ�SXEOLF�YRLG�'HVWLQDWLRQ�VHW/RFDWLRQ������
__�H[HFXWLRQ�SXEOLF�'HVWLQDWLRQ�QHZ������

DIWHU��� GHVWLQDWLRQ&KDQJHG���^

���FRGH
`

SRLQWFXW�GLVSOD\0RYHG����
H[HFXWLRQ�SXEOLF�YRLG 'LVSOD\/RFDWLRQ�VHW/RFDWLRQ9HFWRU�������

DIWHU��� GLVSOD\0RYHG���^

���FRGH
`

`

A

B

 

Fig. 4. The Display Adaptation aspect 



The 
����������
 pointcut (cf. label (B) in Fig. 4) identifies that a display has been 
moved by capturing the change in its location vector2. An associated ����� advice 
then proceeds to adapt the content of the moved display and any neighbouring 
displays accordingly. 

4. Discussion and Conclusion 
The three aspects in section 3 clearly demonstrate that AOP constructs provide an 
effective means to modularise both application independent and application specific 
facets of adaptation in a pervasive environment. The use of aspects makes it easier to 
not only adapt the environment to changes in content but also makes it possible to 
react to the reorganisation of the displays in an effective fashion. Furthermore, any 
changes to the adaptation characteristics of the environment or the navigation 
application are localised within the aspects hence avoiding changes to multiple 
elements of the system that would have otherwise been required. 
There are also interesting observations to be made about design of aspect-oriented 
systems. Firstly, the use of ��	��	� as an application independent point of reference 
makes it possible to decouple the ��	��	���	�
�� from application specific 
content. This is similar to the use of a Persistent Root Class in [8] to decouple the 
persistence concern from application-specific data. Also, similar to [8], we can 
observe that the notion of one large AspectJ aspect (or one in any other AOP 
technique) modularising a crosscutting concern does not make sense. The three 
aspects and the ��	��	� interface together modularise adaptation. This further 
strengthens the argument initially presented in [8] that developers should utilise 
aspect-oriented and object-oriented abstractions together in a coherent framework to 
modularise a crosscutting concern. While different classes and AspectJ aspects 
modularise specific facets of a crosscutting concern, it is the framework binding them 
together that, in fact, aspectises the concern in question. 
Though our experience and observations in this paper are based on AspectJ, we are of 
the view that they will apply to other aspect-oriented approaches as well. As such we 
aim to employ other AOP frameworks such as JBoss [6] and AspectWerkz [2] for 
implementation of the same application in the future for comparative evaluation. 

References 
[1] "AspectJ Project", http://www.eclipse.org/aspectj/, 2004. 
[2] "AspectWerkz Home Page", http://aspectwerkz.codehaus.org, 2004. 
[3] T. Elrad, R. Filman, and A. Bader (eds.), "Theme Section on Aspect-Oriented Programming", 

Communications of ACM, Vol. 44, No. 10, 2001. 
[4] H. W. Gellersen, A. Schmidt, and M. Beigl, "Multi-Sensor Context-Awareness in Mobile 

Devices and Smart Artifacts", Mobile Networks and Applications, Vol. 7, No. 5, 2002. 
[5] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, "The Anatomy of a Context-Aware 

Application", ACM/IEEE MobiCom Conf., 1999.  
[6] "JBoss Aspect Oriented Programming Webpage", http://www.jboss.org/products/aop. 
[7] G. Kiczales et al., "Aspect-Oriented Programming", ECOOP, 1997, Springer-Verlag, Lecture 

Notes in Computer Science, 1241, pp. 220-242. 
[8] A. Rashid and R. Chitchyan, "Persistence as an Aspect", 2nd International Conference on 

Aspect-Oriented Software Development, 2003, ACM, pp. 120-129. 

                                                           
2 Change in location vector is the most appropriate way to identify that a display has been moved as 

it might not have been physically moved but simply rotated at its current position on the map. 


