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Most airline revenue optimization models assume capacity to be fixed by fleet assignment, and thus treat it as

deterministic. However, empirical data shows that on 40% of flights, capacity is updated at least once within

the booking horizon. Capacity updates can be caused by fleet-assignment re-optimizations or by short-term

operational problems. This paper proposes a first model to integrate the resulting capacity uncertainty in the

leg-based airline revenue management process. While assuming deterministic demand, the proposed model

includes stochastic scenarios to represent potential capacity updates. To derive optimal inventory controls,

we provide both a mixed-integer-program and a combinatorial solution approach, and discuss efficient ways

of optimizing the special case of a single capacity update. We also explore effects of denied boarding cost

and the model’s relationship to the static overbooking problem. We numerically evaluate the model on

empirically calibrated demand instances and benchmark it on the established deterministic approach and

an upper bound based on perfect hindsight. In addition, we show that the combinatorial solution approach

reduces the computational effort. Finally, we compare the static overbooking approach derived from the

capacity uncertainty model to existing EMSR-based approaches.
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1. Introduction

Classically, airline revenue management controls demand for capacitated, perishable products to

maximize revenue from ticket sales. A comprehensive overview of mathematical models and meth-

ods is provided by Talluri and van Ryzin (2004). The idea that capacity is limited is crucial to the

concept – one of the most basic restrictions of the revenue optimization problem is that one cannot
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sell more than there are units of capacity given. Most models consider the capacity restriction as

constant over the booking horizon.

Yet, in practice, flights’ capacity is anything but fixed. After assigning aircrafts to flights, airlines

publish a schedule and offer ticket reservations from almost one year prior to departure. Throughout

the booking horizon, aircraft assignments can change due to special sales events, adapted demand

forecasts, or changes in crew planning. Even shortly before departure, technical complications can

cause new aircrafts to be assigned.

To verify this observation, we analyze an empirical data set from a major European network

carrier, documenting the number of seats available to the economy compartment throughout the

booking horizon of 5,867 intercontinental flights departing in a single month of 2014. For 40% of

these flights, aircraft changes lead to capacity updates of at least 10% of the previous value. For 35%

of flights, capacity updates of at least 50% were reported. Domain experts indicate that more than

eight weeks prior to departure, updates are primarily caused by fleet assignment (71%), whereas

from two weeks prior to departure on, updates are primarily driven by operational difficulties (19%).

Classically, revenue management considers capacity updates only after they are announced, via

re-optimization. This approach is also applied at the airline that supplied the analyzed empirical

data: Inventory controls are optimized to maximize revenue for the initial capacity. Any announced

capacity update triggers a re-optimization. In a computational study, we benchmark the proposed

scenario-based model on this approach.

To illustrate the effects of capacity updates, consider two examples from the empirical data:

Between 201 and 172 days before departure, a re-optimization of the regular fleet assignment shrank

the economy compartment of all departures of a particular flight from Düsseldorf to New York

from 225 to 165 seats. This is unlikely to have caused denied boardings, as most bookings occur

later in the booking horizon. Nevertheless, when assuming a small capacity, revenue management

implements more restrictive inventory controls to reserve seats for valuable, late-booking customers.

Thus, the initial inventory controls were suboptimal for the actual, larger capacity. In a more

extreme example, one day before departure, the economy compartment for a flight from Munich to

New York shrank from 270 to 161 seats. This was most likely caused by operational difficulties. For

a fully booked flight, it could have caused 109 denied boardings, excluding effects from intentional

overbooking.

Existing models that do relax the fixed capacity assumption predominantly aim to integrate fleet

assignment and revenue management. For concepts such as ‘demand driven dispatch’ (Berge and

Hopperstad 1993), revenue management triggers capacity updates to adjust to demand variation.

We regard capacity updates that are controlled by revenue management as endogenous. In contrast,

this paper considers exogenous updates. After an aircraft change, exogenous capacity updates
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are announced to the revenue management department, but the automated algorithms do not

anticipate them. The idea that such updates can cause collateral damage when not anticipated

in the optimization model motivates our work. To our knowledge, only Wang and Regan (2002,

2006) propose an earlier revenue management model to account for uncertain capacity. As that

model is motivated by the idea of aircraft swaps, it assumes a single point in time when updates

are announced and only two possible capacities. However, the empirical data shows that capacity

updates can be announced at any time in the booking horizon, as their timing depends in part on the

events that trigger capacity changes. Furthermore, more than two final capacities can result from

aircraft changes in practice. We thus identify a research gap beyond endogenous capacity updates

and revenue management models regarding capacity as a deterministic and fixed parameter.

This paper contributes to reducing this gap as follows:

• We propose a first leg-based revenue management model that explicitly considers exogenous

capacity changes occuring at multiple times in the booking horizon and leading to an arbitrary

number of potential final capacities. We term this model the quantity-based revenue management

under capacity uncertainty (RMCU) problem, and numerically analyze its sensitivity to problem

characteristics, such as the time and magnitude of update.

• To solve the RMCU problem, we provide a mixed-integer program (MIP) as well as a com-

binatorial solution approach. In a computational study, we show that the combinatorial approach

solves the problem in less than 0.5 percent of the run time required to solve the MIP via CPLEX.

Furthermore, we suggest exploiting problem characteristics to efficiently derive solutions for the

special case of updates occurring only at a single point in time.

• Last but not least, we consider the effect of denied boarding cost and relate the RMCU to

static overbooking by transforming a static formulation of overbooking into an RMCU problem.

In the numerical study, we show that RMCU-based overbooking achieves comparable results to

EMSR-based approaches reviewed in Aydin et al. (2012).

This paper is organized as follows: The next section reviews related work, both on revenue

management under capacity uncertainty and on uncertain capacity utilization. Section 3 presents

the RMCU problem, a leg-based revenue management model assuming deterministic demand and

stochastic capacity. Next to a mixed-integer program formulation, this section introduces a combi-

natorial solution approach, analyzes the special case of a single capacity update, the effect of denied

boarding cost, and the problem’s relationship to static overbooking. To prepare the computational

study, we also state an upper bound on the expected revenue and model the common approach

of only re-optimizing revenue management when capacity updates are announced. Section 4 doc-

uments the results of benchmarking solution approaches and of analyzing their sensitivity. This

section also includes results that numerically illustrate our remarks on overbooking. Finally, we
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summarize our findings and their managerial implications and point out future research opportu-

nities.

2. Related Work

Two streams of revenue management research are closely related to the idea of accounting for

capacity uncertainty. On the one hand, the concept of overbooking entails controlling a virtual

capacity to account for uncertain capacity utilization. On the other hand, approaches aiming to

integrate fleet assignment and revenue management systematically trigger capacity updates to

compensate demand variation.

Overbooking was considered as early as 1958 (Beckmann and Bobkoski 1958); dynamic overbook-

ing models exist since the 1970s (Rothstein 1971). By selling tickets beyond the physical capacity,

airlines compensate for cancellations and no-shows. E.g., Rothstein (1971) and Subramanian et al.

(1999) model cancellations as a Markov process. More recently, Aydin et al. (2012) consider static

models of class-dependent cancellations and no-shows and a dynamic model that considers book-

ings and cancellations as streams of events. Topaloglu et al. (2012) propose open loop policies for

joint overbooking and capacity controls on a single flight leg.

Upgrading passengers when a compartment is depleted is a straight-forward approach to integrate

overbooking and capacity adaptation. This idea is first proposed by Alstrup et al. (1986): The

authors solve a dynamic overbooking problem with two segments by substitution. Karaesmen

and van Ryzin (2004) describe the possibility of multiple substitutable inventory classes. Both

approaches aim to compensate demand uncertainty by adjusting virtual capacity between the

aircraft’s compartments.

Insufficient overbooking and unanticipated capacity increases may cause spoilage, as seats remain

unsold. Excessive overbooking and unanticipated capacity decreases may cause spill, where valuable

demand is rejected and denied boardings occur (Belobaba and Farkas 1999). However, cancellations

mostly happen in increments of one. Updates to the fleet assignment result in significantly increased

or reduced numbers of seats. Therefore, overbooking approaches cannot be simply adapted to

consider uncertain capacity. Our model incorporates this uncertainty in the form of stochastic

scenarios, rather than as dynamic, incremental changes considered by most overbooking research.

Nevertheless, in the last part of the next section, we formalize the relationship between the two

problems. The respective remarks may serve as an inspiration for future research in this area.

Fleet assignment ideally pairs the largest aircraft with the flights that expect the highest and

most valuable demand (Barnhart et al. 2009). When revenue management can adapt fleet assign-

ment to accommodate demand variation, this is called i.a. ‘dynamic capacity management’ (Frank

et al. 2006), ‘demand driven swapping’ (Bish et al. 2004), or ‘demand driven dispatch’ (Berge and
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Hopperstad 1993). Berge and Hopperstad (1993) refer to a 1–5% revenue improvement caused by

relaxing the assumption of a fixed capacity. De Boer (2004) proposes a dynamic version of EMSR

called EMSRd. Numerical examples show that EMSRd can be very useful, however the best results

are achieved for instances with few fare classes. Frank et al. (2006) show positive effects from

continuously adjusted fleet assignments given dependent demand.

While organizational constraints mostly preclude automization in practice, such contributions

motivate manual re-fleeting processes aiming to compensate demand variation. In practice, these

are implemented via analyst communication across planning departments. As the resulting capacity

updates are not anticipated by the revenue management model, this results in further capacity

uncertainty – albeit of a well-meaning nature.

So far, capacity uncertainty in revenue management has been explicitly addressed only by Wang

and Regan (2002, 2006). In a leg-based model with uncertain demand, Wang and Regan (2002)

allow for a single possible capacity swap, which occurs at an a priori known point of time. Extend-

ing Liang (1999), the continous-time optimization model divides the time horizon to consider a

period before and a period after the swap. Wang and Regan (2002) present an optimal policy for

dealing with two potential capacities on a flight and mathematically prove the potential revenue

improvement. Their focus is also on preventing overbooking when the revenue risk from a potential

capacity decrease is too high.

In a second paper, Wang and Regan (2006) abandon the focus on overbooking and provide

further numerical results from a simulation study considering different capacities, demand mixes

and markets. The contribution focuses on endogenous capacity swaps: The optimal policy updates

repetitively over the booking horizon and is compared with heuristics that allow for only one update

on a particular time.

The model presented in this paper takes a perspective of discrete-time and deterministic demand.

Rather than allowing for a single capacity swap at a single point of time, we consider the possibility

of more than two potential capacities and allow for capacity updates at any point of time in the

booking horizon. This is motivated by our empirical analysis of capacity changes in the airline

industry, which are neither limited to a certain new capacity nor to a single time in the booking

horizon.

In the next section, we introduce the quantity-based revenue management under capacity uncer-

tainty problem.

3. Model and Solution Approaches

The model proposed here represents an alternative to that considered in Wang and Regan (2002,

2006): It allows for potential updates to occur at any time of the booking horizon and to result
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in an arbitrary number of new capacities. Our model considers quantity- and leg-based revenue

maximization and assumes independent, deterministic demand. It anticipates only a single capacity

update per departure – however, this could be remedied by resolving the model after each expected

time of update. As the revenue management problem is frequently solved independently for phys-

ical flight compartments, we consider only a single compartment per flight. To avoid overlapping

effects, this model does not account for no-shows and cancellations; all bookings require one unit of

capacity. The resulting revenue management under capacity uncertainty (RMCU) problem antici-

pates future capacity updates when optimizing the number of tickets to offer. The goal is to define

a global strategy of fare class availability, which applies until the capacity is updated. After such an

update, the global strategy is abandoned for a scenario-based strategy, which optimizes inventory

controls for the new capacity.

0760
100 seats, update probability 0.5

110 seats, update probability 0.2

50 seats, update probability 0.1

50 seats, update probability 0.2

Figure 1 Exemplary time line

For a small example, consider Figure 1. At the time of optimization, the global strategy considers

four possible scenarios: With probability 0.2, capacity will be updated to 50 seats at 60 days before

departure; with probability 0.1, capacity will be updated to 50 seats at 7 days before departure;

with probability 0.2, capacity will be updated to 110 seats at 7 days before departure; finally, with

probability 0.5, the initially announced capacity of 100 seats will never be updated. Whenever one

of the scenarios realizes, the corresponding scenario-based strategy is implemented.

3.1. Model Description

Let the booking horizon start at time t̂∈N and end with departure at time 0. The set F contains

all fare classes that can be offered. Revenue rf is fixed per fare class f ∈ F . For each fare class

f ∈ F and every time t∈ T := {t̂, . . . ,0}, expected demand is indicated by Dft ∈N. The number of

acceptable denied boardings is bounded by K; bi ∈N denotes the cost of the ith denied boarding,

i∈ {1, . . . ,K}. We assume that the denied boarding cost increases, i.e., b1 ≤ . . .≤ bK . The increase

may be linear or, as in the computational study, exponential.

We model capacity updates via a set of scenarios S. These scenarios describe all relevant com-

binations of update time and resulting capacity. Every scenario s ∈ S defines an update time
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ts ∈ T and a resulting capacity cs ∈ N. The probability of scenario s ∈ S is denoted by ps, where∑
s∈S p

s = 1.

A feasible solution of the RMCU is to define both a global strategy and for each scenario a

scenario-based strategy. The global strategy xft defines the number of tickets to offer in fare class

f ∈ F at time t ∈ T . This strategy is executed until scenario s ∈ S updates the capacity to cs at

time ts. Scenario s ∈ S triggers the scenario-based strategy xsft, f ∈ F , t ∈ T , which defines the

number of tickets offered in fare class f at time t≤ts. If the number of tickets offered between t̂

and ts + 1 exceeds capacity cs, no further tickets can be offered, i.e., xsft = 0, f ∈ F , t ∈ T , t≤ ts.

In addition, denied boardings result. In the following, the variable αsi ∈ {0,1} indicates whether

the ith boarding is denied in scenario s ∈ S, causing denied boarding cost bi. Thus, the resulting

revenue Rs(x, (xs, αs)) in scenario s∈ S equals

Rs(x, (xs, αs)) =
∑
f∈F

rf

(
ts+1∑
t=t̂

xft +
0∑

t=ts

xsft

)
−

K∑
i=1

biα
s
i .

The model’s objective is to maximize the expected revenue R(x, (xs, αs)s∈S) for such a strategy

set x∈Nt̂×|F |, (xs, αs)∈Nts×|F |, s∈ S, given by

R(x, (xs, αs)s∈S) =
∑
s∈S

psRs(x, (xs, αs)) =
∑
s∈S

ps

(∑
f∈F

rf

(
ts+1∑
t=t̂

xft +
0∑

t=ts

xsft

)
−

K∑
i=1

biα
s
i

)
.

A global strategy x∈Nt̂×|F | is called optimal, if for each scenario s∈ S there exists a scenario-based

strategy xs or denied boardings αs such that the expected revenue R(x, (xs, αs)s∈S) is maximal. Let

x∈Nt̂×|F | be a global strategy that is not necessarily optimal and let csr = cs−
∑ts+1

t=T

∑
f∈F xft be

the capacity remaining after time ts + 1, s∈ S. A scenario-based strategy xs and denied boardings

αs are optimal according to x, if (xs, αs) maximizes the revenue for the remaining capacity csr.

3.2. Mixed-Integer Program Formulation

An optimal solution to the RMCU problem can be derived via a mixed-integer program (MIP). In

addition to the already introduced variables x for the global strategy, xs, s ∈ S for the scenario-

based strategy, and αs for the denied boarding in s∈ S, we introduce decision variable zs ∈ {0,1} to

indicate the necessity of denied boardings starting at time ts in scenario s. The following RMCU-

MIP models the RMCU problem:
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(RMCU-MIP) max
∑
s∈S

ps

(∑
f∈F

rf

(
ts+1∑
t=t̂

xft +
0∑

t=ts

xsft

)
−

K∑
i=1

biα
s
i

)
∑
f∈F

(
ts+1∑
t=t̂

xft +
0∑

t=ts

xsft

)
≤ cs +

K∑
i=1

αsi ∀s∈ S (1)

K∑
i=1

αsi ≤Kzs ∀s∈ S (2)

xft ≤ Dft ∀t∈ T, f ∈ F (3)

xsft ≤ Dft(1− zs) ∀t∈ T, f ∈ F,s∈ S (4)

xft, x
s
ft ≥ 0 ∀t∈ T, f ∈ F, s∈ S

αsi , z
s ∈ {0,1} ∀i∈ {1, . . . ,K}, s∈ S.

Constraint (1) guarantees that the number of sold tickets, adjusted by potential denied boardings,

does not exceed the capacity in each scenario. Constraint (2) guarantees that zs = 1 if denied

boardings occur in scenario s. Constraint (3) restricts the number of sold tickets for the global

strategy to the expected demand Dft for each fare class f ∈ F at each point in time t ∈ T . Con-

straint (4) guarantees that no tickets can be offered in scenario s ∈ S if any denied boardings

occur, i.e. zs = 1. Otherwise, the number of tickets offered is bounded by the expected demand

Dft. Solving the RMCU-MIP produces a global strategy and scenario-based strategies maximizing

the expected revenue.

In the following, we introduce an alternative solution approach based on combinatorial opti-

mization. In general, combinatorial algorithms have the advantage of being more computationally

efficient, easy to implement, and easily adaptable as starting heuristics for more complex settings.

With regard to the RMCU, more complex settings may include extensions to a network-model or

to one of stochastic, dependent demand.

3.3. Combinatorial Solution Approach

The main idea of the combinatorial solution approach relies on the following properties of an

optimal global strategy and scenario-based strategies, which will be proven later:

1. If an optimal global strategy is known, then after the time ts, optimal scenario-based strategies

maximize the revenue for the remaining capacity.

2. If an optimal global strategy is not known, but the number of tickets offered until any time

ts is known, then maximizing the revenue for this number of tickets is an optimal global strategy.

Combining these properties reduces the problem of computing an optimal global strategy and

scenario-based strategies to computing the number of tickets to offer until any point ts, s ∈ S.
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Subsequently, we formally show the two properties and design a combinatorial algorithm based on

a longest path problem to compute an optimal number of tickets to offer.

The two properties call for solving subproblems of the original revenue management problem,

considering a subinterval in time and a new capacity available during that time. More formally, we

define the restricted deterministic revenue management (RDRM) problem R(t, t, c) by computing

the number of tickets xft to offer per fare class f ∈ F and time t≥ t≥ t respecting the expected

demand Dft and the capacity c ≥ 0 available at t so as to maximize the revenue R[t,t,c](x) :=∑
f∈F

∑t

t=t
rf · xft. We denote the optimal value by R(t, t, c). Note that the RDRM problem does

not anticipate any capacity updates. It can easily be solved by a greedy-algorithm, which sells

tickets in the most expensive fare class until either the demand or the capacity is exhausted. If

there is capacity left, it sells tickets in the next cheaper fare class and so on.

Formalizing the first property calls for additional notation: Let Tb denote the set of points in

time where an update may occur, i.e., Tb := {t ∈ T | ∃s ∈ S, ts = t} ∪ {t̂} = {t0, t1, . . . , tN} with

t0 = t̂≥ t1 ≥ . . .≥ tN . Let x be a global strategy. We then define ci(x) as the number of tickets to

offer in the time period [ti−1, ti− 1], i.e., ci(x) =
∑

f∈F
∑ti−1

t=ti−1
xft, i= 1, . . . ,N .

Lemma 1. Let x be an optimal global strategy. If cs − ci(x) ≥ 0, let xs be an optimal solution

for the RDRM problem R(ts, 0, cs − ci(x)) with ti = ts, s ∈ S. If cs − ci(x) < 0, define αs as the

necessary number of denied boardings. Then, x and (xs, αs), s∈ S, maximize the expected revenue

for the quantity-based revenue management under capacity uncertainty (RMCU) problem.

Proof. For simplicity, only consider the case of cs − ci(x)≥ 0 for all s ∈ S. Start by rewriting the

expected revenue

R(x, (xs, αs)s∈S) =
∑
s∈S

ps

(∑
f∈F

rf

(
ts+1∑
t=t̂

xft +
0∑

t=ts

xsft

)
−

K∑
i=1

biα
s
i

)

=
∑
s∈S

ps
∑
f∈F

rf

ts+1∑
t=t̂

xft +
∑
s∈S

psR[ts,0,cs−ci(x)](x
s),

since αsi = 0 for all s ∈ S. Assume that x in combination with xs as defined in the lemma is

not an optimal solution. On the other hand, let x̃s be scenario-based strategies such that x in

combination with x̃s maximizes the expected revenue. Hence, there exists a scenario s∗ ∈ S such

that R[ts
∗
,0,cs

∗−ci(x)](x̃
s∗)>R[ts

∗
,0,cs

∗−ci(x)](x
s∗). This contradicts the definition of xs as an optimal

solution to R(ts, 0, cs− ci(x)). Q.E.D.

According to this lemma, solving a deterministic revenue management problem for each scenario

generates the best scenario-based strategies for any global strategy. Now, assume that the optimal

global strategy of the RMCU is not known but that the number of tickets to offer in the periods

[ti−1, ti − 1], i ∈ {1, . . . ,N}, ti ∈ Tb, t0 = t̂, is known. Lemma 2 provides a way of computing an

optimal global strategy using this information.
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Lemma 2. Let x be an optimal global strategy. Let x̃ be a global strategy, such that the

restricted strategy for the time period [ti−1, ti− 1], denoted by x̃[ti−1,ti−1], is an optimal solution to

R(ti−1, ti− 1, ci(x)), i= 1, . . . ,N . Then x̃ is an optimal global strategy.

Proof. Since ci(x) = ci(x̃) := ci for all i = 1, . . . ,N , both induce the same optimal scenario-based

strategies xs (see Lemma 1). We can now re-formulate the expected revenue as

R(x, (xs, αs)s∈S) =
∑
s∈S

ps

(∑
f∈F

rf

(
ts+1∑
t=t̂

xft +
0∑

t=ts

xsft

)
−

K∑
i=1

biα
s
i

)

=
∑
s∈S

psR[ti−1,ti−1,ci](x[ti−1,ti−1]) +
∑
s∈S

ps(
∑
f∈F

rf

0∑
t=ts

xsft−
K∑
i=1

biα
s
i ).

If x̃ is not an optimal solution, there exists a period in time [ti−1, ti− 1], such that

R[ti−1,ti−1,ci](x[ti−1,ti−1])>R[ti−1,ti−1,ci](x̃[ti−1,ti−1]).

This is a contradiction to the choice of x̃. Q.E.D.

Thus, solving the RMCU problem requires only finding the optimal number of tickets offered in

every time period [ti−1, ti − 1], i = 1, . . . ,N . The following algorithm computes these values as a

longest path in an acyclic graph as illustrated by Figure 2.

For any RMCU instance, define the associated RMCU longest path instance as follows: Every

vertex (t, c) ∈ V in the corresponding graph G = (V,A) consists of a tuple with t ∈ Tb and c ∈

{0, . . . , cmax}, cmax = maxs∈S{cs}. Add the source vertex (t0,0) and the terminal vertex (tN+1, cmax)

with t0 = t̂ and tN+1 = −1. The arc set A connects all pairs (ti, c) and (ti+1, c
′), i ∈ {0, . . . ,N},

c, c′ ∈ {0, . . . , cmax}, c≤ c′. Now, associate a revenue r((ti, c), (ti+1, c
′)) to an arc by

r((ti, c), (ti+1, c
′)) =

∑
s∈S

ts≤ti+1

psR(ti, ti+1− 1, c′− c) +
∑
s∈S

ts=ti+1

psR(ti+1,0, c
s− c′)

and define R(ti+1,0, c
s−c′) =

∑c′−cs

j=1 bi if cs−c′ < 0. Finally, set r((ti, c), (ti+1, c
′)) = 0, if ti+1 = tN+1.

Any ((t0,0), (tN+1, cmax))-path visiting the vertices (t1, c1), . . . , (tN , cN) represents a global strategy

offering ci− ci−1 tickets during the period [ti−1, ti− 1].

In the following, we prove that solving the RMCU longest path problem equals solving the

RMCU problem.

Theorem 1. A longest path in the RMCU longest path instance triggers an optimal global strat-

egy and scenario-based strategies for an RMCU instance.

Proof. Let q be a ((t0,0), (tN+1, cmax))-path visiting the vertices (t1, c1), . . ., (tN , cN). The expected

revenue for the associated global strategy x, offering ci− ci−1 tickets during the period [ti−1, ti−1]
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tN , c

ti+1, c
′

t1, cmax

t2, cmax

ti, cmax

tN , cmax

tN+1, cmax

0

0 00

r((ti, c), (ti+1, c
′))

0

0

0 0
0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...

...

Figure 2 RMCU longest path instance

and the corresponding scenario-based strategies xs, s∈ S, or αs respectively, equals the length r(q)

of this path q:

R(x, (xs, αs)s∈S) =
∑
s∈S

ps

(∑
f∈F

rf

(
ts−1∑
t=t̂

xft +
0∑

t=ts

xsft

)
−

K∑
i=1

biα
s
i

)
=
∑
s∈S

ps
∑
ti∈Tb
ti≥ts

R(ti, ti+1− 1, ci− ci−1) +
∑
s∈S

ps ·R(ts, 0, cs−max
ti∈Tb
ti≥ts

{ci})

=
N∑
i=1

∑
s∈S
ts≤ti

psR(ti−1, ti− 1, ci− ci−1) +
N∑
i=1

∑
s∈S
ts=ti

ps ·R(ti+1,0, c
s− ci)

=
N∑
i=1

r((ti, ci), (ti+1, ci+1)) = r(q)

Hence, finding a path with maximum length represents an optimal global strategy. Q.E.D.

Since the graph G is acyclic, a modified version of the Dijkstra algorithm can compute such a path

in O(|A|). The number of arcs is bounded by |Tb| · c2max. Fischer and Helmberg (2014) propose to

speed up solving this problem using the graph’s special layer-structure.

The appendix includes an algorithmic representation of the combinatorial approach as imple-

mented for the computational study.

3.4. Exploring the Role of Denied Boarding Cost

Clearly, the parameterization of the denied boarding cost plays an important role for the RMCU

problem. Therefore, this section theoretically explores the effects of high versus low denied boarding
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cost. To that end, we consider a given instance of the RMCU problem at time t̂ ∈ N. For each

fare class f ∈ F , let rf indicate the resulting revenue; for any point in time t∈ T , let the expected

demand be indicated by Dft ∈N. For a given parameter vector of denied boarding cost b∈RK , let

R∗b denote the maximum expected revenue.

We start by considering the relation of two denied boarding cost vectors on their corresponding

maximum expected revenue. The first lemma states that for higher boarding cost, the expected

revenue decreases.

Lemma 3. Let b1 ∈RK and b2 ∈RK be two different denied boarding cost vectors. If b1i ≤ b2i for

all i∈ {1, . . . ,K}, then R∗
b2
≤R∗

b1
.

Proof. Let xi be an optimal global strategy for bi ∈ RK , i ∈ {1,2}. Let (xis, αis) be the corre-

sponding optimal scenario-based strategies. From this, we obtain:

R∗b2 = R(x2, (x2s, α2s)s∈S)

=
∑
s∈S

ps

(∑
f∈F

rf

(
ts−1∑
t=t̂

x2
ft +

0∑
t=ts

x2s
ft

)
−

K∑
i=1

b2iα
1s
i

)

≤
∑
s∈S

ps

(∑
f∈F

rf

(
ts−1∑
t=t̂

x2
ft +

0∑
t=ts

x2s
ft

)
−

K∑
i=1

b1iα
1s
i

)

≤
∑
s∈S

ps

(∑
f∈F

rf

(
ts−1∑
t=t̂

x1
ft +

0∑
t=ts

x1s
ft

)
−

K∑
i=1

b2iα
2s
i

)
= R(x1, (x2s, α2s)s∈S) =R∗b1 .

This proves the lemma. Q.E.D.

Next, we consider properties of optimal global strategies, given very low or very high denied

boarding cost. For low cost, an optimal global strategy offers all tickets at all points of time. Note

that for bK >minf∈F rf , this is not true.

Lemma 4. Let the maximum denied boarding cost bK be lower than the revenue earned by the

cheapest fare class, i.e., bK ≤minf∈F rf . Then, for a sufficiently large K, one optimal global strategy

x∗ offers all fare classes throughout the booking horizon, i.e., x∗ft = 1 for all f ∈ F , t∈ T .

Proof. Assume that x̃ is an optimal global strategy, where x̃f ′t′ = 0 for f ′ ∈ F and t′ ∈ T . Con-

sider a second strategy x, where xf ′t′ = 1 and xft = x̃ft otherwise. Let x̃s, xs and α̃s, αs be the

corresponding optimal scenario-based strategies. The change in the global strategy solely influences

scenarios s∈ S with ts + 1≤ t′. We denote this set by St′ , i.e., St′ = {s∈ S | ts + 1≤ t′}. Let s∈ St′

be such a scenario. Since the number of tickets sold before ts increases by 1, at most one more

denied boarding results. Thus, denied boarding cost increase by at most αK .
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We then obtain

R(x, (xs, αs)s∈S)−R(x̃, (x̃s, α̃s)s∈S)≥
∑
s∈St′

ps (rf ′ − bK)≥ 0

due to the assumption that bK ≤minf∈F rf . Thus, selling all tickets is an optimal global strategy.

Q.E.D.

Finally, we consider high denied boarding cost. Let xs be an optimal strategy for scenario

s ∈ S. We define an upper bound on the expected revenue for the considered instance: Rmax =∑
s∈S p

s
∑

f∈F
∑

t∈T rftx
s
ft. For high denied boarding cost, an optimal global strategy never induces

denied boardings in any scenario.

Lemma 5. Let the cost of the first denied boarding exceed maxs∈S{ 1
ps
Rmax}. If x∗ is an optimal

global strategy, then for the corresponding optimal scenario-based strategies xs or denied boardings

alphas, alphas = 0 holds.

Proof. Let x̃ indicate an optimal global strategy. Let s′ ∈ S denote a scenario, where the number

of sold tickets at time ts
′

surpasses cs
′
. Then,

R(x̃, (x̃s, α̃s)) ≤ Rmax− ps
′
· b1

< Rmax− ps
′
·max
s∈S
{ 1

ps
Rmax}

≤ 0.

Q.E.D.

This property allows us to improve the RMCU solution algorithm: Let Tb := {t∈ T | ∃s∈ S s.t. ts =

t}= {t1, . . . , tN}. Then, at most cmin
i−1 tickets are sold during the interval of time [ti−1, ti − 1] with

cmin
i−1 = minj=i,...,N{mins∈S{cs | ts = tj}}. Thus, in the corresponding longest path instance, we can

delete all nodes (ti, c) with c > cmin
i .

Note that the bound obtained in Lemma 5 is tight: Consider an instance with two points in time,

offering revenues 1 and ε, and two scenarios with c0 = 1 and c1 = 0. Table 1 shows the revenue

obtained in scenarios s0 and s1 as well as the scenarios’ expected revenue R(). p0 and p1 indicate

the respective scenario’s probability. The first global strategy, indicated by 1− 0, accepts the first

customer request but denies the second request. The second global strategy, indicated by 0− 1,

denied the first customer request but accepts the second request.

Let 0< p1 < p0 and set b1 = 1
p1
·Rmax = 1

p1
· (1p0). Then

R(1− 0) = p0 + p1(1− b1) = p0 + p1− p1 · b1

= p0 + p1− p1 ·
p0
p1

= p1

Hence, in this instance and for p1 < 0.5 and p0 · ε < p1, the strategy inducing a denied boarding

in scenario s1 earns more expected revenue than the strategy inducing no denied boardings.
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Table 1 Exemplary RMCU instance

Global Strategy Revenue in s0 Revenue in s1 Expected revenue R()

1-0 1 1− b1 p0 + p1(1− b1)
0-1 ε 0 p0 · ε

3.5. Exploiting the Special Case of a Single Capacity Update

Finally, we consider the special case of a single capacity update, where the final capacity is

announced at a single point in time t1. As before, we model the set of possible resulting capacities

by a set of scenarios S. Note that a single update means that ts = t1 for any scenario s ∈ S. If no

change is announced, the flight departs with the original capacity of c0. For simplicity we do not

model this as an additional scenario. The probability of change is given by p :=
∑

s∈S p
s with p≤ 1.

Using Lemma 1 and Lemma 2, we can model the expected revenue as a function R(c) depending

on the capacity c used until time t1, c≥ 0. This function is given by

R(c) :=R(t̂, t1− 1, c) +
∑
s∈S

ps ·R(t1,0, c
s− c) + (1− p) ·R(t1,0, c

0− c).

The objective of the RMCU problem with a single update is to maximize R(c). This function

R(c) extends the salvage function introduced by Wang and Regan (2006) in two ways: Firstly,

it considers more than two scenarios and secondly, it accounts for revenue obtained during time

period [t̂, t1 − 1]. Finally, as opposed to the salvage function from Wang and Regan (2006), R(c)

is not monotonically increasing and concave in c. However, we can prove that R(c) is piecewise

linear and concave, as argued by the following Lemma 6. We exploit these properties to obtain an

efficient algorithm to solve the RMCU problem.

Lemma 6. The function R(c) is piecewise linear and concave.

Proof. R(c) is the weighted sum over the functions R(t̂, t1−1, c), R(t1,0, c
0− c) and R(t1,0, c

s− c),
s ∈ S. These functions are piecewise linear and concave since their derivative is monotonically

decreasing. Since the sum of concave functions leads to a concave function and the same holds for

the piecewise linearity, we have proven these properties. Q.E.D.

Figure 3 illustrates the proof given above: Function R(t̂, t1 − 1, c) is monotonically increasing by

increasing values of the capacity c. However, the other functions R(ti,0, c
i− c) are monotonically

decreasing. The values of the functions are plotted on the y-axis according to the different values

of c plotted on the x-axis. The capacity in scenario 1 is lower than the original capacity c0 and

the capacity in scenario 2 is higher. If cs − c is negative, the function R(·) represents the denied

boarding cost.

A straightforward approach to finding the value c∗ that maximizes R(c) is to evaluate the func-

tion for all c ∈ {0, . . . , cmax} with cmax = maxs∈S{cs}. However, we can improve the computational
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Figure 3 Revenue functions R(·) depending on capacity c

efficiency as follows. Firstly, R(c) =−∞ for c >mins∈S{cs+K}, since at most K denied boardings

are allowed. Secondly, we need to consider only capacities where one of the functions R(t̂, t1−1, c),

R(t1,0, c
s− c) or R(t1,0, c

0− c), s ∈ S changes slope. In the simplest case, the capacity c exceeds

the capacity of any scenario cs and the K following values due to the non-linear denied boarding

costs, i.e., c= cs, s ∈ S and c= cs + `, ` ∈ {1, . . . ,K}. Furthermore, the function’s slope changes if

all tickets are offered in one fare class and the strategy is switched to offering tickets to the next

cheaper fare class.

Formally, we obtain these values by defining D1
f as the cumulative demand of the fare class f ∈ F

from t̂ to t1 − 1, i.e., D1
f :=

∑t1−1
t=t̂

Dft, and D0
f as the cumulative demand of the fare class f ∈ F

from t1 to 0, i.e., D0
f :=

∑0

t=t1
Dft. Let the fare classes be ordered according to their value, i.e.,

r1 ≥ . . .≥ r|F |. Then the slope changes if c=
∑τ

f=1D
1
f , or cs − c=

∑τ

f=1D
0
f , τ = 1, . . . , |F |, s ∈ S.

Just considering these values for the capacity used until time t1 guarantees an optimal solution.

Lemma 7. There always exists a capacity c∗ maximizing the function R(c) out of the following

set C,

C : = {0}∪ {c∈N | cs = c+ `, s∈ S, `∈ {0, . . . ,K}}

∪{c∈N | c=
τ∑
f=1

D1
f , τ = 1, . . . , |F |}

∪{c∈N | cs− c=
τ∑
f=1

D0
f , τ = 1, . . . , |F |, s∈ S}.

Proof. Since function R(c) is piecewise linear and concave, an optimal solution will be found

at one of the points where the function’s slope changes. This happens if one of the functions

R(t̂, t1− 1, c), R(t1,0, c
0− c), or R(t1,0, c

s− c), s ∈ S changes their slope. These points define the
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set C. Q.E.D.

The set C contains at most 1 + |S|+K + |F |+ |S| · |F | different values. Using a binary search,

we just need to compute for log(|C|) many different points c ∈ C the function values R(c) and

R(c+ 1). The evaluation of R(c) and R(c+ 1) determines whether the function is increasing or

decreasing. If R(c)−R(c+ 1)> 0, we change the lower interval bound of the considered interval to

its midpoint. If R(c)−R(c+ 1)< 0, we change the upper interval bound of the considered interval.

Finally, if R(c)−R(c+ 1) = 0 or the interval bounds match, the value of c is optimal. R(c) can

be computed in linear time depending on the number of fare classes through the greedy algorithm

and some preliminary sorting. Thus, runtime is O (log(1 + |S|+K + |F |+ |S| · |F |) ·max{|S|, |F |}).

This is much more efficient than solving the longest path problem in roughly O(c2max · t̂2).

The ideas used to obtain faster algorithms for the case of a single capacity update cannot be

trivially extended to the case of multiple change events. First of all, it is not clear whether the

expected revenue function, which in the latter case depends on several variables, remains concave.

If the expected revenue function is not concave, no binary search can be performed. Furthermore,

the set of relevant capacity values, in the single update denoted by C, is much more complicated

to describe.

3.6. RMCU and Static Overbooking

This subsection highlights the close connection of the RMCU problem to a simple static overbooking

problem aiming to compensate for no-shows. Consider an overbooking model that assumes perfect

knowledge on the expected demand Dft ∈N in each fare class f ∈ F to any point in time t∈ T , on

the corresponding revenue rf , and on the physical capacity c0. At t= 0, the flight departs, but a

certain number of passengers do not show up and therefore do not utilize capacity.

For every fare class i, we assume a given probability βi of an accepted customer showing up and

requiring a seat. Then, static overbooking aims to define a total authorized capacity b. Given this

authorized capacity, revenue management can calculate the number of customers to accept per

class.

To demonstrate the relationship of uncertain capacity and overbooking, we transform the static

overbooking problem into an RMCU problem. Let c0 be the physical capacity. For a number of

scenarios N , we define alternative expected numbers of no-shows n1, . . . , nN ∈ N. For instance,

given overall show-up probability β, we may compute the probability pj that nj no-shows happen,

j ∈ {1, . . . ,N}. According to these values, we can transform the uncertain number of no-shows to a

scenario setting. For each scenario sj ∈ S, the update time is 0 and the final capacity is csj = c0 +nj.

The probability of scenario sj ∈ S is given by psj = pj.
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As the resulting strategy accounts for the cost of denied boardings, it will obtain more expected

revenue than the strategy of not overbooking at all or of statically overbooking for the expected

average number of no-shows (termed EMSR/NO and EMSR/MD respectively in Aydin et al.

(2012)). Furthermore, as opposed to the static approaches EMSR/Risk and EMSR/SL proposed

in Aydin et al. (2012), it does not necessarily assume a binomial distribution of no-shows.

The RMCU problem for overbooking is a special case of the RMCU with a single capacity

update. Thus, the algorithm proposed in Subsection 3.5 can solve the problem. However, in the

following, we propose an alternative greedy algorithm. While this alternative comes at potentially

higher computation cost, its simple nature and close relationship to the greedy-algorithm for the

deterministic revenue management problem render it interesting.

The idea of the algorithm is to iteratively decide on whether to offer one more ticket. This

decision solely depends on a so-called relative revenue and not on the capacity limit c0. A ticked is

sold as long as this relative revenue is positive. More formally, assume c̃ tickets to be already sold.

Let rmax represent the revenue of the most expensive fare class, for which not all tickets have been

sold yet. Then, compute the relative revenue r̃ by including the potential denied boarding cost and

obtain

r̃= rmax−
∑
s∈S
c̃≥cs

psbc̃+1−cs .

If r̃ > 0, offer the ticket, increase c̃ by one and update the relative revenue. If r̃≤ 0, offer no further

tickets. This leads to an optimal strategy, which can be easily shown by a proof of contradiction.

We consider a set of relevant instances as a numerical example in Section 4. Of course, we are

aware of much more sophisticated published approaches to overbooking such as described in Aydin

et al. (2012) and Topaloglu et al. (2012). Nevertheless, we conclude that this detail and a more

thorough comparison to common overbooking methods may be interesting for future research.

Finally, while the discussion above showed that solution strategies for the RMCU problem can

be applied to static overbooking problems, this cannot be trivially reversed: The RMCU problem

cannot be solved by applying existing overbooking strategies. Overbooking models commonly view

cancellations and no-shows as occurring in increments of one, excluding group cancellations. How-

ever, the RMCU problem considers capacity updates to occur in arbitrary increments, as assigning

a new aircraft may increase or decrease capacity by any multiple of one seat.

4. Computational Study

This section describes the results of a computational study used to evaluate RMCU solution

performance given varying problem characteristics. First, it documents the experimental setup.

Subsequently, it introduces the implemented benchmark strategies. Finally, it presents the study’s

numerical results and highlights implications for the model’s behavior.
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Table 2 Fare class value and demand

Fare Class 1 2 3 4 5 6 7 8 9

Value 1.00 0.78 0.65 0.53 0.41 0.31 0.22 0.16 0.12

Demand 7% 8% 5% 6% 10% 8% 16% 25% 15%

4.1. Experimental Set Up

In accordance with the leg-based model, all evaluated problem instances consider a single flight

and a single compartment. Therefore, every possible final capacity can be described by a single

parameter, namely the number of available seats. The initial capacity is identical for all instances

and is set to 100. Four alternative final capacities (50, 90, 110, 150) result from a capacity change

increasing or decreasing the initial capacity by 10% or 50%.

Over a booking horizon of 360 days, nine fare classes are offered within the single compartment.

When calibrating the experimental setup, this number of fare classes was found sufficiently large

to observe relevant effects without unnecessarily increasing complexity. Revenue per fare class

increases exponentially from the cheapest class, r9, to the most expensive class, r1. The value of

each fare class is listed in Table 2. This table expresses revenue not in absolute currency but in

terms of relative price indeces. Fares are calibrated based on empirical airline data describing the

average revenue earned per class in the economy compartment.

Both the distribution of request arrivals over the booking horizon and that of requests over fare

classes are parameterized to fit empirical distributions. The resulting demand arrival distribution

implements the idea of low-value demand arriving before high-value demand, but allows for over-

laps. Given an independent demand model, every booking request exclusively targets one fare class.

43% of customers request earlier than 200 days before departure, but they only book tickets for

the four cheapest classes. From 201 to 50 days before departure, another 21% of customers request.

From 50 days before departure until departure, the final 36% of customers request, focusing mostly

on the four most expensive classes. The demand share per fare class is listed in Table 2. There are

no cancellations or no-shows, i.e., all bookings turn into passengers expecting to board.

The denied boarding cost calculation is based on input from industry experts: In practice, the

airline does not decide whom to deny boarding, but allows passengers to volunteer. To approximate

the resulting cost, the model is parameterized to assume the first denied boarding will incur costs

that correspond to the average yield expected based on the flight’s demand forecast. Therefore,

the cost of the first denied boarding depends on the demand scenario; in terms of fare indices, it

varies between 0.352 and 0.356. With every further denied boarding, the cost increases by a factor
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Table 3 Parameterization of problem instances

Parameter Levels Values

Demand level 3 60%, 120%, 180%

Update probability
∑

s∈S p
s 21 20%, 21%, ..., 40%

Magnitudes of change 4 +10%/−10%, +50%/−10%, +10%/−50%, +50%/−50%

No. of update times |Tb| 2 5, 10

Update times Tb 3 200-150, 200-0, 50-0 days before departure

Probability ratios of change 3 1:3, 1:1, 3:1 (positive:negative)

of 1.1. Consequentially, from the 11th denied boarding on, the cost surpasses the value of the most

expensive class.

Note that in contrast to demand and fare class value, capacity changes were not calibrated to

fit empirical data. Instead, we decided for a systematic variation to explore the model’s behavior.

As a result, the general study spans 4,536 test instances. Table 3 describes the parameterization of

problem instances, indicating the relevant notation and the number of variation levels. Instances

were created for three levels of demand in percent of capacity, 21 levels of overall change probability,

four combinations of change magnitudes, two potential numbers of change events, three degrees of

change timing, and three combinations of scenario probability. For the purpose of this study, we

assume perfect knowledge of both expected demand and scenario probabilities.

In addition to the RMCU problem, we implemented two benchmark approaches: BLIND rep-

resents an industry standard approach of defining the global strategy according to the initially

planned capacity; EX POST calculates an upper revenue bound by using perfect information on

whether a capacity change will actually occur to implement the best deterministic strategy.

4.2. Bounds on the expected revenue

To evaluate and benchmark the newly introduced RMCU problem and its solution, we develop

an upper and lower bound for the expected revenue. The upper bound, EX POST, is based on a

perfect knowledge of the final capacity (as available only ex post, in hindsight) and the lower bound,

BLIND, on a planner ignoring (being blind with regard to) potential future capacity updates.

EX POST uses perfect hindsight information on the final capacity. Based on this, it chooses a

revenue optimal strategy x∗s to match the realized scenario s ∈ S, which maximized the revenue

according to the capacity cs. The resulting expected revenue is

R(x∗s, s∈ S) =
∑
s∈S

ps(
0∑
t=t̂

∑
f∈F

x∗sft).
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This is an upper bound on the optimal solution of RMCU: In every scenario s ∈ S, the revenue

obtained by combining the global and the scenario-based strategy is smaller or equal to the revenue

obtained by x∗s.

BLIND neglects potential capacity updates and defines the global strategy x according to the ini-

tially announced capacity. Note that this strategy adapts whenever a capacity update is announced,

by re-optimizing the allocation of the newly available capacity according to the demand expected

from that time on. Since this global strategy is based on a single scenario, it represents a feasible

solution to the RMCU problem. Accordingly, the expected revenue for BLIND is smaller or equal

to the optimal RMCU solution.

Note that BLIND may be arbitrarily bad compared to RMCU. To show this, consider a booking

horizon of t̂= n+ 2, n ∈N. In the first n points in time, revenue equals ε, ε > 0. Two days before

departure, no customer requests, but one day before departure a request with a revenue of 1 arrives.

Now, consider two scenarios s0, s1 where s0 is the basic scenario. The scenario s1 has a capacity

of cs1 = 1 and an update probability of ps1 > ε two days before departure, i.e., ts1 = 2. The basic

scenario has a capacity of cs0 = n+ 1 with a probability ps0 = 1− ps1 . Finally, let denied boarding

cost bi be 1 for i= 1, . . . , t̂.

Table 4 compares the expected revenue resulting from BLIND and a SIMPLE strategy, which

offers a seat to the last customer:

Table 4 Exemplary expected revenue from BLIND and SIMPLE

Global Strategy Revenue in s0 Revenue in s1 Expected Revenue

BLIND ε ·n+ 1 ε ·n− (n− 1) · 1 ε ·n+ p0− p1(n− 1)
SIMPLE 1 1 1

Next, consider the absolute gap between the expected revenue of BLIND and RMCU, as denoted

by R(BLIND) and R(RMCU). Since the expected revenue obtained by SIMPLE is a lower bound

on the expected revenue of RMCU, the absolute gap is lower bounded by

R(RMCU)−R(BLIND) ≥ 1− (ε ·n+ p0− p1(n− 1)) = n · (p1− ε).

For large n, the right hand side tends linearely towards infinity. Hence, the gap may be arbitrarily

large.

4.3. Numerical Results

This section first considers the revenue increase from the BLIND to the RMCU solution across all

instances. Subsequently, we consider revenue as depending on update probability, timing, direction,

and on the relationship between demand volume and the updates’ direction.
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Figure 5 Performance of RMCU and BLIND approaches given different degrees of overall update probability

Figure 4 shows the performance gap between the RMCU solution and BLIND in percent of

the latter. In 756 instances (17%), all solutions perform equally well. Analysis shows that this

group includes no instances including a possible capacity change of -50%. In 1,906 instances (42%),

RMCU and BLIND perform equally well, but inferior to EX POST. There appears to be no clear

pattern for this behavior. For 1,874 instances (41%), RMCU is clearly superior to BLIND. RMCU’s

advantage is below 0.5% in 1,308 instances (29%), between 0.5% and 5% in 304 instances (7%)

and even larger for the remaining 262 instances (5%).

To evaluate the influence of the overall update probability, we tested 21 probability levels ranging

from 20% to 40% in steps of 1%. Figure 5 shows the results by plotting the revenue gained from

RMCU and BLIND in terms of the upper revenue bound computed by EX POST. The performance

gap between RMCU and BLIND increases with the update probability. This is intuitive, as the

information advantage of the stochastic approach increases in these cases. Note that the relationship

between update probability and solution performance is almost, but not quite, linear. In all further

analyses, we consider an overall update probability of 40%.
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Figure 6 Performance of RMCU and BLIND approaches given differences in potential update timing

Figure 6 illustrates the performance of RMCU and BLIND in percent of EX POST when the

timing of capacity updates varies. We vary both the number of possible update times and their

timing within the booking horizon. In the left panel, the x-axis depicts two potential numbers of

update times, 5 and 10. Both solutions perform better with a lower number of potential update

times. However, BLIND’s decline in performance given an increasing number of update times is sig-

nificantly steeper than that of RMCU. We conclude that, given accurate scenario probabilities, the

number of scenarios barely affects RMCU performance. However, we expect that for an increasing

number of possible update times, estimating accurate scenario probabilities becomes more difficult.

In the right panel of Figure 6, the x-axis depicts alternative update timing through three time

intervals: Early updates are uniformly distributed between 200 and 150 days before departure;

intermediate updates are uniformly distributed between 200 and 0 days before departure; late

updates are uniformly distributed between 50 and 0 days before departure. Our results show that

more revenue is lost when updates occur late in the booking horizon. However, RMCU does not

seem to be as vulnerable to this effect as BLIND: Whereas BLIND’s revenue gap to EX POST

increases by 6.3 percent points, RMCU’s revenue gap increases by only 2.3 percent points.

Figure 7 illustrates the performance of RMCU and BLIND in terms of EX POST when the

quality of capacity updates is varied. In the left panel, the x-axis depicts four potential sets of

relative differences between the initial capacity and the alternative capacities, assuming that three

final capacities are possible. The analysis considered changes of +10% vs. −10%, +50% vs. −10%,

+10% vs. −50%, and +50% vs. −50%. Intuitively, a larger magnitude of change will degrade

revenue performance for both compared approaches. When capacity increases, employing RMCU

does not make a difference – this is due to the independent demand model and lack of capacity

cost considered in this study. However, when capacity strongly decreases, the RMCU solution’s
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Figure 7 Performance of RMCU and BLIND approaches given differences in the quality of capacity updates

advantage over BLIND increases. This is due to potential denied boardings being anticipated by

RMCU, so that the resulting denied boarding costs can be minimized.

The right panel of Figure 7 confirms this finding: Here, the magnitude of updates is described

by a probability ratio of increase vs. decrease. The x-axis represents three probability ratios of a

change increasing the capacity to a change decreasing the capacity: 3:1, 1:1, and 1:3. In line with

the previous results, a high probability for a capacity decrease increases the advantage of RMCU.

Figure 8 considers solution performance in terms of the relationship between the ratio of demand

volume and capacity. The left panel splits the set of instances by the ratio of demand volume to

initial capacity by 60%, 120%, and 180% along the x-axis. Note that the distribution of requests

over fare classes is identical across instances. When the demand ratio is low, RMCU only slightly

outperforms the BLIND solution. This is due to both solutions accepting all potential requests in

most instances, capacity increases rarely exceed 40%. As this study models demand as independent,

all inventory controls are motivated by scarce capacity. We expect divergent results for models that

include dependent demand.

RMCU clearly outperforms BLIND, by 3.64 percent points, when demand slightly exceeds the

initial capacity. According to our information, this is the most frequently observed situation in prac-

tice. For very high levels of demand, the performance gap between RMCU and BLIND decreases

again, to 1.09 percent points. In these cases, an unexpected capacity increase can be compensated

even by BLIND, as the number of future requests remains high.

Finally, the right panel of Figure 8 depicts instances experiencing desirable versus those with

undesirable capacity updates. From the point of view of revenue management, updates are desirable

if they improve the ratio between the expected demand and the final capacity. If demand exceeds
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Figure 8 Performance of RMCU and BLIND approaches given the relationship of demand volume and capacity

capacity, revenue management calls for a capacity increase. Therefore, for high demand volumes,

capacity increases are more desirable than decreases; capacity decreases are undesirable. For low

demand volumes, capacity decreases are desirable while capacity increases are undesirable.

In accordance with our expectations, the gap between RMCU and BLIND is particularly large

(1.08 percent points) when undesirable capacity updates are probable. The gap grows further when

excluding those instances where RMCU and BLIND achieve the same revenue – however, for the

sake of consistency, these instances are included in all results given here.

When the update is undesirable, the stochastic solution prepares a strategy that alleviates the

negative effects, i.e. spoilage or spill. When updates are most likely of a desirable quality, RMCU

and BLIND perform equally well in the vast majority of instances. Note that such desirable updates

are the objective of research aiming to further the integration of fleet assignment and revenue

management. Our final result therefore strengthens the motivation for research on compensating

undesirable exogenous capacity changes.

4.4. Computational Performance

In Section 3.3, we propose a combinatorial algorithm as a computationally more efficient approach

to solving the RMCU problem. Here, we compare this algorithm’s run time to the run time required

by the conventional solver CPLEX when optimizing the MIP-formulation given in Section 3.2.

Run times were recorded when solving a set of benchmark instances on a 64-bit Windows 10

system with an Intel Core i7-7500U CPU with 2.7 GHz and 16 GB RAM. In line with the previously

discussed setup, the instances feature demand volumes that randomly vary from 60% to 180%.

Customer arrivals are uniformly distributed across the booking horizons and over fare classes. New

capacities vary from 50% to 150% of the initial capacity. Change times are drawn from a uniform
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distribution over the booking horizon of 360 days. Instances differ in the number of potential

changes (2, 4, 8, or 16) and in the number of potential new capacities (also 2, 4, 8, or 16). Thus, in

the most extreme case, an instance can include 257 scenarios (16×16 combinations of new capacity

and change time in addition to the original capacity). The initial capacity can be 100, 250, 500,

750, or 1,000. We also vary the number of fares by considering ten alternative fare structures,

which include ten to 100 fares in steps of ten. Fares always range from 100 to 1,000, so that fare

differences shrink with an increasing number of fares. Thus, we differentiate 800 distinct variants of

scenario set, initial capacity, and fare structure. For each variant, we draw 100 demand instances,

arriving at 80,000 problem instances.

To exclude implementation issues, we benchmark the combinatorial algorithm’s run time on

that of the CPLEX function solve(). Thereby, we exclude the time required to set up the CPLEX

model. In our implementation, this accounts, on average, for 79% of the overall observed CPLEX

run time. While there may be more efficient approaches to setting up a CPLEX model, this is not

a negligible effort. Excluding it renders the terms of the benchmark more favorable for CPLEX.

All instances were solved to optimality by both CPLEX and the combinatorial algorithm, each

instance within 324 seconds. However, optimizing the MIP requires, on average, 330 times longer

than using the combinatorial algorithm to find the optimal solution. For 56,950 out of 80,000

instances, the combinatorial algorithm requires less than a millisecond of run time, while CPLEX

still requires an average of 800 milliseconds. Table 5 shows the maximum run time of the two solu-

tion approaches per percentile of analysed instances. This highlights that in 90% of instances, the

combinatorial algorithm required at most 16 milliseconds, whereas the optimization via CPLEX

achieved a runtime of less than 79 milliseconds for only 10% of instances. Furthermore, the per-

centile distribution also highlights that the increase in runtime is largest for the top 10% of instances

in both cases, with the maximum CPLEX run time being more than 100 times that of the maximum

measured for 90% of instances.

The run time of both solution approaches mostly increases with the number of scenarios, as

shown in Table 6. However, the increase is much steeper for CPLEX. To highlight this, we provide

a runtime ratio, dividing the runtime of the combinatorial algorithm (COMB) by that of solving

CPLEX. This runtime ratio is nearly constant for five and nine scenarios, but it decreases steadily

when 17 or more scenarios have to be considered. It is smallest for the maximum of 257 scenarios,

where for every millisecond of runtime that the combinatorial algorithm requires, solving CPLEX

requires 814 milliseconds. From this analysis, we conclude that run time improvements achieved

via the combinatorial algorithm is more appealing for revenue management practice, where many

flights have to be optimized and re-optimized in a limited span of time.
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Table 5 Maximum runtime of solving via CPLEX and combinatorial algorithm (COMB), measured in

milliseconds, per percentile of instances

Percentile of instances Runtime CPLEX Runtime COMB
0.1 78 0
0.2 141 0
0.3 234 0
0.4 344 0
0.5 485 0
0.6 691 0
0.7 1,031 0
0.8 1,625 15
0.9 3,078 16
1.0 323,495 141

Table 6 Average runtime of solving via CPLEX and combinatorial algorithm (COMB), measured in

milliseconds, per number of scenarios in the instances

Number of scenarios Runtime CPLEX Runtime COMB Runtime Ratio
5 74 1 1 : 74
9 146 2 1 : 73

17 293 3 1 : 98
33 623 4 1 : 156
65 1,377 6 1 : 230

129 3,515 9 1 : 391
257 12,207 15 1 : 814

4.5. Computational Consideration of Static Overbooking

As an addendum to the general study, we include computational results illustrating the relationship

to static overbooking. To this end, we adapt parts of the experimental setup described in Aydin

et al. (2012) to create four combinations of demand and show-up rates: For a capacity of 100 seats,

we consider two levels of demand, expressed as a percentage of capacity, namely, 140% and 180%.

We consider two degrees of show-up probability as dependent on the booked class. Extending the

example set by Aydin et al. (2012) to nine fare classes, low show-up rates are {0.95, 0.93, 0.91,

0.89, 0.83, 0.81, 0.79, 0.77, 0.75}, while high show-up rates are {0.98, 0.96, 0.94, 0.92, 0.86, 0.84,

0.82, 0.80, 0.78}. For each combination of demand level and show-up rates, we draw 1,000 random

instances of demand from uniform distributions over fare classes and days before departure.

From the expected demand and show-up probabilities, we compute the average show-up rate

β. We iteratively consider scenarios with growing authorized capacity by deriving the expected

number of customers that can be expected without denied boardings from the binomial distribution.

B(β, b) yields the number of passengers expected to show up given an authorized capacity b. To

each increase in authorized capacity i, starting with i= 0 for the initial capacity c0 = 100, we assign

probability pi = βP(B(β, c0 + i) ≥ c0))−
∑i−1

j=0 pj. Subsequently, we only consider scenarios with

pi ≥ 0.001, and normalize the scenario probabilities to ensure
∑

i pi = 1.
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We benchmark the overbooking based on RMCU on the four EMSR-based alternatives described

in Aydin et al. (2012). Dropping the prefix “EMSR”, we compare RMCU to:

NO: A strategy that does not allow for any overbooking.

MP: A strategy that deterministically converts the expected average show-up rate into an autho-

rized capacity as described in Belobaba (2006).

SL: A strategy that computes the authorized capacity to limit the probability denied boardings to

a given δ, as denoted as Service Level 1 in (Talluri and van Ryzin 2004, p. 141). We set δ= 10−3.

Risk: A strategy that explicitly computes the authorized capacity to limit the probability denied

boardings to a dynamic bound depending on the denied boarding cost.

From the binomial distribution, Risk and SL calculate the probability γb that the number of

customers showing up exceeds capacity c0 given authorized capacity b, i.e., γb = P[B(β, b)≥ c0].

SL assumes a bound δ on γb as given. In contrast, Risk dynamically defines this bound by

µ0 = θ ·β, where θ denotes the denied boarding cost. For increasing denied boarding costs, we adapt

this formulation by considering the cost caused by denied boarding i= b− c0, µ0 = θ · (1.1)i ·β.

For the authorized capacity b resulting per overbooking approach, we calculate the optimal rev-

enue r(b). Subsequently, we derive the expected show-up probability β̂ of the resulting accepted

bookings. To calculate expected denied boardings, we compute the expected probability of book-

ings that exceed the physical capacity becoming the n-th denied boarding from the binomial

distribution. Finally, we compute the expected revenue by subtracting the corresponding denied

boarding cost multiplied by that probability from the optimal revenue from bookings: r̂(b) = r(b)−∑c0−b
i=0 (

∑i

j=0(P[B(β̂, b) = c0 + j] · θ · (1.1)j)).

Table 7 lists the expected revenue per approach as a percentage of revenue expected from the

no-overbooking approach NO. The highest revenue per row is marked in bold. Note that NO

constitutes a lower bound for revenue from RMCU. Other approaches can perform inferior to NO

when the denied boarding costs exceed the revenue gained from additional accepted bookings. This

is clearly true for MP, which consistently performs worse than not overbooking at all, as it incurs

excessive denied boarding costs. In comparison, LS, Risk, and RMCU increase revenue by two to

three percent. These gains grow with the demand volume. While LS and Risk perform slightly

better for high show-up rates, RMCU earns slightly more revenue for low shop-up rates. Overall,

these results underline the close relation of RMCU to overbooking when considering incremental

capacity changes.

5. Conclusion

This paper was motivated by the idea that in the airline industry, flight capacities are frequently

updated over the booking horizon. This violates the common revenue management assumption of
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Table 7 Revenue from Static Overbooking Approaches in % of NO

Demand Show-Up Rate MP SL Risk RMCU

140%
low 95.40% 102.28% 102.29% 102.47%

high 95.41% 102.34% 102.35% 102.34%

180%
low 95.34% 103.16% 103.17% 103.39%

high 95.58% 103.17% 103.19% 103.38%

a fixed capacity. Triggers are events such as fleet assignment re-optimizations and technical issues.

The possibility of capacity updates causes uncertainty that is not considered by standard revenue

optimization models.

Two types of revenue management models already consider uncertainty as related to capac-

ity: Those considering overbooking and those considering integrating fleet assignment and revenue

management. However, the latter predominantly focus on capacity adjustments that are fully con-

trolled by revenue management. Here, we termed the resulting capacity changes as endogenous, to

delineate them from the exogenous changes that are not triggered by revenue management.

In this paper, we extended a revenue optimization model anticipating aircraft swaps as described

by Wang and Regan (2002, 2006). We proposed the quantity-based revenue management under

capacity uncertainty (RMCU) problem, which considers multiple possible update times and multi-

ple possible final capacities through stochastic scenarios. Instead of focusing on swaps triggered to

support revenue management, we explicitly account for capacity updates that may not be aligned

to revenue maximization.

As a theoretical contribution, we proposed computationally efficient ways of solving the RMCU

problem. To that end, we described both a regular mixed-integer program, a combinatorial solution

approach, and a solution approach that exploits particular characteristics of a special case including

only a single update. Furthermore, we formally explored the effects of parameterizing the denied

boarding cost and stated the RMCU problem’s relationship to the static overbooking problem.

In a detailed numerical study, we evaluated RMCU’s performance compared to that of the indus-

try standard solution BLIND and hindsight upper bound EX POST. Subsequently, we analyzed

the model’s sensitivity to several problem characteristics: scenario probabilities, demand level, the

magnitude and quality of capacity updates, and the number of possible update times as well as

update timing. In addition, we analyzed the effects of (desirable) changes that are in alignment

with expected demand as opposed to (undesirable) changes that increase the discrepancy between

expected demand and available capacity. Furthermore, we quantify run time reductions that result
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when solving the RMCU problem via a combinatorial algorithm as opposed to solving the corre-

sponding mixed-integer formulation via CPLEX. Finally, we considered a numerical example that

illustrates the relationship to existing approaches to static overbooking.

We conclude that RMCU’s revenue potential increases with the difference between possible

final capacities. The later the capacity is updated, the more revenue can be gained from using a

stochastic model. As it takes into account potential denied boardings but no demand dependencies,

the RMCU appears particularly useful when expecting capacity decreases. Note that when capacity

increases, it can become optimal to offer additional, cheaper classes. This may go against the

idea of monotonously increasing fares, such as commonly recommended to discourage strategic

customer behavior. However, this effect can also be observed when updating demand forecasts

given stochastic demand.

The analysis presented here focused on a leg-based model. However, we are aware that capacity

uncertainty certainly entails network effects when customers book travel-itineraries rather than

individual flights. Furthermore, most recent choice-based revenue management models consider

demand to depend on the offered alternatives. For such dependent demand models, not anticipating

capacity increases may further hurt revenue, as unexpected capacity increases cause cheap classes

to become available shortly before departure. This enables both short-term cannibalization and

long-term strategic customer behavior. Further research could exploit scenario-based approaches

to effectively deal with overbooking challenges resulting from group bookings, when the number of

expected no-shows may not grow incrementally.
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Büsing, Kadatz and Cleophas: Capacity Uncertainty in Airline Revenue Management
30 Article submitted to Transportation Science; manuscript no. TS-2014-0293

Appendix. Combinatorial Algorithm

Algorithm 1 Combinatorial Algorithm

1. Initialize parameters:

1: for all change times before departure, ti ∈ {t0, . . . , tN−1} do

2: demand[ti][ti+1− 1]← list of revenues per expected customer in descending order

in the time interval [ti, ti+1− 1]

3: pti← sum of probabilities of scenarios that may realize in [ti + 1,0]

4: cmax←maximum capacity expected by any scenario

2. Calculate global revenue GloRev [t, c] achievable from any change time t∈ {t0, . . . , tn} to the

next for any feasible capacity c:

5: for all change times ti ∈ {t0, . . . , tN} do

6: GloRev [ti,0]← 0

7: for capacity c= 1 to cmax do

8: GloRev [ti, c]←GloRev[ti][c− 1] + demand[ti][ti+1− 1][c− 1];

3. Calculate scenario-based revenue ScenRev [t, c] from any change time t ∈ {t0, . . . , tn} until

departure and for any feasible capacity c:

9: for all scenarios s do

10: cs← capacity expected by scenarios

11: ps← probability of scenarios

12: Compute maximum revenue or denied boarding cost maxRev[s] for capacity cs− cmax

13: ScenRev [ts, cmax]← ps ·maxRev[s]

14: for capacity c= cmax− 1 to 0 do

15: ScenRev [ts, c]← ScenRev [t, c+ 1] + ps · revenue from next most valuable customer

if cs− c > 0 and less denied boarding cost if cs− c≤ 0

4. Calculate longest path as shown in Figure 2

16: for change times ti = t1 to tN do

17: for capacities c= 0 to cmax do

18: Revenue [ti, c] =Revenue [ti−1, c]

19: for d= 0 to c do

20: edgeRev= pti ·GloRev[ti][d] +ScenRev[ti][c]

21: if thenRevenue[ti−1, c− d] + edgeRev >Revenue[ti, c]

22: Revenue[ti, c] =Revenue[ti−1, c− d] + edgeRev

23: Return maxc∈{1,...,cmax}Revenue[tN , c]
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