
 1

OpenPING: A Reflective Middleware Platform for construction of Adaptive Virtual Reality
Applications

�

3DXO�2NDQGD��*RUGRQ�%ODLU��1LNRV�3DUODYDQW]DV�

'LVWULEXWHG�0XOWLPHGLD�5HVHDUFK�*URXS��

&RPSXWLQJ�'HSDUWPHQW��

/DQFDVWHU�8QLYHUVLW\��%DLOULJJ��/DQFDVWHU�/$���<5��8.��

�

7HO������������������H[W��������

)D[������������������

(PDLO� {okanda, gordon} @comp.lancs.ac.uk, n.parlavantzas@lancaster.ac.uk

Abstract

The emergence of collaborative virtual world applications that
run over the Internet has presented Virtual Reality (VR)
application designers with new challenges. In an environment
where the public internet streams multimedia data and is
constantly under pressure to deliver over widely heterogeneous
user-platforms, there has been a growing need that distributed
virtual world applications be aware of and adapt to frequent
variations in their context of execution. In this paper, we argue
that the use of structural reflection offers great potential for the
design of flexible real-time interactive Distributed Virtual
Environments (DVEs).

Keywords

Distributed Virtual Environment (DVE), Virtual Reality (VR),
Reflection, Object Behaviour, Adaptation.

1. Introduction
�
Recent research has been aimed at developing distributed
platforms that can support real-time applications running on the
public internet. This has proved extremely challenging,
particularly in massively multi-participant applications where
thousands of users potentially interact in real-time with each
other and with thousands of autonomous entities using
uncontrolled network and local (processor, memory) resources.
Requirements for such systems include scalability, persistence,
responsiveness, flexibility, maintainability, and extensibility.
The main focus of research on platforms that support real-time
interaction has been on the first three capabilities and, as a result,
a number of techniques both at the platform and application level
have emerged.
To improve scalability, existing published works propose a wide
range Virtual World partitioning approaches from static coarse-
grained partitions [Frecon98] to interest management
(perception-based) approaches (VS) [Lea97].
To address persistence requirements, some DVE platforms such
as Continuum [Frederic00] implement mastership transfer within
peer-to-peer architectures.
To provide support for responsiveness, researchers in real-time
interactive VR systems have attempted to implement fully
distributed architectures together with multicast grouping of
clients, e.g. DIVE [Frecon98]. (A detailed analysis of techniques
used in contemporary DVEs can be accessed in [Okanda02a]).

In contrast, there has been much less effort on addressing the
flexibility, maintainability and extensibility requirements of
contemporary DVEs. We propose the use of structural reflection
as an approach that not only addresses these requirements but
also offers added value in the form of providing a framework for
scalability, persistence and responsiveness that is itself flexible,
maintainable and extensible.
This paper is structured as follows:
Section 2 presents a definition of reflection. Section 3 then
provides an insight into our system design while implementation
details and an overall architecture are covered in section 4.
Section 5 briefly mentions some experiments done and their
evaluation. Section 6 then presents related work and finally,
section 7 concludes the paper.

2. Background on Reflection �
�

The conceptual origin of reflection could be traced to Smith
[Smith82] who introduced it thus:
‘In as much as a computational process can be constructed to
reason about an external world in virtue of comprising an
ingredient process (interpreter) formally manipulating
representations of that world, so too a computational process
could be made to reason about itself in virtue of comprising an
ingredient process (interpreter) formally manipulating
representations of its own operations and structures’.
This insight triggered an initially limited body of research in
programming languages such as Lisp and a few others in the
object-oriented community. Subsequently, this research
diversified into areas such as distributed systems [McAffer96] in
which contemporary research emphasis has been on architecting
middleware platforms that are geared towards accommodating a
wide variety of requirements imposed by both applications,
mobility and underlying environments.
For the purposes of this paper, we provide a simple context-
specific definition of structural reflection in DVEs as;
‘a design principle that allows a Virtual World to have a
representation of itself in a manner that makes its adaptation to
a changing environment possible’.

3. System Design
�

Essentially, the motivation for this work is to incorporate
flexibility, maintainability and extensibility into DVEs that
support real-time interaction. The next section provides details of
our design.

 2

3.1 The Object Model
�

Reflection per se does not support flexibility, incrementality or
ease of use as this only comes about through the additional
application of object-orientation.
This provides the drive for our use of an object-oriented
approach in our design.
In our object model, an object consists of:
• a set of accessible attributes,
• a set of methods to get and set these attributes (collectively

forming the interface of the object),
• a set of associated behaviours,
• one or more renderings of the object.
Active objects (e.g. avatars) possess all the four elements while
passive objects (e.g. components of the DVE terrain) contain all
elements except the set of behaviours. This object model is then
implemented with an appropriate Meta Object Protocol (MOP)
as defined in section 4.3 below. Firstly, however, we consider the
role of behaviour in DVEs.

3.2 The Role of Behaviour
�

The design of DVEs seeks to model VR applications around
various interpretations of reality. Real life artefacts exercise their
behaviour to perpetuate their significant subsistence. For
example, human beings exercise their ‘eating’ behaviour without
which they would not meaningfully exist.
Behaviour is also used to describe artefacts in real life. For
instance, mammals nourish their young with milk secreted by
mammary glands. The phrase ‘nourish their young with milk
secreted by mammary glands’ is an observable behaviour that
defines the existence of human beings as mammals.
The fact that behaviour forms an integral part of the existence of
real life artefacts gives it a crucial role in our attempts to model
them. In VR, behaviour provides a handle in the capture
(simulation) of the real world phenomena and their run-time
adaptation policies/mechanisms.
We therefore define behaviour as the way in which the state of
an object’s attributes changes over time. For instance, an object
may have an attribute called ‘location’; as it moves around, its
location changes. The way in which its location changes over
time is its behaviour.
We look into an object model that has three categories of
associated behaviours:
• Application (shallow) behaviours: are all application level

and may or may not trigger changes to the system. The
simulation of an avatar’s change in location (motion) is an
example of application behaviour. �

• Platform (deep) behaviours: are all system level and exist at
the application level as representations of middleware
services or mechanisms. For example, a particular
consistency policy that ensures a receive-order sequence of
events is a platform behaviour.

• Hybrid (shallow/deep) behaviours: are application-system
level with an implementation that causally cuts across the
entire real-time system. For instance, an event channelling
protocol that has application-level input in form of packet
loss detection is a hybrid behaviour.

3.3 The Meta-model

We adopt the object model described in sub-section 3.1 above
and use techniques that allow behaviours to be encoded and
subsequently be evolved and adapted at run-time.
In particular, we define a meta-interface (Meta Object Protocol)
which essentially offers structural reflective capabilities on
application objects with operations that:
• discover the internal details of an object in terms of

attributes, behaviours etc,
• insert a new attribute, behaviour or rendering,
• delete an existing attribute, behaviour or rendering or
• replace an existing attribute, behaviour or rendering.
This MOP can then be used for adaptation over the object model
described earlier.
Adaptation is essentially the alteration of the underlying
implementation of a system in order to suit the needs of its
fluctuating execution environment. These fluctuations range
from user subjectivity to the system’s infrastructural setting. We
use the system design shown above to achieve adaptation as
described in the next section.

4. Implementation
�

� 4.1 Overall Architecture

A platform has been implemented based on the above design.
The platform’s architecture offers dynamism in DVEs through
exploitation of application-specific semantics and run-time
execution environment awareness. The architecture provides the
application designer with access to application objects as well as
mechanisms encapsulated in six service bundles within a
middleware platform called OpenPING1. The service bundles,
each with its own set of pluggable mechanisms are:
Concurrency, Replication, Interest Management, Persistence,
Consistency and Event Channelling.
The diagram below illustrates the overall architecture of the
platform.

1 OpenPING is an enhanced version of Platform for Interactive Networked
Games – the original non- reflective version of which was designed by a number
of partners in a EU funded project PING IST – 1999 – 11488].

 3

Figure I
Architectural
Design

The rationale for the architecture above has a basis in the earlier
identified need for incorporation of flexibility and run-time
adaptation in contemporary DVEs. This must be considered over
a set of services and mechanisms with policies defined to
manage their dynamic configuration over an execution kernel.
Table I below shows the Object and Event management Layer in
which five service bundles present run-time pluggable
mechanisms.

Service Mechanism & Details
Concurrency

Replication

Persistence

Consistency

Lock Transfer Mode [standard or predictive] –
normal change of mastership & subsequent
lock transfer of locks or predictive
anticipation of mastership.

Rate [standard, high or low] – variable
provision of multiple instances of the same
entity at different nodes via periodical
updates.

Service-type [in-memory or in-disk] – local
(processor and memory) resources
determine when to switch.
Check-point Rates [low, high or standard] –
variable snap-shot taking of the world.

Algorithm [receive-order, priority-order or
total-order] – receive order using First-In-
First-Out (FIFO) in satisfactory network

Interest
Management

conditions, priority-order with reference to
event creation time and total-order when
strong consistency is a major concern.

Protocol [spatial or publish-subscribe] –
spatial based protocols when network
conditions are perfect and publish-subscribe
protocols when there’s need to filter event
transmission.

Table I Mechanisms at the Object & Event Management Layer

The Application Layer presents instances of application-specific
mechanisms. Examples that apply in our experimental context
are categorised as presented in Table II.

Mechanism Details
Prediction

Behaviour
Configuration

Smoothing

[on or off] – modelling deterministic
behaviours at nodes to compensate for high
latency with increased processing by each
entity through envisaging the Master avatar’s
trajectory.

[drop, pick or replace] – dynamic dropping,
picking or replacement of behaviours
depending on Local/External load levels or
User preferences e.g. replacement of rich text
with plain.

[simple, standard or complex] – algorithms
applied to counter jerking visual effects on the
avatar’s trajectory depending on the rate at
which updates are sent to the node.�

Table II Mechanisms at the Application Layer

Finally, the Communication Layer comprises the Event
Channelling service bundle with one mechanism as shown in
Table III.

Mechanism Details
Protocol [reliable, unreliable or Application Level

Framing] – reliable channelling used to relay
events that require high levels of reliability,
unreliable channelling used when high system
load levels presents a bigger problem than
reliability and Application Level Framing
(ALF)2 when local resources are available and
some form of application control over packet
loss detection and recovery is important.

Table III Mechanisms at the Communication Layer

We choose to focus our efforts on Replication, Consistency and
Event Channelling service bundles for our experiments since
efforts to address scalability, responsiveness and persistence
concerns have concentrated on the Interest Management,
Concurrency and Persistence service bundles.
Each mechanism is represented as a pluggable behaviour at the
application level. Behaviours can be broken down into individual

 �
A networking service protocol model that explicitly includes an application’s

semantics in the design of that application’s protocol [Floyd 90].

Application
��� ����� 	�
 � ��

����������� ����������
�� � ���
��� ����
�� �
��

 Concurrency

!"������#
�

Replication

$���
 ��#

%&����
�

'�� #)(���
 	��

 Interest
Management

��� ��
 ��	���* #
�

 Consistency

+,* ����� �
 � � #

%&����
�

$ ����
 �
��

Event
Channelling

Persistence

� ��� ��� 	-��#

$ ��
 ��#

��� ��
 ��	���*
s

 4

constituent parts called Behavioural Attributes (BAs). We define
a Behavioural Attribute (BA) as a separable part of the behaviour
of an object. It encapsulates a reactive program and can be
configured individually using properties, methods or events. We
use a reactive programming approach to avail a flexible
paradigm for encoding reactive systems, especially those which
are dynamic since it provides application programmers with a
fine control over concurrency, event broadcast and several
primitives for gaining fine control over program execution.
More specifically, we use a tool called Junior (Jr).
In the next sub-section, we define the reactive programming
paradigm and Junior (Jr).

4.2 Reactive Programming
�

Reactive programming is a process which involves the encoding
of reactive instructions. Since active objects have their own
specific behaviour and react continuously to events occurring in
their environment (interactions with other objects or time
progression), programming active objects (e.g. avatars) in a
shared virtual world is essentially a form of reactive
programming.
Software systems that are used in reactive programming have
some inherent characteristics [Hazard99]. They (software
systems) are event-based, parallel but thread-less and reactive.�
Junior (Jr) is a Java-based kernel model for reactive
programming which defines concurrent reactive instructions
communicating using broadcast events [Hazard99].
Programming in Jr is essentially a four-stage process that
involves:
1. declaring a reactive machine
2. writing a reactive instruction
3. dropping the program into the reactive machine
4. running the reactive machine.
Below is an example to illustrate the above process. It runs
Receive-OrderBA, a platform (deep) behaviour from the
Consistency service bundle whose prime purpose is to order
events FIFO from the Object and Event Management Layer to
the Application Layer.

 import junior.*;

 public class Behaviour
 {
 public static void main(String[] args){

 Machine machine1 =
Jr.Machine3(Jr.Loop(Jr.Seq(Jr.Atom(new
 ReceiveOrderBA()),Jr.Stop()2)));

 machine.react()4;
 }
 }

4.3 Adaptation Management
�

Adaptation management concerns the monitoring of objects, the
decision making based on observed trends, and the subsequent
enactment of the decisions through a feedback and control loop.
Our meta-interface drives such behavioural changes as
addition/removal at run-time of pluggable/unpluggable purely
application behaviours, purely platform behaviours and hybrid
behaviours.
It can be used by external entities with respect to the object as
external adaptation or by a Behavioural Attribute (BA) of the
same object as an instance of self-adaptation.

We perform various instances of both:
• coarse-grained adaptation at run-time for instance in

addition/removal or replacement of algorithms earlier
mentioned in the Consistency service bundle or protocols in
the Event Channelling service bundle.

• fine-grained adaptation for instance in configuration of rates
used within the Replication service.

The diagram below gives a visualisation of adaptation
management in our architecture.

 Reification

 CCSR

 App.
 Layer

 Services
 Layer

 Reification
 Execution CCSR
 Kernel

Figure II Adaptation Management

The Application Layer models both application behaviours and
also a representation of system behaviours, thus providing a
common metaphor for adapting the system. Run-time adaptation
of the application-specific behaviours occurs within this layer
while the more generic system behaviours adapt via
configuration and reconfiguration of platform services. In both
cases though, this is modelled as changes in behavioural
attributes. To support this, the meta-interface offers operations to
discover, insert, delete and replace both application and system
behaviours via such constructs as addBA(), getBA() etc.
The Services Layer comprises the entire Platform’s service
bundles mentioned earlier in Figure I. These are handled in form
of data structures and events. Its Execution Kernel offers a
Causally Connected Self Representation (CCSR) of the Platform
services and a reification that enables transparent (from the
application programmer’s viewpoint) unregistration (of an old
service) and registration (of a new service). Just like application-
specific behaviours, the run-time configuration of platform
services is done in the form of operations that the Application
Layer’s meta-interface offers. Hence invoking these operations at
the Application Layer triggers corresponding actions within
OpenPING’s execution kernel to unregister ‘old’ services and
register ‘new’ ones dynamically.

����������� ����� # Application BAs

 Meta-interface ����
 ��+ � ��� ����� ��+ � ��� � � � ����� ��+ � ���
����
 ��+�� � � ��# � ��� ����� ��+��)� #
 ��
���� � �

Platform Services

Data &
Events

Kernel
unreg(oldService), reg(newService)
rem(oldService) init(newService)
untick(oldSevice) put(newService)
 tick(newService)

 5

5. Experiments and Evaluation

We have set up a series of experiments that focus on allowing
developers to dynamically adapt object behaviour. The
experiments cover a range of application behaviours, platform
behaviours, hybrid behaviours and performance metrics. We
present two of them (on platform behaviours and performance
metrics) in sub-sections 5.1 and 5.2 below.
(Full details of the experiments, their results and evaluation can
be accessed at [Okanda02b]).

Our experimental prototype is a simple ‘RobotWar’ game in
which remote users attempt to ‘fire’ at one another’s robots using
‘canons’. In the game, each user has ownership of a single robot
(replicated at all remote sites) which can move around and
‘holds’ a ‘canon’ that ‘fires’ at the rest of the users’ robots at a
key-press. The challenge is to evade all the opponents’ ‘missiles’
and at the same time ‘shoot down’ their robots. In the
‘RobotWar’ game, our interpretation models context-specific
application (shallow) behaviours alongside standard or generic
implementations of platform (deep) and hybrid (shallow/deep)
behaviours.

5.1 Experiment 1 – Platform Behaviours
�

Aim: To drive run-time causal addition/removal of the
Consistency service algorithms: Receive-order, Priority-order
and Total-order.�
Implementation: Receive-orderBA uses simple FIFO event
ordering and as such is good enough in satisfactory network
conditions. Priority-orderBA is used whenever network
conditions (monitored via disparities in Master and Slave object
positioning) are unsatisfactory.
The system adjusts to the increase in system load by sacrificing
strict event ordering (that is activated by Priority-orderBA).
Conversely, the system fine-tunes itself to a decrease in system
load by activating strict event ordering at the platform.
Total-OrderBA’s use is not illustrated in this experiment but it is
worth noting that it’s implementation suits simulations in which
very strict consistency is of paramount importance.���
Result: The framework’s execution is such that Priority-
orderBA’s addition is causally triggered at the instant the
application-level behaviour InertiaSlaveSimpleBA is added and
the behaviour Receive-orderBA causally activated whenever
InertiaSlaveComplexBA is executed. This evidence reveals how
much like application behaviours, platform behaviours can
flexibly be configured run-time to conform to fluctuating
network and system resource availability.
Evaluation: This experiment illustrates how OpenPING’s
flexibility facilitates adaptation to fluctuations in load levels and
network conditions within the system’s execution environment.
It shows how the framework’s provision of a MOP avails a set of
meta behaviours (accessible at the application level) that support
the designer in his/her choice of implementation from a variety
of mechanisms to suit different execution conditions.

5.2 Experiment 2 – Performance Metrics

This experiment evaluates the performance overhead that is
directly attributed to the additional code used to realise reflection
hence run-time adaptation within the framework. It involved the
use of Intel PIII PCs with 128 MB – 256MB memory and
650MHz clock speeds in a 100 Mbps Fast Ethernet Local Area

Network (LAN). All the experiments were done on single idle
processors and averages (with typical variations measured at ± 2
milliseconds) taken over 100 independent runs.
Aim: To appraise performance metrics and scalability of the
OpenPING framework.�
Implementation: At start-up, a measure is done on the period of
time it takes to load and initialise all services from the platform
and start the ‘RobotWar’ game. To quantify the impact
Behavioural Attribute (BA) configuration has on OpenPING’s
performance, subsequent measurements are made with varying
numbers (N) of application behaviours or platform/hybrid
behaviours loaded at the same instant. Measurements are also
made to quantify the period of time it takes to
configure/reconfigure BAs during normal operation (i.e. after
start-up).
Result: It takes an average of 1,735 milliseconds to load the
platform and the game at start-up. The total variance between
time measurements regarding the configuration or re-
configuration of all behaviours during normal operation is 31
milliseconds. Configuring (getting/adding or getting/removing) a
single (or two) application Behavioural Attribute(s) either at
start-up or run-time (during execution) costs 16 ms of�execution
time while it costs a�maximum� of� 31 ms of execution time to
load as many as 10 application behaviours at the same instant.
Loading a single platform or hybrid Behavioural Attribute (BA)
at start-up or run-time costs 16 ms while it costs a maximum of
31 ms of execution time to load 10 of them at the same instant.
The contribution this makes towards attainment of the
recommended threshold for effective end-to-end lag in
propagation of multimedia data (100 – 300 ms) [ITU90] is not
significant.
Below is a graphical representation of loading time (ms) against
behaviours (N) at start-up.

Performance Metrics

1730

1735

1740

1745

1750

1755

1760

1765

1770

0 5 10 15

Number of Behaviours (N)

Appl ication Behaviour s P latform & Hybr id Behaviours

Figure III Execution time for configuration of Platform Services
and application-specific BAs at Start-up
�
Evaluation: The figures above lend credence to the fact that at
just about 1% (of the total execution time) as an overhead
incurred by the framework, incorporation of run-time adaptation
through structural reflection offers tangible benefits.

 6

The fact that as many as 10 Behavioural Attributes (BAs) are
configured at the same instant (at start-up or during execution)
without an exponential increase in execution time proves that the
approach taken fully meets scalability demands in next
generation DVEs.

Overall, their (experiments’) results:
• demonstrate how OpenPING’s Meta interface offers support

to the designer in his/her choice from a variety of
mechanisms in a flexible way.

• show how OpenPING’s multiple infrastructure mechanisms
co-exist to enable run-time configuration via policies that
the DVE designer defines at the Application Layer.

• prove OpenPING’s provision of support for dynamic (as
opposed to compile-time) adaptation of application as well
as platform behaviours either at start-up time or during
execution.

• epitomize the simplicity, ease and expressiveness with
which the DVE designer incorporates OpenPING’s
mechanisms alongside application-specific behaviours.

• prove that the overhead incurred in execution time is not too
big a price to pay in order to avail the full benefits of
flexibility and scalability.

6. Related Work
�

MASSIVE [Greenhalgh95] is an experimental prototype whose
need for incorporation of run-time adaptation to suit real-time
interaction is clearly evident.
DIVE [Frecon98] has weaknesses resulting from its assumption
that networks have low-loss and reasonably high band-width
hence low latency for collaborative manipulation. In early
versions of DIVE, the ISIS toolkit [Birman90] uses a multicast
protocol to distribute changes and set locks. All nodes are
guaranteed to have seen the same sequence of events, which
while good for system integrity, limits scalability.
On the other hand, in the absence of the ISIS toolkit, consistency
guarantees which inevitably improve interactive manipulation
especially in environments with high network latencies are non-
existent.�
Continuum [Frederic00] offers an array of service options but
these are essentially compile-time and do not come with an
interface or execution kernel that supports run-time adaptation of
mechanisms.�
CAVE [Purbrick01] investigates persistence in DVEs by
associating behaviour with platform services in much the same
way the application level provides a handle on objects. It
however has a limited scope as it only tackles the issue of
persistence in continuously available large-scale virtual
environments.

7. Conclusion
�
This paper has outlined the need for dynamic adaptation as a
means that achieves better flexibility, maintainability and
extensibility and also supports in a flexible way, the run-time
incorporation of scalability, persistence and responsiveness
techniques.
Application-specific wishes concerning the configuration of
platform services inevitably evolve dynamically. Incorporating
these wishes by making modifications (on the middleware or
application) at compile-time is not ideal especially if the

application involves real-time interaction and requires round-the-
clock availability.
To support dynamic adaptation, this paper has detailed how our
framework facilitates not just the co-existence of multiple
alternative infrastructure mechanisms but additionally, rather
than applying a single mechanism to all environmental scenarios,
mechanisms can be tested, replaced, configured or dropped at the
application level in the same manner that behaviours in the
application are. Hence, we argue that use of reflection is the way
forward in the design of next generation DVEs.

References

[Birman90] Birman K., R. Cooper, T. Joseph, K. Marzullo, M.
Makpangou, K. Kane, F. Schmuck and M. Wood, ‘The ISIS
System Manual, Version 2.1’, Cornell University, September
1990.
[Frecon98] Frecon E., Marten Stenius, “DIVE: A Scalable
Network Architecture for Distributed Virtual Environments”,
Distributed Systems Engineering, 5(3), pp 91-100, 1998.
[Frederic98] Frederic Dang Tran, B. Dumant, F. Horn, J.B.
Stefani, “Jonathan: an open distributed processing environment
in java”, Middleware ’98, IFIP International Conference on
distributed Systems Platforms and Opens Distributed Processing,
Lake District, UK, September ’98.
[Frederic00] Frederic Dang Tran, Anne Gerodolle, “An Object-
oriented Framework for Large-scale Networked Virtual
Environments”, Springer-Verlag, In Proceedings of the 6th
International Euro-Par Conference, Munich, Germany,
September 2000.
[Greenhalgh95] Greenhalgh C., Benford S., “MASSIVE: A
Distributed Virtual Reality System incorporating Spatial
Trading”, 15th IEEE International Conference on Distributed
Computing Systems (ICDCS ’95), 1995.
[Hazard99] Hazard Laurent, Jean-Ferdy Susini, Frederic
Boussinot, “The Junior Reactive Kernel”, Research Report,
CNET/INRIA RR-3732, July 1999.
[IEEE Computer Society] “IEEE Standard for Distributed
Interactive Simulation-Application Protocols” (IEEE 1278.1-
1995), IEEE Computer Society, 1995.
[Kiczales91] Kiczales, G., J. des Rivieres, D.G. Bobrow, “The
Art of the Metaobject Protocol”, MIT Press, 1991.
[McAffer96] McAffer, J., “Meta-Level Architecture Support for
Distributed Objects”, In Proceedings of Reflection 96, G.
Kiczales (Ed), pp 39-62, San Francisco.
[Okanda02a] Okanda, P., Blair, G., “Analysis of Techniques
used in Distributed Virtual Environments”, Internal Report No.
MPG-02-01, Computing Department, Lancaster University,
November 2002.
[Okanda02b] Okanda, P., Blair, G., “Experiments and
Evaluation of the OpenPING Framework”, Internal Report No.
MPG-02-02, Computing Department, Lancaster University,
November 2002.
[Purbrick01] Purbrick James, “Continuously Available Virtual
Environments”, PhD. Thesis submission, Nottingham
University, UK, October ’01.
[Smith82] Smith, B.C., “Procedural Reflection in Programming
Languages”, PhD Thesis, MIT, Available as MIT Laboratory of
Computer Science Technical Report 272, Cambridge, Mass.,
1982.

