
Using an Autonomous Cube for Basic Navigation and Input
Kristof Van Laerhoven, Nicolas Villar, Albrecht Schmidt, Gerd Kortuem, and Hans Gellersen

Department of Computing
Lancaster University
LA1 4YR Lancaster

{kristof, villar, albrecht, kortuem, hwg}@comp.lancs.ac.uk

ABSTRACT
This paper presents a low-cost and practical approach to achieve
basic input using a tactile cube-shaped object, augmented with a
set of sensors, processor, batteries and wireless communication.
The algorithm we propose combines a finite state machine model
incorporating prior knowledge about the symmetrical structure of
the cube, with maximum likelihood estimation using multivariate
Gaussians. The claim that the presented solution is cheap, fast and
requires few resources, is demonstrated by implementation in a
small-sized, microcontroller-driven hardware configuration with
inexpensive sensors. We conclude with a few prototyped
applications that aim at characterizing how the familiar and
elementary shape of the cube allows it to be used as an interaction
device.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Haptic I/O, Input devices and strategies.

General Terms
Algorithms, Reliability, Human Factors, Verification.

Keywords
Sensor-based tactile interfaces, haptic interfaces, Markov chain,
Maximum Likelihood estimation, Gaussian modeling.

1. INTRODUCTION
One of the goals that researchers in ubiquitous computing strive
towards is the integration of computing technology into objects
that are different from traditional functional appliances: the
objects need to mix more fluently in everyday environments, and
interaction should be intuitive. Making these objects look, feel,
and behave familiarly for the sake of the user often results in very
tight constraints for the designers of its hardware and software.

The affordance and familiarity of an object are major factors for
interaction with it. Apart from its shape and feel, size is important
as well: The additional electronic components should be
contained within the augmented object, without enlarging it.

Other crucial constraints are battery power, as batteries need to be
replaced or recharged periodically, and robustness and reliability,
since people might treat these objects forcefully.

The focus of this paper is not so much on ‘digitizing’ an existing
object; it concentrates more on the creation of a novel object
having the shape and form factor of an elementary three-
dimensional structure: a cube or die. Certain properties, like its
symmetry and well-known shape, make it relatively easy to
model, both in software and in the mind of the user. Using sensors
that track a notion of its state, this cube can be used as a basic
input device for selection and navigation, while blending in with
the environment and remaining easy to physically and mentally
grasp. Further assumptions are the cube’s physically separation
from any appliance (a cable might encumber interaction), and that
it broadcasts its state as a service to the environment, rather than
one specific appliance.

Figure 1. Picture of our transparent version of the cube, with
all of its electronic components fixed inside.

We present an augmented cube the size of a large die, which
wirelessly transmits which of its sides is up, its orientation, and
whether it went through a predefined gesture. This paper will
concentrate on key choices in the design of the algorithms, since
they allow the cube to have low cost, small form factor, and fast
response time:

• The cube’s orientation is inferred, using the data from
accelerometers only, rather than utilizing (bigger)
gyroscopes or similar sensors.

• The software runs on a standard PIC microcontroller that
has limited memory. It is well suited for embedded devices.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI’03, November 5–7, 2003, Vancouver, British Columbia, Canada.
Copyright 2003 ACM 1-58113-621-8/03/0011…$5.00.

The cube is intended to be used by applications in its
surroundings. The applications pick up its transmissions and
translate them into actions for selection and navigation tasks.

2. HARDWARE
During the prototyping phase, the choice of hardware is
important, since it has direct consequences for the remainder of
the system design. The cube as an object has to remain small and
robust enough for the users to handle it, and its “digital self”
needs to be accurate and autonomous so it can work properly for
long periods without requiring cabling for power and
communication.

2.1 Basic Processing: PIC Microcontroller
The heart of the hardware is a Microchip PIC microprocessor
(PIC18F252), which is small, fast (10 Mips), consumes little
energy (25 µA / 0.2 µA standby), and is easy to interface to the
sensors and communication module. The downside is that the
entire software for processing the sensor data and broadcasting it
via a wireless protocol has to fit in a tiny program memory
(32Kbyte) and only has access to a small amount of data memory
(1536 bytes).

Figure 2. The two stacked hardware boards with the major
components annotated. A battery (coin-sized or 2 AAA) and
second accelerometer are not visible from this angle.

2.2 Sensors
The microcontroller we used has fourteen inputs for binary
sensors and a built-in analog-to-digital conversion unit that allows
five analog sensors to be attached. Our objective, however, to
keep the hardware as simple and low-cost as possible without
giving in too much on performance, means that we kept the
number of sensors low:

• Two dual-axis accelerometers (ADXL311) measure both
dynamic acceleration (e.g., vibration) and static acceleration
(e.g., gravity) in a plane. The sensors’ ability to measure
gravity gives us the opportunity to discriminate in contexts
where acceleration may be zero (such as different positions of
the cube). We used two accelerometers to get acceleration in
three dimensions (X-Y and X-Z).

• One capacitive sensor (QT110) measures proximity of the
user’s hand (i.e., whether the user is holding the cube or not),
mainly to wake up the microcontroller from standby.

Both types of sensors are particularly cheap in power
consumption (400µA / 20µA), and price (5 USD / 1.6 USD1) per
accelerometer and proximity sensor respectively, due to their
manufacturing process and presence in a large number of
applications.

Other sensors that would track the cube’s movements are
significantly larger and more expensive. Gyroscopes, for instance,
are being used in similar hardware to get an additional three
degrees of freedom (by explicitly sensing rotation around the
three axes). They are known to drift, however, and it is common
for them to also include a temperature sensor and voltage
reference to condition the signal. The manufacturing process is
more complicated, and therefore drives up the package size and
price (typically around 40 USD1 [2]); gyroscopes also require a
significant amount of current (typically 6 mA [2]). In this paper,
the sensing is limited to inexpensive and small inertial
acceleration sensing, with an additional algorithm included on the
microcontroller to compensate for the lack of explicit rotation
sensors.

2.3 Communications
The communications module is a Radiometrix BIM2 chip that
transmits and receives data wirelessly (via FM) over an
approximate range up to fifty meters indoors. Its relatively low
power consumption for an RF module (~8 mA) and considerable
data rate (64 kbps) make it an ideal interface between the cube
and surrounding applications. Unlike many tracking appliances,
the cube will only output information about itself to its
environment when its state has changed or when a certain gesture
is performed, thus preserving the batteries as much as possible.
Wireless transmission is by far the most power-hungry component
of the cube.

2.4 Characteristics
The prototype hardware used in this paper consists of two boards
(as shown in Figure 2) that stack on top of each other: One board
makes up the core section, containing the microcontroller,
communications module, and a coin-size Lithium cell on the
bottom. The second board has the acceleration and proximity
sensors, plus a few empty slots for future sensors, should they be
required. The total setup for one cube, including the printed
circuit board and all components, costs about 50 USD.

The entire system runs on a three volt Lithium coin-cell battery,
or two AAA batteries which give a lifetime of approximately four
months with the current embedded software and normal usage
(“normal” usage defined by the first application in section 7).

3. MODEL OVERVIEW
Our objective is to give the cube a digital representation, so that it
can offer its state as a service to applications in its environment.
What states it can and should detect, and what behaviors can be
detected, are vital considerations for obtaining a model for the
cube.

The system that we implemented has three modules: the first
estimates which is the top side of the cube, the second uses this

1 Prices per unit for 100+ purchased, on 28/04/2003.

QT110 proximity

PIC Microcontroller BIM2 RF transceiver ADXL311 accelerometer

Time (±10 milliseconds)

Se
ns

or
va

lu
es

information with prior states to estimate the direction to which all
other sides are pointing, and finally the third model overrules the
others if it is confident enough that a gesture was performed.
Figure 3 gives an overview of the system with some examples.

Figure 3. The three modules that produce the cube’s output,
abstracting from the raw acceleration data.

3.1 Which Side Is Up?
A first approximation of a model estimates which side of the cube
is ‘on top’, which we will define as relative to the user but
assume to be similar to pointing upwards if the cube would be
lying on the ground. Note that this is just a rough approximation
of the cube’s state, especially as it doesn’t include rotation in the
X-Y plane parallel to the top side; we know the orientation of the
top and bottom sides, due to the symmetry of the cube, but not the
orientation of the four other sides. However, this basic model
alone is already useable for making simple selections, similar to
making a (random) selection by rolling a die.

Accelerometers that operate in three perpendicular dimensions are
a well-known tool to estimate the position of an object, relative to
the earth’s gravitational field. We will model the top side by
analyzing the accelerometers’ sensor data for each possible side,
and using these six models for estimation of the side that is most
likely ‘on top’.

3.2 Orientation Of All Sides Relative To User
Instead of just expressing the top and bottom sides, a more
appropriate model would be to represent where each side is
pointing to, relative to the user. These orientations do not need to
be precise measurements in degrees: a more useful set would be
the already existing ‘on top’/’Up’ and ‘on bottom’/’Down’,
accompanied by the other directions (defined as ‘North’, ‘South’,
‘West’, and ‘East’) again relative to the user. Rather than
throwing away the previous model and adding some sensors that
sense orientation in all three dimensions, we use the previous
model to estimate the orientation of all sides. This method will
require an a priori known starting orientation, or at least the
orientation of two perpendicular sides.

3.3 Gestures
A third addition to the cube’s model, still using the minimal set of
sensors from the hardware discussed in section 2, is a distinct set
of gestures that the user can perform with the cube in hand. The

module that will recognize the gestures runs parallel to the other
modules, overriding it whenever the most likely gesture is
recognized with a sufficient probability. As the given sensor’s
capabilities are limited, gestures will typically involve signals
with a high variance and a distinct pattern.

4. FINDING THE TOP SIDE
The three-dimensional arrangement of the accelerometers allows
a very easy and robust way to work out which side of the cube is
on top. We can assume that there is no drift in the sensor signals,
and only a small amount of noise. Furthermore, as there are four
signals available (two per accelerometer), all four will be used to
distinguish the six possible sides facing upwards. Arguably, the
fourth (redundant) acceleration signal will only give a small
information gain, but is included nonetheless as it will not
perceptibly affect the real-time performance of the software on
the microcontroller.

4.1 Multivariate Gaussian Modeling of Sides
Due to the properties of the acceleration sensors, one can expect
that the combined signals they produce will indeed vary for each
orientation of the cube. An obvious method to model the data
from each side being the one on top is to represent it as a four-
dimensional Gaussian:

)(1)(
2
1

2)2(
1)(ixi

T
ix

i
i exG

µµ

π

−−Σ−−

Σ
=

where i ranges from 1 to 6 to identify the sides of the cube, x
specifies a four-dimensional vector with the sensor readings, and
the two parameters µ and Σ indicate the mean (average) vector
and covariance matrix, respectively.

The Gaussian for each side being the one on top can thus be
characterized by obtaining the averages and the covariances from
sample data. This can be done by recording a dataset for each side
facing upwards, and storing the averages and covariances from
these datasets as pre-calculated values in the hardware. It is
however also possible, and feasible, to code the calculation of the
averages and covariances into a routine that can reassess or re-
calibrate these parameters at run-time. Sample data from the cube
being placed on all six sides successively is plotted as a time
series in Figure 4.

Figure 4. Samples from the cube’s sensors, while placed on all
six sides successively (labeled in the plot).

To visualize the Gaussian models, a dimensionality reduction
algorithm (FastICA [14], based on Independent Component
Analysis [3]) was utilized to map the four-dimensional data space

A
cc

el
er

at
io

n
se

ns
or

s

Which side is
‘on top’?

What is direction
of all sides?

Has a gesture been performed?

O
ut

pu
t

1 2 3 4
5 6

(which is hard to visualize) into a two-dimensional space. Figure
5 shows the six two-dimensional Gaussians (notice how they are
evenly distributed over the input space) with a sample trace of a
cube being rotated around, cycling through all six states.

Figure 5. Mapping to a two-dimensional space to visualize the
Gaussians for all six sides. The line trace is a trace plot of the
readings while the cube was turned around from side to side.

4.2 Maximum Likelihood Estimation
The Gaussians will be used for each sample reported by the
acceleration sensors to establish which side these readings belong
to. Using the formula in the previous section, the side i for which
the Gaussian Gi(x) has the highest value for the current sensor
readings x, will be the most likely side that is on top of the cube.
To fit this into a Maximum Likelihood (ML, see [11] for a brief
introduction) estimation procedure, we start with Bayes’ rule:

)(
)()(

)(
xP

iTPiTxP
xiTP

==
==

where P(T=i | x) is the posterior probability that the side i is on
top, given the sensor data x, and P(x | T=i) is the prior
probability that sensor data x enters the system, while it is given
that side i is on top. The two other values, P(T=i) and P(x),
signify the probability that the cube has i as a top side and the
probability that the sensors read the vector x, respectively.

Since only the side i that is the top side is of interest, we search
for the maximum argument instead of just the probabilities:

 ==
)(

)()(
maxarg

xP
iTPiTxP

i
= ())(maxarg xG

i
i

by replacing the prior probabilities with the Gaussians, and
assuming that all sides of the cube are equally likely to be on top,
P(T=i) = 1/6.

This can be simplified by including the natural log function to
eliminate the exponential function in the Gaussian:

 Σ−−−Σ−− −

iii
T

i xx
i

ln
2
1)2ln(

2
1)()(

2
1maxarg 1 πµµ

Finally, eliminating the constants and reversing the sign produces
an easier formula that gives the most likely top side of the cube:

()iii
T

i xx
i

Σ+−Σ− − ln)()(minarg 1 µµ

By filling in the four acceleration values x=(x1, x2, x3, x4) into this
formula, and having computed the µi , ln|Σ|, and Σ-1 beforehand,
one gets the side i that is most likely the top side. This calculation
fits easily into the microcontroller’s program memory and does
not need an excessive amount of stored data: In the C source code
for the microcontroller, the computation per input, per side,
requires 20 multiplications, 4 subtractions, and 16 additions. The
amount of time that this takes is negligible, compared to the other
code segments for reading the sensor values and establishing
communication.

4.3 Re-estimating Parameters at Run-time
Not only does the estimation procedure fit easily on a
microcontroller, the generation of the covariance matrices and
means was implemented on the microcontroller as well. This
could be used for re-calibration (although the sensors do not drift
as such, sides may need to be re-mapped or the hardware might be
repositioned within the cube), or during an initial ‘training phase’.
The one restriction that affects the accuracy is the size of the
datasets per side, due to the limited amount of available memory.

5. MODELING THE CUBE

5.1 Symmetrical Properties Of The Cube
The cube is known in mathematics as a hexahedron, from the
group of polyhedrons, or more precisely isohedrons, consisting of
six square sides, 8 vertices, 12 edges, and having numerous
interesting properties (see [15] and [16] for an introduction).

In the case of a die, the cube has opposite faces, which are labeled
by number to always sum to seven. This gives two possible mirror
image arrangements in which the numbers 1, 2, and 3 may be
arranged in a clockwise or counterclockwise order about a corner.
The illustration in Figure 6a shows the six sides, numbered with
die-like counterclockwise arrangements, when viewed from along
the three-fold rotation axis towards the center of the die.

Figure 6. a) The arrangement of the cube in this paper follows
that of a counterclockwise die. b) A 90 degree rotation along
any axis through the center points of opposite faces leaves the
cube invariant.

The most important symmetry of the die for this paper is that it
remains invariant when applying certain sequences of rotational
transformations of 90 degrees along the axis through the centers

a)

2 5 3 4

1

6

b)

of opposing faces. Figure 6b shows these three axes. We will
consider for the remainder of this paper that the cube has, like the
die in Figure 6a, numbered faces, but do not assume that they are
visibly marked on the object.

5.2 Defining A Basic Set Of States
A certain state of a cube will be defined as an arrangement of
sides according to the following directions from the view of the
person holding it (see Figure 7a for an illustration):

• Top / Up: the side that faces upward
• Bottom / Down: the side that faces downward
• West: the side that faces to the left
• East: the side that faces to the right
• North: the side that faces away from the user
• South: the side that faces toward the user

With these definitions in place, two important remarks can be
made about the notation of a state: First, in general, for a person
holding the cube without knowing or observing any labels of the
sides, there are twenty-four possible states. Second, by exploiting
the cube’s structural properties and labeling each face of the cube
as mentioned in the previous section, a given cube’s state can be
described by knowing only the direction of two adjacent faces.

It is therefore sufficient to take two fixed directions (Top and
South, for instance), rather than describing a state by all six
directions.

Figure 7. a) A diagram of the six parameters for defining the
cube’s state from the user’s view. b) The defined set of four
possible transitions. The labels for the sides in both views are
relative to the user’s perspective.

5.3 Modeling The Transitions
Using the states defined in the previous section, one can define
six possible 90 degree rotations between those states (two per
axis, for positive or negative rotation). For reasons that will be
specified later in this section, this set of possible transitions will
be limited in our model to four of those (See Figure 7b):

• Forward: rotating the cube so that the Top side becomes the
North side

• Back: rotating the cube so that the Top side becomes the
South side

• Left: rotating the cube so that the Top side becomes the West
side

• Right: rotating the cube so that the Top side becomes the East
side

Given this set of transitions, and denoting a state by X,Y where X
is the top side and Y is the south side, a finite state machine can be
built (See state transition diagram in Figure 8). Notice that all 24
possible states can be reached with the four transitions defined
above.

Figure 8. All possible state transitions in two interlinked
graphs: Links between a state (rectangles) to the left, right,
up, and down another state indicate a transition after rotating
the cube to the left, right, forward, and backward
respectively. A cube’s state X,Y is characterized by the Top
side X, and the South side Y. The smaller states specify links
between the two graphs. Open links should be linked to the
state on the other side of the graph: a left transition from 3,1
(in the upper-left of the second graph) links to 2,1 for example
(upper-right of the same graph).

The reason for restricting the set of transitions to the four
mentioned above becomes clear when investigating the state
transition diagram in Figure 8 in detail: One can take any state in
the graph as an example, and examine all the possible transitions
(up, down, left and right). All first components of the states are
different, regardless which one was taken. Knowing the starting
state and the first component of the destination state therefore
identifies the transition, with the first component being the top
side. the conclusion is consequently:

For any given state, both the previous transition and the current
state can be inferred by just knowing the previous state and the
current Top side.

5,3

3,2

4,5

2,4

1,3

1,4

2,3

3,5

4,2

5,4

6,3

6,4

4,1
6,5 6,2

3,1
6,2 6,5

3,6

3,6
1,5

3,1

4,6
1,2

4,6 4,1

1,5

1,2

5,6

6,2

1,5

2,1

3,6

3,1

2,6

6,5

1,2

5,1

4,6

4,1

1,3
4,5 4,2

6,3
4,2 4,5

6,4

6,4
3,5

6,3

1,4
3,2

1,4 1,3

3,5

3,2
a) b)

If the previous top side was for example side 5, and the previous
South side was 4, with the current Top side being side 1, then the
graphs in Figure 8 can be used as a lookup table where only one
occurrence can be found: state 5,4 linked to state 1,4 via the Left
transition.

5.4 Summary
This section modeled the cube with a finite state machine, with
states being a description of the orientation of all sides and with
rotations as the transitions between the states. Limiting the
transitions to left, right, forward and back rotations, gives not only
a lighter model, in which all twenty-four possible states can still
be reached, but also requires the knowledge of just the previous
state and the current top side.

The consequences are significant: by knowing the starting state,
the model can keep track of its states by just estimating the top
side of the cube. The algorithm in section 4 does just that, so by
combining it with the finite state machine from this section, the
state of the cube and the last transition can be tracked at any given
point in time. This finally means that the cube can be used for
basic navigation, using the four transitions Left, Right, Forward,
and Back.

6. GESTURES
The model that was characterized in the previous two sections
allows basic interaction by changing the state of the cube. The
same sensors that measure its orientation, however, can also
measure dynamic acceleration. A basic set of gestures (shaking
the cube, twisting it, and knocking on it) that give distinct signal
patterns is used as additional means of input. Figure 9 shows
example timeseries plots for these discrete events.

An important requirement for the gestures is that they must be
independent of the orientation of the cube itself, i.e. the gestures
must be recognized regardless of the cube’s states. The other
restrictions that applied in previous sections due to the
microcontroller-based platform, such as limited memory, power,
and processing resources, are valid for the gesture recognition
algorithms as well.

Ideally, the gestures should be straightforward and familiar
enough to a person that is handed the cube for the first time and
asked to perform gestures like shaking, twisting or knocking on
the cube.

The patterns of these three gestures have certain characteristics
that are distinguishable enough from one another, and from a non-
gesture (i.e. normal use of the cube without performing an actual
gesture). The examples in Figure 9 show a high variation across
the signals whenever a gesture is carried out, which validates the
use of variance or standard deviation as a feature. A main
difference between the shaking gesture and the twisting gesture is
the number of sensors that give a strong variation, as shaking
tends to be more unidirectional. The variance over a short time
span is also key to distinguishing the knocking on the cube.

By calculating the variances for all sensor channels over a sliding
window of 50 samples, and averaging them to get an orientation-
independent value, a sufficient feature is generated to make the
distinction. As the averaged variance is the sole influential
descriptive feature that distinguishes the three gestures, a simple

Euclidean minimum-distance classifier determines which gesture
is the most likely one. Again, this algorithm is small and fast
enough to operate within the microcontroller’s limited resources.

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

600

700

Time (+/- 10ms)

S
en

so
rv

al
ue

s

0 10 20 30 40 50 60 70
350

400

450

500

550

600

650

Time (+/-10ms)

S
en

so
rv

al
ue

s

10 20 30 40 50 60 70 80 90 100
200

300

400

500

600

700

800

900

Time (+/- 10ms)

S
en

so
rv

al
ue

s

Figure 9. Time series plots (from top to bottom) for the
gestures “shaking”, “twisting”, and “knocking”. The
horizontal axes mark the time, the vertical axes show the
sensor signals for the four accelerometers.

One of the short-term future work goals in this research is to
implement a re-training procedure similar to the one for finding
the top side. This would complete the cube’s autonomy, and make
it fully re-configurable at run-time.

7. APPLICATION EXAMPLES
The cube system discussed so far, broadcasts a message over a
wireless link whenever it detects that it is being manipulated. This
can be triggered by either placing the cube on a different side
(changing its state), or performing one of the cube’s predefined
gestures.
The cube’s output, when picked up by a receiver, has the
following format:

“[C<top side> <south side> <last action> <gesture>]”

with each of the variables (in italics) represented by a number,
followed by a value that indicates confidence in the prediction
(mainly for debugging purposes). Two implementations are
discussed in this section to illustrate how this information could
be utilized by an application for which the cube can be used as an
input device.

7.1 Controlling Audio Mixer Profiles
The Innovative Interactions Lab at Lancaster University is a
‘living lab’ meeting area which is fitted with several large-screen
displays, sensors, and a high-end 8-channel audio system. The

audio system is controlled through a mixer that is hooked up to a
number of devices, such as a TV, a net-meeting environment,
MiniDisc player, CD player and several input sockets positioned
around the lab space.
Utilizing the audio system for any of these appliances means
going to the mixing panel, switching the appropriate channels and
setting the sliders to the required volume on the mixer. In
practice, this requires expertise with not only the mixer settings,
but also the entire audio system.
By using the cube as a simple, tangible interface, anybody in the
lab can set the audio system to one of the six most popular
settings by placing the cube so that the side that relates to the
desired appliance faces upwards. The cube’s output is sent to a
base station that converts the packets to a MIDI stream that
controls the mixing panel (see Figure 10 for a picture of the lab
setup), as well as two large plasma screens.

Figure 10. The cube that selects audio profiles for the lab’s
mixer panel has labeled sides corresponding to the available
audio sources. The side on top (TV in this case) is selected.
The small circuit board above the camera to the right of the
plasma screen is the base station. The inset shows the
equipment that drives the lab’s audio system; sliders and
channels are automatically set to one of six common profiles
by the cube.

This first example uses merely the first module of the cube
(“which side is up?”), but it has been deployed for half a year and
has become an accepted part of the lab, being used by a number
of people on a daily basis.

7.2 On-Screen Navigation
Another example uses the outputs of the cube’s second and third
algorithm modules as well, which provide applications with the
direction of all sides, the last state-transition (forward, back, left
or right) and gestures.

Figure 11 shows a demonstration program that asks the user to
navigate an animated dot on the screen to a certain position and
perform a certain action. Navigation is achieved by rotating the
cube 90 degrees in the desired direction, while actions are
represented by the gestures “shaking”, “twisting”, and
“knocking”.

Figure 11. The cube is used in a demonstration game to
navigate a dot on the screen by rotating the cube 90 degrees
forward, backward, to the left or to the right. Actions like
shaking the cube and knocking on it execute specific tasks.
Notice that the cube has no labeled sides.

Rotation of the cube along the Z-axis during the game results in
the model being distorted, as mentioned in section 5. Early tests,
however, show that users are able to quickly correct this situation
and rotate the cube back in the right position. Another restriction
for the application is that the cube needs to start with a known
starting state, which requires resetting it while holding the cube
with a marked side towards the user. Envisioned applications
range from simple user interfaces for children and disabled users,
to games where four-way navigation and few actions are
sufficient as interaction primitives (e.g. early text-based adventure
games, or board games).

8. RELATED WORK
Many input devices exist that have embedded motion sensors,
usually a combination of accelerometers and gyroscopes (see for
instance [1] or [3]). Most of them are considerably different from
our approach as they track a relative two-dimensional or three-
dimensional position in space, rather than states, and transmit
these data continuously to a dedicated application.

Benbasat and Paradiso [4] describe a device that is similar in form
and sensing hardware. Their Inertial Measurement Unit (IMU) is
cube-shaped and has four acceleration sensors, but also three
gyroscopes. The algorithms on the IMU are specifically geared
towards gesture recognition, exploiting it as a generic sensor that
is attached to another object. The framework around the IMU
provides ‘atomic gestures’ to an application’s designer that can be
combined with AND and OR operators. The IMU cube is not

envisioned as a standalone device, and therefore does not have,
nor require, the internal state model that allows the basic
navigation described in this paper.
The fundamental shape of the cube has inspired others to create
tangible interaction elements that are cube shaped, but require
additional external tracking equipment (such as reference beacons
or tablet surfaces). Olwal [12] envisions cubes as core
components in an AR interface, Frohlich and Plate track position
and orientation in three dimensional space of their Cubic Mouse
[7], a cube with three orthogonal rods through the sides and
buttons, and Sharlin et al. use a collection of cubes to assess 3D
constructive abilities in the Cognitive Cubes project [14].
The Toolstone [13] is a brick-like object on a tablet that senses
manipulation of itself by using internal coils. The Triangles
system [8] uses a basic two-dimensional triangle to create a
system for interaction with digital information. Brick-like objects
have been used for control in computer vision [6].

9. CONCLUSIONS
A tangible cube that embodies basic gesture recognition with
directional state and navigation information was introduced. In
hardware, simple acceleration sensors are employed, leading to an
efficient design in terms of energy consumption and size
constraints. In software, the lack of additional sensors is
compensated by an internal model of the cube’s symmetrical
properties in a state diagram, a rigid maximum likelihood
estimation procedure to guess the states, and crude gesture
recognition.

The algorithms fit comfortably in a microcontroller environment
without needing further calculation outside the cube; wireless
communication is only activated when either a gesture is
performed or the cube’s state has been changed. Initial
experiments in which the cube is deployed in real-world contexts
suggest that the cube is reliable and its batteries have an adequate
lifespan.

Further experimentation is scheduled to investigate the usability
of the cube, the effects of its design (such as material, color,
weight, or edges), and its limitations and fortes as an input device.
More in-depth hardware and algorithm descriptions, plus the
Matlab scripts and datasets that were used to create the graphs in
this paper are available at: http://ubicomp.lancs.ac.uk

10. ACKNOWLEDGMENTS
The prototypes in this work have been based upon earlier
hardware and studies from the Smart-Its project (funded by the
EU’s IST framework), and the Equator project (funded by
EPSRC, under grant GR/N15986/01 - "Technological Innovation
in Physical and Digital Life").

We would like to thank our partners in those projects, as well as
all our colleagues at the department who were so kind to test the
cube out and give us their feedback.

11. REFERENCES
[1] 3D Mouse from Handview: http://www.handview.com/
[2] ADXRS150 gyroscope: ±150°/s Single Chip Yaw Rate Gyro

with Signal Conditioning Data Sheet (Rev. A, 1/03)

[3] Bartlett, J.F. Rock ’n’ scroll is here to stay. IEEE Computer
Graphics and Applications, Vol. 20-3, May/June 2000. pp.
40–45.

[4] Benbasat, A.Y. and Paradiso, J. A. An Inertial Measurement
Framework for Gesture Recognition and Applications. In
Ipke Wachsmuth, Timo Sowa (Eds.), Gesture and Sign
Language in Human-Computer Interaction, International
Gesture Workshop, GW 2001, London, UK, 2001
Proceedings, Springer-Verlag Berlin, 2002.

[5] FastICA Toolkit, Helsinki University of Technology.
http://www.cis.hut.fi/projects/ica/fastica/

[6] Fjeld, M., Voorhorst, F., Bichsel, M., & Krueger, H.
Exploring brick-based camera control. In H.-J. Bullinger & J.
Ziegler (eds): Proceedings of HCI International’99, (the 8th
International Conference on Human-Computer Interaction),
pp. 1060-1064. 1999.

[7] Froehlich, B. and Plate, J. The Cubic Mouse: A New Device
for Three-Dimensional Input. Proceedings of CHI 2000, pp.
526-531. 2000.

[8] Gorbet, M., Orth, M. and Ishii, H. Triangles: Design of a
Physical/Digital Construction Kit. Proceedings of Designing
Interactive Systems: Processes, Practices, Methods, and
Techniques (ACM DIS '97), Amsterdam, ACM, pp. 125-128.

[9] Hyvärinen, A., Karhunen, J., Oja, E. Independent
Component Analysis (ICA). John Wiley & Sons, 2001.

[10] iMAR Triaxial iTGAC-FK Sensor Cube with Fiber Optical
Gyros and Accelerometers. http://www.imar-
navigation.de/englishside/dat_engl/tgac_fk.pdf

[11] Mitchell, T. Machine Learning. McGraw-Hill c, 1997.

[12] Olwal., A. Unit—A Modular Framework for Interaction
Technique Design, Development and Implementation.
Master’s project at the KTH, Stockholm, Sweden, executed
in the Department of Computer Science at Columbia
University, New York, USA. 2002.

[13] Rekimoto, J. and Sciammarella, E. ToolStone: Effective use
of the physical manipulation vocabularies of input devices.
In Proc. of UIST 2000, 2000.

[14] Sharlin, E., Itoh, Y., Watson, B., Kitamura, Y., Liu, L.,
Sutphen, S. Cognitive Cubes: A Tangible User
Interface for Cognitive Assessment, ACM CHI 2002
Conference Proceedings, pp. 347-354, April 20-25,
2002, Minneapolis, Minnesota

[15] Weisstein, E. The Cube. World of Mathematics. Online web
resource. http://mathworld.wolfram.com/Cube.html

[16] Wenninger, M.J. The Hexahedron (Cube). In Polyhedron
Models. Cambridge, England: Cambridge University Press,
p.16, 1989.

