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ABSTRACT 
This paper presents a low-cost and practical approach to achieve 
basic input using a tactile cube-shaped object, augmented with a 
set of sensors, processor, batteries and wireless communication. 
The algorithm we propose combines a finite state machine model 
incorporating prior knowledge about the symmetrical structure of 
the cube, with maximum likelihood estimation using multivariate 
Gaussians. The claim that the presented solution is cheap, fast and 
requires few resources, is demonstrated by implementation in a 
small-sized, microcontroller-driven hardware configuration with 
inexpensive sensors. We conclude with a few prototyped 
applications that aim at characterizing how the familiar and 
elementary shape of the cube allows it to be used as an interaction 
device.  

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – Haptic I/O, Input devices and strategies.  

General Terms 
Algorithms, Reliability, Human Factors, Verification. 

Keywords 
Sensor-based tactile interfaces, haptic interfaces, Markov chain, 
Maximum Likelihood estimation, Gaussian modeling. 

1. INTRODUCTION 
One of the goals that researchers in ubiquitous computing strive 
towards is the integration of computing technology into objects 
that are different from traditional functional appliances: the 
objects need to mix more fluently in everyday environments, and 
interaction should be intuitive. Making these objects look, feel, 
and behave familiarly for the sake of the user often results in very 
tight constraints for the designers of its hardware and software. 

The affordance and familiarity of an object are major factors for 
interaction with it. Apart from its shape and feel, size is important 
as well: The additional electronic components should be 
contained within the augmented object, without enlarging it. 

Other crucial constraints are battery power, as batteries need to be 
replaced or recharged periodically, and robustness and reliability, 
since people might treat these objects forcefully. 

The focus of this paper is not so much on ‘digitizing’ an existing 
object; it concentrates more on the creation of a novel object 
having the shape and form factor of an elementary three-
dimensional structure: a cube or die. Certain properties, like its 
symmetry and well-known shape, make it relatively easy to 
model, both in software and in the mind of the user. Using sensors 
that track a notion of its state, this cube can be used as a basic 
input device for selection and navigation, while blending in with 
the environment and remaining easy to physically and mentally 
grasp. Further assumptions are the cube’s physically separation 
from any appliance (a cable might encumber interaction), and that 
it broadcasts its state as a service to the environment, rather than 
one specific appliance.  

 
Figure 1. Picture of our transparent version of the cube, with 
all of its electronic components fixed inside. 

We present an augmented cube the size of a large die, which 
wirelessly transmits which of its sides is up, its orientation, and 
whether it went through a predefined gesture. This paper will 
concentrate on key choices in the design of the algorithms, since 
they allow the cube to have low cost, small form factor, and fast 
response time:  

• The cube’s orientation is inferred, using the data from 
accelerometers only, rather than utilizing (bigger) 
gyroscopes or similar sensors.  

• The software runs on a standard PIC microcontroller that 
has limited memory. It is well suited for embedded devices.  
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The cube is intended to be used by applications in its 
surroundings. The applications pick up its transmissions and 
translate them into actions for selection and navigation tasks.  

2. HARDWARE 
During the prototyping phase, the choice of hardware is 
important, since it has direct consequences for the remainder of 
the system design. The cube as an object has to remain small and 
robust enough for the users to handle it, and its “digital self” 
needs to be accurate and autonomous so it can work properly for 
long periods without requiring cabling for power and 
communication. 

2.1 Basic Processing: PIC Microcontroller  
The heart of the hardware is a Microchip PIC microprocessor 
(PIC18F252), which is small, fast (10 Mips), consumes little 
energy (25 µA / 0.2 µA standby), and is easy to interface to the 
sensors and communication module. The downside is that the 
entire software for processing the sensor data and broadcasting it 
via a wireless protocol has to fit in a tiny program memory 
(32Kbyte) and only has access to a small amount of data memory 
(1536 bytes).  

 
Figure 2. The two stacked hardware boards with the major 
components annotated. A battery (coin-sized or 2 AAA) and 
second accelerometer are not visible from this angle. 

2.2 Sensors 
The microcontroller we used has fourteen inputs for binary 
sensors and a built-in analog-to-digital conversion unit that allows 
five analog sensors to be attached. Our objective, however, to 
keep the hardware as simple and low-cost as possible without 
giving in too much on performance, means that we kept the 
number of sensors low: 

• Two dual-axis accelerometers (ADXL311) measure both 
dynamic acceleration (e.g., vibration) and static acceleration 
(e.g., gravity) in a plane. The sensors’ ability to measure 
gravity gives us the opportunity to discriminate in contexts 
where acceleration may be zero (such as different positions of 
the cube). We used two accelerometers to get acceleration in 
three dimensions (X-Y and X-Z). 

• One capacitive sensor (QT110) measures proximity of the 
user’s hand (i.e., whether the user is holding the cube or not), 
mainly to wake up the microcontroller from standby. 

Both types of sensors are particularly cheap in power 
consumption (400µA / 20µA), and price (5 USD / 1.6 USD1) per 
accelerometer and proximity sensor respectively, due to their 
manufacturing process and presence in a large number of 
applications.  

Other sensors that would track the cube’s movements are 
significantly larger and more expensive. Gyroscopes, for instance, 
are being used in similar hardware to get an additional three 
degrees of freedom (by explicitly sensing rotation around the 
three axes). They are known to drift, however, and it is common 
for them to also include a temperature sensor and voltage 
reference to condition the signal. The manufacturing process is 
more complicated, and therefore drives up the package size and 
price (typically around 40 USD1 [2]); gyroscopes also require a 
significant amount of current (typically 6 mA [2]). In this paper, 
the sensing is limited to inexpensive and small inertial 
acceleration sensing, with an additional algorithm included on the 
microcontroller to compensate for the lack of explicit rotation 
sensors.   

2.3 Communications 
The communications module is a Radiometrix BIM2 chip that 
transmits and receives data wirelessly (via FM) over an 
approximate range up to fifty meters indoors. Its relatively low 
power consumption for an RF module (~8 mA) and considerable 
data rate (64 kbps) make it an ideal interface between the cube 
and surrounding applications. Unlike many tracking appliances, 
the cube will only output information about itself to its 
environment when its state has changed or when a certain gesture 
is performed, thus preserving the batteries as much as possible. 
Wireless transmission is by far the most power-hungry component 
of the cube. 

2.4 Characteristics 
The prototype hardware used in this paper consists of two boards 
(as shown in Figure 2) that stack on top of each other: One board 
makes up the core section, containing the microcontroller, 
communications module, and a coin-size Lithium cell on the 
bottom. The second board has the acceleration and proximity 
sensors, plus a few empty slots for future sensors, should they be 
required. The total setup for one cube, including the printed 
circuit board and all components, costs about 50 USD.  

The entire system runs on a three volt Lithium coin-cell battery, 
or two AAA batteries which give a lifetime of approximately four 
months with the current embedded software and normal usage 
(“normal” usage defined by the first application in section 7).  

3. MODEL OVERVIEW 
Our objective is to give the cube a digital representation, so that it 
can offer its state as a service to applications in its environment. 
What states it can and should detect, and what behaviors can be 
detected, are vital considerations for obtaining a model for the 
cube.  

The system that we implemented has three modules: the first 
estimates which is the top side of the cube, the second uses this 
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information with prior states to estimate the direction to which all 
other sides are pointing, and finally the third model overrules the 
others if it is confident enough that a gesture was performed. 
Figure 3 gives an overview of the system with some examples. 

 
Figure 3. The three modules that produce the cube’s output, 
abstracting from the raw acceleration data. 

3.1 Which Side Is Up? 
A first approximation of a model estimates which side of the cube 
is ‘on top’, which we will define as relative to the user but 
assume to be similar to pointing upwards if the cube would be 
lying on the ground. Note that this is just a rough approximation 
of the cube’s state, especially as it doesn’t include rotation in the 
X-Y plane parallel to the top side; we know the orientation of the 
top and bottom sides, due to the symmetry of the cube, but not the 
orientation of the four other sides. However, this basic model 
alone is already useable for making simple selections, similar to 
making a (random) selection by rolling a die.  

Accelerometers that operate in three perpendicular dimensions are 
a well-known tool to estimate the position of an object, relative to 
the earth’s gravitational field. We will model the top side by 
analyzing the accelerometers’ sensor data for each possible side, 
and using these six models for estimation of the side that is most 
likely ‘on top’.  

3.2 Orientation Of All Sides Relative To User 
Instead of just expressing the top and bottom sides, a more 
appropriate model would be to represent where each side is 
pointing to, relative to the user. These orientations do not need to 
be precise measurements in degrees: a more useful set would be 
the already existing ‘on top’/’Up’ and ‘on bottom’/’Down’, 
accompanied by the other directions (defined as ‘North’, ‘South’, 
‘West’, and ‘East’) again relative to the user. Rather than 
throwing away the previous model and adding some sensors that 
sense orientation in all three dimensions, we use the previous 
model to estimate the orientation of all sides. This method will 
require an a priori known starting orientation, or at least the 
orientation of two perpendicular sides.  

3.3 Gestures  
A third addition to the cube’s model, still using the minimal set of 
sensors from the hardware discussed in section 2, is a distinct set 
of gestures that the user can perform with the cube in hand. The 

module that will recognize the gestures runs parallel to the other 
modules, overriding it whenever the most likely gesture is 
recognized with a sufficient probability. As the given sensor’s 
capabilities are limited, gestures will typically involve signals 
with a high variance and a distinct pattern.  

4. FINDING THE TOP SIDE 
The three-dimensional arrangement of the accelerometers allows 
a very easy and robust way to work out which side of the cube is 
on top. We can assume that there is no drift in the sensor signals, 
and only a small amount of noise. Furthermore, as there are four 
signals available (two per accelerometer), all four will be used to 
distinguish the six possible sides facing upwards. Arguably, the 
fourth (redundant) acceleration signal will only give a small 
information gain, but is included nonetheless as it will not 
perceptibly affect the real-time performance of the software on 
the microcontroller. 

4.1 Multivariate Gaussian Modeling of Sides  
Due to the properties of the acceleration sensors, one can expect 
that the combined signals they produce will indeed vary for each 
orientation of the cube. An obvious method to model the data 
from each side being the one on top is to represent it as a four-
dimensional Gaussian:  
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where i ranges from 1 to 6 to identify the sides of the cube, x 
specifies a four-dimensional vector with the sensor readings, and 
the two parameters µ and Σ  indicate the mean (average) vector 
and covariance matrix, respectively. 

The Gaussian for each side being the one on top can thus be 
characterized by obtaining the averages and the covariances from 
sample data. This can be done by recording a dataset for each side 
facing upwards, and storing the averages and covariances from 
these datasets as pre-calculated values in the hardware. It is 
however also possible, and feasible, to code the calculation of the 
averages and covariances into a routine that can reassess or re-
calibrate these parameters at run-time. Sample data from the cube 
being placed on all six sides successively is plotted as a time 
series in Figure 4.  

Figure 4. Samples from the cube’s sensors, while placed on all 
six sides successively (labeled in the plot). 

To visualize the Gaussian models, a dimensionality reduction 
algorithm (FastICA [14], based on Independent Component 
Analysis [3]) was utilized to map the four-dimensional data space 
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(which is hard to visualize) into a two-dimensional space. Figure 
5 shows the six two-dimensional Gaussians (notice how they are 
evenly distributed over the input space) with a sample trace of a 
cube being rotated around, cycling through all six states. 

 
Figure 5. Mapping to a two-dimensional space to visualize the 
Gaussians for all six sides. The line trace is a trace plot of the 
readings while the cube was turned around from side to side.  

4.2 Maximum Likelihood Estimation  
The Gaussians will be used for each sample reported by the 
acceleration sensors to establish which side these readings belong 
to. Using the formula in the previous section, the side i for which 
the Gaussian Gi(x) has the highest value for the current sensor 
readings x, will be the most likely side that is on top of the cube.  
To fit this into a Maximum Likelihood (ML, see [11] for a brief 
introduction) estimation procedure, we start with Bayes’ rule: 
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where P( T=i | x ) is the posterior probability that the side i is on 
top, given the sensor data x, and P( x | T=i ) is the prior 
probability that sensor data x enters the system, while it is given 
that side i is on top. The two other values, P(T=i) and P(x), 
signify the probability that the cube has i as a top side and the 
probability that the sensors read the vector x, respectively.  

Since only the side i that is the top side is of interest, we search 
for the maximum argument instead of just the probabilities: 
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by replacing the prior probabilities with the Gaussians, and 
assuming that all sides of the cube are equally likely to be on top, 
P(T=i) = 1/6.  

This can be simplified by including the natural log function to 
eliminate the exponential function in the Gaussian: 
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Finally, eliminating the constants and reversing the sign produces 
an easier formula that gives the most likely top side of the cube: 
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By filling in the four acceleration values x=(x1, x2, x3, x4) into this 
formula, and having computed the µi , ln|Σ|, and Σ-1 beforehand, 
one gets the side i that is most likely the top side. This calculation 
fits easily into the microcontroller’s program memory and does 
not need an excessive amount of stored data: In the C source code 
for the microcontroller, the computation per input, per side, 
requires 20 multiplications, 4 subtractions, and 16 additions. The 
amount of time that this takes is negligible, compared to the other 
code segments for reading the sensor values and establishing 
communication. 

4.3 Re-estimating Parameters at Run-time 
Not only does the estimation procedure fit easily on a 
microcontroller, the generation of the covariance matrices and 
means was implemented on the microcontroller as well. This 
could be used for re-calibration (although the sensors do not drift 
as such, sides may need to be re-mapped or the hardware might be 
repositioned within the cube), or during an initial ‘training phase’. 
The one restriction that affects the accuracy is the size of the 
datasets per side, due to the limited amount of available memory.  

5. MODELING THE CUBE 

5.1 Symmetrical Properties Of The Cube  
The cube is known in mathematics as a hexahedron, from the 
group of polyhedrons, or more precisely isohedrons, consisting of 
six square sides, 8 vertices, 12 edges, and having numerous 
interesting properties (see [15] and [16] for an introduction).  

In the case of a die, the cube has opposite faces, which are labeled 
by number to always sum to seven. This gives two possible mirror 
image arrangements in which the numbers 1, 2, and 3 may be 
arranged in a clockwise or counterclockwise order about a corner. 
The illustration in Figure 6a shows the six sides, numbered with 
die-like counterclockwise arrangements, when viewed from along 
the three-fold rotation axis towards the center of the die.  

 
Figure 6. a) The arrangement of the cube in this paper follows 
that of a counterclockwise die. b) A 90 degree rotation along 
any axis through the center points of opposite faces leaves the 
cube invariant. 

The most important symmetry of the die for this paper is that it 
remains invariant when applying certain sequences of rotational 
transformations of 90 degrees along the axis through the centers 
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of opposing faces. Figure 6b shows these three axes. We will 
consider for the remainder of this paper that the cube has, like the 
die in Figure 6a, numbered faces, but do not assume that they are 
visibly marked on the object. 

5.2 Defining A Basic Set Of States  
A certain state of a cube will be defined as an arrangement of 
sides according to the following directions from the view of the 
person holding it (see Figure 7a for an illustration):  

• Top / Up: the side that faces upward 
• Bottom / Down: the side that faces downward 
• West: the side that faces to the left   
• East: the side that faces to the right 
• North: the side that faces away from the user 
• South: the side that faces toward the user 

 
With these definitions in place, two important remarks can be 
made about the notation of a state: First, in general, for a person 
holding the cube without knowing or observing any labels of the 
sides, there are twenty-four possible states. Second, by exploiting 
the cube’s structural properties and labeling each face of the cube 
as mentioned in the previous section, a given cube’s state can be 
described by knowing only the direction of two adjacent faces.  

It is therefore sufficient to take two fixed directions (Top and 
South, for instance), rather than describing a state by all six 
directions. 

 
Figure 7. a) A diagram of the six parameters for defining the 
cube’s state from the user’s view. b) The defined set of four 
possible transitions. The labels for the sides in both views are 
relative to the user’s perspective. 

5.3 Modeling The Transitions 
Using the states defined in the previous section, one can define 
six possible 90 degree rotations between those states (two per 
axis, for positive or negative rotation). For reasons that will be 
specified later in this section, this set of possible transitions will 
be limited in our model to four of those (See Figure 7b): 

• Forward: rotating the cube so that the Top side becomes the 
North side 

• Back: rotating the cube so that the Top side becomes the 
South side 

• Left: rotating the cube so that the Top side becomes the West 
side 

• Right: rotating the cube so that the Top side becomes the East 
side 

Given this set of transitions, and denoting a state by X,Y where X 
is the top side and Y is the south side, a finite state machine can be 
built (See state transition diagram in Figure 8). Notice that all 24 
possible states can be reached with the four transitions defined 
above. 

 
Figure 8. All possible state transitions in two interlinked 
graphs: Links between a state (rectangles) to the left, right, 
up, and down another state indicate a transition after rotating 
the cube to the left, right, forward, and backward 
respectively. A cube’s state X,Y is characterized by the Top 
side X, and the South side Y. The smaller states specify links 
between the two graphs. Open links should be linked to the 
state on the other side of the graph: a left transition from 3,1 
(in the upper-left of the second graph) links to 2,1 for example 
(upper-right of the same graph).  
 
The reason for restricting the set of transitions to the four 
mentioned above becomes clear when investigating the state 
transition diagram in Figure 8 in detail: One can take any state in 
the graph as an example, and examine all the possible transitions 
(up, down, left and right). All first components of the states are 
different, regardless which one was taken. Knowing the starting 
state and the first component of the destination state therefore 
identifies the transition, with the first component being the top 
side. the conclusion is consequently:  

For any given state, both the previous transition and the current 
state can be inferred by just knowing the previous state and the 
current Top side.  
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If the previous top side was for example side 5, and the previous 
South side was 4, with the current Top side being side 1, then the 
graphs in Figure 8 can be used as a lookup table where only one 
occurrence can be found: state 5,4 linked to state 1,4 via the Left 
transition.  

5.4  Summary 
This section modeled the cube with a finite state machine, with 
states being a description of the orientation of all sides and with 
rotations as the transitions between the states. Limiting the 
transitions to left, right, forward and back rotations, gives not only 
a lighter model, in which all twenty-four possible states can still 
be reached, but also requires the knowledge of just the previous 
state and the current top side.  

The consequences are significant: by knowing the starting state, 
the model can keep track of its states by just estimating the top 
side of the cube. The algorithm in section 4 does just that, so by 
combining it with the finite state machine from this section, the 
state of the cube and the last transition can be tracked at any given 
point in time. This finally means that the cube can be used for 
basic navigation, using the four transitions Left, Right, Forward, 
and Back. 

6. GESTURES 
The model that was characterized in the previous two sections 
allows basic interaction by changing the state of the cube. The 
same sensors that measure its orientation, however, can also 
measure dynamic acceleration. A basic set of gestures (shaking 
the cube, twisting it, and knocking on it) that give distinct signal 
patterns is used as additional means of input. Figure 9 shows 
example timeseries plots for these discrete events. 

An important requirement for the gestures is that they must be 
independent of the orientation of the cube itself, i.e. the gestures 
must be recognized regardless of the cube’s states. The other 
restrictions that applied in previous sections due to the 
microcontroller-based platform, such as limited memory, power, 
and processing resources, are valid for the gesture recognition 
algorithms as well.  

Ideally, the gestures should be straightforward and familiar 
enough to a person that is handed the cube for the first time and 
asked to perform gestures like shaking, twisting or knocking on 
the cube.  

The patterns of these three gestures have certain characteristics 
that are distinguishable enough from one another, and from a non-
gesture (i.e. normal use of the cube without performing an actual 
gesture). The examples in Figure 9 show a high variation across 
the signals whenever a gesture is carried out, which validates the 
use of variance or standard deviation as a feature. A main 
difference between the shaking gesture and the twisting gesture is 
the number of sensors that give a strong variation, as shaking 
tends to be more unidirectional. The variance over a short time 
span is also key to distinguishing the knocking on the cube.  

By calculating the variances for all sensor channels over a sliding 
window of 50 samples, and averaging them to get an orientation-
independent value, a sufficient feature is generated to make the 
distinction. As the averaged variance is the sole influential 
descriptive feature that distinguishes the three gestures, a simple 

Euclidean minimum-distance classifier determines which gesture 
is the most likely one. Again, this algorithm is small and fast 
enough to operate within the microcontroller’s limited resources. 
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Figure 9. Time series plots (from top to bottom) for the 
gestures “shaking”, “twisting”, and “knocking”. The 
horizontal axes mark the time, the vertical axes show the 
sensor signals for the four accelerometers.  

One of the short-term future work goals in this research is to 
implement a re-training procedure similar to the one for finding 
the top side. This would complete the cube’s autonomy, and make 
it fully re-configurable at run-time.  

7. APPLICATION EXAMPLES 
The cube system discussed so far, broadcasts a message over a 
wireless link whenever it detects that it is being manipulated. This 
can be triggered by either placing the cube on a different side 
(changing its state), or performing one of the cube’s predefined 
gestures. 
The cube’s output, when picked up by a receiver, has the 
following format: 

“[C<top side> <south side> <last action> <gesture> ]” 

with each of the variables (in italics) represented by a number, 
followed by a value that indicates confidence in the prediction 
(mainly for debugging purposes). Two implementations are 
discussed in this section to illustrate how this information could 
be utilized by an application for which the cube can be used as an 
input device. 

7.1 Controlling Audio Mixer Profiles 
The Innovative Interactions Lab at Lancaster University is a 
‘living lab’ meeting area which is fitted with several large-screen 
displays, sensors, and a high-end 8-channel audio system. The 



audio system is controlled through a mixer that is hooked up to a 
number of devices, such as a TV, a net-meeting environment, 
MiniDisc player, CD player and several input sockets positioned 
around the lab space.  
Utilizing the audio system for any of these appliances means 
going to the mixing panel, switching the appropriate channels and 
setting the sliders to the required volume on the mixer. In 
practice, this requires expertise with not only the mixer settings, 
but also the entire audio system.  
By using the cube as a simple, tangible interface, anybody in the 
lab can set the audio system to one of the six most popular 
settings by placing the cube so that the side that relates to the 
desired appliance faces upwards. The cube’s output is sent to a 
base station that converts the packets to a MIDI stream that 
controls the mixing panel (see Figure 10 for a picture of the lab 
setup), as well as two large plasma screens.  
 

 

Figure 10. The cube that selects audio profiles for the lab’s 
mixer panel has labeled sides corresponding to the available 
audio sources. The side on top (TV in this case) is selected. 
The small circuit board above the camera to the right of the 
plasma screen is the base station. The inset shows the 
equipment that drives the lab’s audio system; sliders and 
channels are automatically set to one of six common profiles 
by the cube.  

This first example uses merely the first module of the cube 
(“which side is up?”), but it has been deployed for half a year and 
has become an accepted part of the lab, being used by a number 
of people on a daily basis.  

7.2 On-Screen Navigation 
Another example uses the outputs of the cube’s second and third 
algorithm modules as well, which provide applications with the 
direction of all sides, the last state-transition (forward, back, left 
or right) and gestures.  

Figure 11 shows a demonstration program that asks the user to 
navigate an animated dot on the screen to a certain position and 
perform a certain action. Navigation is achieved by rotating the 
cube 90 degrees in the desired direction, while actions are 
represented by the gestures “shaking”, “twisting”, and 
“knocking”.  
 

 
Figure 11. The cube is used in a demonstration game to 
navigate a dot on the screen by rotating the cube 90 degrees 
forward, backward, to the left or to the right. Actions like 
shaking the cube and knocking on it execute specific tasks. 
Notice that the cube has no labeled sides.  

Rotation of the cube along the Z-axis during the game results in 
the model being distorted, as mentioned in section 5. Early tests, 
however, show that users are able to quickly correct this situation 
and rotate the cube back in the right position. Another restriction 
for the application is that the cube needs to start with a known 
starting state, which requires resetting it while holding the cube 
with a marked side towards the user. Envisioned applications 
range from simple user interfaces for children and disabled users, 
to games where four-way navigation and few actions are 
sufficient as interaction primitives (e.g. early text-based adventure 
games, or board games).  

8. RELATED WORK 
Many input devices exist that have embedded motion sensors, 
usually a combination of accelerometers and gyroscopes (see for 
instance [1] or [3]). Most of them are considerably different from 
our approach as they track a relative two-dimensional or three-
dimensional position in space, rather than states, and transmit 
these data continuously to a dedicated application.  

Benbasat and Paradiso [4] describe a device that is similar in form 
and sensing hardware. Their Inertial Measurement Unit (IMU) is 
cube-shaped and has four acceleration sensors, but also three 
gyroscopes. The algorithms on the IMU are specifically geared 
towards gesture recognition, exploiting it as a generic sensor that 
is attached to another object. The framework around the IMU 
provides ‘atomic gestures’ to an application’s designer that can be 
combined with AND and OR operators. The IMU cube is not 



envisioned as a standalone device, and therefore does not have, 
nor require, the internal state model that allows the basic 
navigation described in this paper.  
The fundamental shape of the cube has inspired others to create 
tangible interaction elements that are cube shaped, but require 
additional external tracking equipment (such as reference beacons 
or tablet surfaces). Olwal [12] envisions cubes as core 
components in an AR interface, Frohlich and Plate track position 
and orientation in three dimensional space of their Cubic Mouse 
[7], a cube with three orthogonal rods through the sides and 
buttons, and Sharlin et al. use a collection of cubes to assess 3D 
constructive abilities in the Cognitive Cubes project [14].  
The Toolstone [13] is a brick-like object on a tablet that senses 
manipulation of itself by using internal coils. The Triangles 
system [8] uses a basic two-dimensional triangle to create a 
system for interaction with digital information. Brick-like objects 
have been used for control in computer vision [6].  

9. CONCLUSIONS 
A tangible cube that embodies basic gesture recognition with 
directional state and navigation information was introduced. In 
hardware, simple acceleration sensors are employed, leading to an 
efficient design in terms of energy consumption and size 
constraints. In software, the lack of additional sensors is 
compensated by an internal model of the cube’s symmetrical 
properties in a state diagram, a rigid maximum likelihood 
estimation procedure to guess the states, and crude gesture 
recognition.  

The algorithms fit comfortably in a microcontroller environment 
without needing further calculation outside the cube; wireless 
communication is only activated when either a gesture is 
performed or the cube’s state has been changed. Initial 
experiments in which the cube is deployed in real-world contexts 
suggest that the cube is reliable and its batteries have an adequate 
lifespan.  

Further experimentation is scheduled to investigate the usability 
of the cube, the effects of its design (such as material, color, 
weight, or edges), and its limitations and fortes as an input device. 
More in-depth hardware and algorithm descriptions, plus the 
Matlab scripts and datasets that were used to create the graphs in 
this paper are available at: http://ubicomp.lancs.ac.uk 
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