

Multi-Sensor Context Aware Clothing

Kristof Van Laerhoven, Albrecht Schmidt and Hans-Werner Gellersen
Ubicomp Group

Lancaster University
LA1 Lancaster 4YR, United Kingdom

{kristof, albrecht, hwg}@comp.lancs.ac.uk

Abstract

Inspired by perception in biological systems,
distribution of a massive amount of simple sensing
devices is gaining more support in detection
applications. A focus on fusion of sensor signals instead
of strong analysis algorithms, and a scheme to distribute
sensors, results in new issues. Especially in wearable
computing, where sensor data continuously changes, and
clothing provides an ideal supporting structure for
simple sensors, this approach may prove to be
favourable. Experiments with a body-distributed sensor
system investigate the influence of two factors that affect
classification of what has been sensed: an increase in
sensors enhances recognition, while adding new classes
or contexts depreciates the results. Finally, a wearable
computing related scenario is discussed that exploits the
presence of many sensors.

1. Introduction

The justification for using sensors in a wearable

computing architecture ranges from use in intelligence
augmentation (such as availability of a real-time clock
and calendar, the exact room temperature, or CO-level)
to automating tasks depending on particular features of
the environment, situation or context (light level driving
brightness of the display, temperature sensors regulating
heat elements in the clothes [9], stick-e-notes [3], context
aware tour guides [6], etc.). Regardless of whether these
applications would be sought after by a large community,
one trend that can be observed is that sensors are
gradually becoming part of mobile and wearable devices.

The goal of this paper is to characterize the use of a
multitude of simple sensors, and the consequences of
focusing on sensor-fusion instead of sensor-specific pre-
processing algorithms (such as image- or sound
analysis). The idea takes encouragement from perception

in biological organisms, where massively parallel neural
pathways maintain a robust flow of sensed impulses to
the brain [2].

Distribution of sensors fits to a great degree in
research that augments mundane objects with computing
elements, commonly referred to as ubiquitous computing.
Wearable computers are no exception to this concept
either, since large surfaces of clothing are an ideal
supporting platform for a multitude of sensors, provided
they are miniaturized so that they do not obstruct the
wearer. This size constraint often means that the quality
of the sensor itself is compromised as well, which leads
to the concept of many simple sensors [15].

Once the choice has been made to employ many
sensors, two fundamental approaches of where to fuse the
sensor data appear: (1) distributed across a network or
(2) centralized. After a description of both, we give a
motivation for our choice of architecture for the paper’s
experiment, which attempts to characterize the impact of
both contexts and sensors on the quality of context
awareness.

2. Multi-sensor networks

Finding the optimal way to interconnect many sensors
in a network is still an unresolved issue in ongoing
research. We distinguish approaches to collect and
manage sensor data in large networks in two classes,
based on how and where the data is fused. The first uses
a tree-like hierarchy to assemble high-dimensional
vectors at the root, so they can be fed into a classification
algorithm that assigns a description to each input. The
latter alternative processes the sensor data locally and
then communicates further data to propagate throughout
the entire network.

We introduce our most recently prototyped hardware
as specific examples of both approaches. Then we will
continue to use the centrally-processed sensor platform in
the experimental section of this paper.

2.1. Centralized processing

Most sensor architectures tend to stream all data,

sometimes pre-processed, to one central location. The
ease of implementation compared to a decentralized
approach and the fact that most systems are inherently
based on a single computer anyway, are most likely the
prime reasons for this choice.

Figure 1. Centralized processing and fusion of the data.

2.2. In practice: the 30-accelerometer board

Many approaches use some kind of bus to distribute
data across a network and increase the number of
sensors. The problem with this approach is an extra level
of complexity: additional bus-communication requires a
microcontroller per sensor(-module) or at least extra
complexity in the sensor’s chip-design.

Instead, we opted to optimize our current approach
depicted in Figure 1 by increasing the number of sensors
for one microcontroller to its absolute maximum without
additional components (such as multiplexers /
demultiplexers). By utilizing all of the Microchip PIC
16F877 microprocessor’s input channels, we come to a
maximum of thirty sensors that can be read and
forwarded to a central processor or a hub via a traditional
serial port. Since most standard computing platforms
support at least four serial ports, 120 sensors could be
attached without additional (custom-built) hardware. Of
all sensor signals, 8 use the analog outputs of the
ADXL202E to be converted to digital inside the
microprocessor, and the other 22 use the Pulse Width
Modulation (PWM) outputs to connect to the
microprocessor’s digital input pins. Figure 2 depicts the
internals of the sensor board. The remainder of this paper
will specify accelerometers as the used sensors, the type
we use (ADXL202E dual axis accelerometers from
Analog Devices) outputs the acceleration in both analog
and PWM.

Figure 2. The PIC-based sensor-reading module, able to read
thirty sensor values at once and stream them to the RS232
serial port. Right are a few of the accelerometers.

// read PWM0
if (bad[0]<bad_buffer) {

 high = 0;
 while(input(PIN_C0)&&
 (high<bad_overfl))
 { high++; } // wait until

low
 if (high>(bad_overfl-1))
 { bad[0]++; };
 high = 0;
 while(!input(PIN_C0)&&

 (high<bad_overfl))
 { high++; } // wait until

high
 if (high>(bad_overfl-1))
 { bad[0]++; };
 high = 0;
 while(input(PIN_C0)&&
 (high<bad_overfl))
 { high++; } // count high-

time
 if (high>(bad_overfl-1))
 { high=0; bad[0]++; }
 val[8] = high;

}

Table 1. Part of the microcontroller’ s source code that converts
the pulses on pin C0 into an acceleration value.

The design of the printed circuit board (PCB) 1 of this
setup contains mainly the microprocessor and an array of

1 The PCB, schematics, and the PIC microprocessor’s
source code are publicly available at this website:
http://www.comp.lancs.ac.uk/~kristof/notes/thirtyacc/

se
ns

or
s

se
ns

or
s

hub or
� processor

 Dataflow

� controller

� controller

connectors each providing power, ground, and two input
channels for the acceleration sensors. The source code for
the microprocessor is straightforward as well, converting
the PWM and analog values to digital and printing it to
the serial port. Table 1 contains a fragment of the source
code in C to read one PWM value. The system waits until
the most recent pulse ends, or until the counter
(designated as ‘high’ since it counts how long the pulse
remains in the high state) crosses a pre-defined
maximum value (‘bad_overfl’).

To increase the frequency of reading, time-out values
(‘bad_buffer’) on the microprocessor check whether a
sensor is still alive and should be polled in the next
interval. This technique makes it possible to output 10-bit
values for each sensor at 30 samples per second in the
worst case (i.e. no PWM-based sensors are connected). A
drawback is a slight slowdown in the output stream
whenever the time-out values reset, which only becomes
noticeable if most sensors are not connected or do not
give a proper signal.

2.3. Distributed processing

Decentralized sensing is a research field that is getting
increasingly more attention (see [10] or [5]). An obvious
advantage is the increased robustness of the network
compared to the centralized approach: not just sensors,
but also entire components can malfunction without
failure of the entire system. In some distributed networks,
nodes can also be more flexible: they can be introduced,
moved, and removed in the network without having to
reinitialize all nodes for the new topology. It is beyond
the scope of this paper to go into detail about routing
techniques in these networks or the specific
implementation of communication (wired versus
wireless, broadcasting, etc.) for which we refer to [1],
[11], or [8].

Figure 3. Distributed processing of the sensor data.

The main focus is on communication or interaction
between nodes of the network, instead of fusion of all

data in one place, and an emergent self-organisation
between the nodes.

Processing the data in a distributed manner shows also
potential in avoiding the fusion of a multitude of sensor
data at once, and adding units would be cost-effective
since it would mostly involve duplicating the basic
design.

2.4. Example: Distributed clustering

In more theoretical work concentrating on the self-
organization within a network of sensor modules, a
distributed version of the Kohonen Self-Organizing Map
was implemented for clustering of the sensor data. The
experiment was based on sensor modules from the Smart-
Its Project [13], which contain basic sensors
(microphone, accelerometers, light sensor, pressure
sensor, and thermometer), wireless communication, and
basic processing (PIC-based microcontroller). Five
Smart-Its modules were spread on a table while their
common environment was altered by switching the light
on or off, increasing the ambient temperature, and by
introducing (audio) noise. Each sensor-module would
then specialize itself to one of these states, using the
Kohonen learning rule and thus forming a topological
cluster network. Results and implementation details can
be found in [4].

learning rate = 0.05

0

50

100

150

200

250

1 105 209 313 417 521 625 729 833 937 1041 1145 1249 1353 1457 1561 1665
0

1

2

3

4

5

6error winner

Figure 4. Local error (left Y-axis) and winning unit IDs (right
axis) over time of the Self-Organizing Map. Units specialize
themselves for different states of the environment: lights on (1-
330), talking people nearby while lights remain on (331-400),
lights turned off (401-800), talking people nearby while light
remain turned off (801-1000), and heating on (1090-1400).
Source: [4].

2.5. Rationale

Scaling up the number of sensors for a wearable
system is not straightforward, as can be deduced from the
fact that few systems go over the 10-sensors barrier.
Although sensing and communication on distributed
platforms is currently available, we chose in our
experiments to keep on using the traditional approach

� controller

� controller

sensors

sensors

Localized
 Dataflow

� controller

sensors

� controller

sensors

where one microprocessor digitizes the outputs of the
sensors and then sends them for further processing to a
serial output.

The primary motive for this choice is simplicity.
Despite the feasible form factor of the distributed units
for wearability, problems related to separate batteries and
wireless communication make it a bad choice for
forwarding the sensor values to a processor. However, if
the required (pre-) processing could be done on the units
themselves, distributed processing should be the
preferred means for several reasons:
• Scalability has in this paper proven to be an

important factor for the quality of recognition. The
distributed processing architecture would not need as
much reconfiguration affecting the whole network.

• Flexibility is an important issue if the assumption is
made that the sensors should be embedded in
clothing (which this paper does). People tend to
remove, change, and add clothing regularly during
the day (and night), which leads to reconfiguration
in the sensor network.

• Robustness is for the same reason a requirement
since clothing will be washed and could be handled
roughly, which could result in breaking sensor
modules.

3. Characterization of Multi-Sensor

Classification

One of the assumptions made in [15] was that

increasing the number of sensors would enhance the
recognition and classification of contexts. As we now
have a truly multi-sensor hardware platform at our
disposal, several experiments will test this claim. We will
first start with further implementation details based on
the hardware that was introduced in the previous section.
After showing what the sensor data looks like and how it
can be visualized, this wearable setup is put to use in an
empirical study on the parameters that influence context
awareness.

3.1. A Multi-Accelerometer Outfit

Using the hardware described in section 2.1.1., we are

able to integrate thirty accelerometers into a wearable
arrangement (depicted in Figure 6). The available
accelerometers were spread over the body with the
majority on the legs (16) and the rest divided over the
arms and upper body (14). The accelerometers for the
legs were integrated into a harness to enable testing and
capturing of data from multiple users of different figure
heights, while the others are attached on regular clothing
using Velcro.

Figure 5. The 30-accelerometer module with the harness and
all sensors attached: eight accelerometers are distributed over
each leg, close to the joints; the other 14 sensors are situated on
the upper body and arms.

3.2. A First Look at the Data

Traditional visualization techniques for the sensor

data become inadequate as the number of sensors
increases, even when plotting to a three-dimensional
time-series space. Figure 6 for example, shows a time-
series plot of the 30 body-worn acceleration sensors while
the wearer is walking. Even if we were to provide more
details on what accelerometers are positioned where on
the body, this plot would be of little use apart from a very
coarse-grained classification in amount, speed and
patterns of movement.

1 6

1
1

1
6

21 26 31 3
6

4
1

4
6

5
1

56 6
1

S6
S11

S16
S21

S26

70

120

170

220

270

320

370

420

s
en

so
r

v
al

ue
s

time se
nso

r

Figure 6. The sensor signals of all accelerometers while the
wearer is walking, visualized in a 3D time series plot.

3.3. Classification Characteristics

We treat context awareness here as a classification of

sensor data by a given algorithm, trained by example.
The output of this algorithm is a probability or
confidence value that states how certain it is that the
system is in a certain context, given the data that
originated from the sensors. This section is an attempt to
identify the parameters that affect the quality of context
awareness, regardless of the algorithm that was chosen to
do the mapping from sensor data to context:

Quality of sensors. The output quality and resolution

of sensors is clearly an important factor in recognition, as
they determine the distance (according to an appropriate
metric) between sensor data from two contexts in input
space. When the sensor values are more precise, contexts
are more likely to be distinguished. Furthermore, it is
obvious that the choice between two sensors with the
same function will result in the more reliable one.

Number of sensors. A first less-examined influence

on the quality of context awareness is the number of
sensors. While concentrating on just the number of
sensors (and thus not on the classification algorithm or
robustness of the system), one could argue that including
just the sensors that pick up the characteristic aspects of a
context will be sufficient and adding sensors will not
improve the recognition. However, sensor fusion theory
[7] shows that recognition often becomes faster and more
accurate as sensors get added.

This leaves us with a few remaining questions: Is it
really worth adding sensors to a system? (i.e. we want a
quantification of the added value) And how much does
the recognition improve per added sensor? The first
question depends on case-specific properties such as the
complexity of the system, the contexts to be recognized,
and the application. However, we can answer the second
question by examining the performance of classification
as a function of the number of sensors.

Complexity of contexts. Not all contexts are equally

easy or hard to recognize. Contexts are often related to
one or more concepts that can be perceived by sensors:
“walking” gives certain motion patterns for body-worn
sensors, or “ in the sun” might be recognized by the
presence of a certain level in light and increase in
temperature. The context “ in a meeting” on the other
hand, might be distinguished from other contexts by
features in the signals coming from microphones and/or
presence of people, but is in general much harder to
characterize.

Number of contexts. The number of contexts to be

distinguished is an often overlooked factor in context
awareness. Statistically, the bigger the set of candidate
contexts gets, the more chance there is that the
algorithm’s prediction will be wrong. We will test this
theory on real-world sensor data by monitoring the
recognition as the number of contexts goes up.

3.4. Evaluation

A combination of the two promises made in 3.3 (in

italics) should give an indication how any context aware
application could behave under a changing number of
sensors and recognizable contexts. Using 20 motion-
related contexts and the previously mentioned 30-
accelerometer system, a 3D plot (Figure 9 and 10) was
made with the following axes:
• The X-axis showing the number of sensors used,

starting with the best discriminating sensor (based
on variance), and adding the next-best sensor until
all 30 sensors were used, for each set of contexts
(calculated as described in the Y-axis section).

• The Y-axis showing the number of contexts to be
distinguished, starting with one context, then adding
the best distinguishable next context until all 10
contexts are included.

• The Z-axis contains the degree of dispersion for each
set of contexts. The dispersion measure states how
dissimilar the data from two contexts really is, and
thus indicates how well algorithms could distinguish
them. This will obviously be 100% for one context,
and decreases as more contexts are added.

150

200

250

300

350

400

150

200

250

300

350
180

200

220

240

260

280

300

320

340

kick right

jumping kick left

waving right

 kneeling right

 kneel left

 running

 kneeling

 walking

 lying on back

 sit legs bend

 standing

 sit crossed
 lying on right

 sitting chair

 handstand left up
 sit stretched

 handstand
 handstand right up

Figure 7. The means for all datasets, plotted in 3D space
which is defined by the three best-performing sensors.

We generalize dispersion here as the distance between
the sensor data that is coming from two or more different
contexts, not just a degree of spread among data from one
class. Figure 8 shows an example where two-dimensional
data from two contexts (distinguished by their colour,
black or white) has either a high or low dispersion.

Figure 8. Dispersion of sensor data for two contexts, black and
white, and how it relates to performance of a context awareness
algorithm: (1) a large dispersion indicates that algorithms can
easily distinguish the two contexts, while (2) a small dispersion
suggests the opposite. The data is visualized by circles, while
the means of both data sets are designated by crosses.

Plotting the data in this fashion allows evaluation of
the effect that the number of sensors and number of
contexts could have on classification without actually
specifying an algorithm. We specify two simple choices
for the units on the Z-axis (dispersion) in order to
increase understanding of each plot.

0

5

10

15

20

25

30

0

5

10

15

20

0

5

10

15

20

25

contexts

sensors

Figure 9. The 3D evaluation plot with the dispersion of means
as unit for the Z axis. The X and Y axes represent the numbers
of sensors and the number of contexts respectively.

The dispersion between the means is implemented as
the standard variation between the mean vectors for each
context:

� �
=

= ���
�

���� ���
	

��−M

k

M

j
jk M

M1
1

1 µµ ,

=

= N

i ij x
N 1

1µ

where x is a dataset sample, N the number of samples per
set, and M the number of sets. This gives an indication
how far apart the mean vectors of the contexts are located
from each other. Figure 7 shows a mapping of all
datasets2 and their means for the three most varying
sensors amongst the thirty available (similar, but more
straightforward than other linear mappings such as
Principal Component Analysis or Independent
Component Analysis), while Figure 9 depicts the
resulting evaluation plot. The dispersion between the two
datasets in Figure 8 for instance would be the sum of the
squares of the distance from each cross to the mean of all
crosses, divided by 2. Alternatively, variance or (semi)
interquartile range can also be applied instead of
standard variation.

0
5

10
15

20
25

30 0

5

10

15

20

0

5

10

15

20

25

contexts# sensors

Figure 10. The 3D dispersion plot with the variance of the
datasets incorporated.

The dispersion between weighted means adds the
spread per dataset to the equation. The measure of
dispersion is decreased for datasets that are spread over a
wider area by weighting the means with the average
standard deviation over all datasets. Entangled datasets
such as the one in figure 8.2 will therefore become less
dispersed, resulting in a more accurate measure. Figure
10 shows the plot with the dispersion between weighted
means as the z-axis.

2 All context-datasets and Matlab scripts that were used
to create these plots are available at:
http://www.comp.lancs.ac.uk/~kristof/notes/multi/

1

Sensor 1

2

Sensor 1

Se
ns

or
 2

Se

ns
or

 2

�
1 �

2

�
1

�
2

Many algorithms are based on either mean- or
Gaussian-like modeling of the data, which leads to our
assumption that this assessment is representative for a
large number of classification algorithms.

3.4. Discussion

A first remark relates to the generalization of these

particular plots: they are merely examples of how a
context-aware algorithm would perform since they are
primarily based on a basic (average- and variance based)
modelling of each class. The dispersion measure is
therefore not necessarily equal to recognition
performance. The plots are furthermore highly dependent
on both the chosen sensors and the contexts, so the plots
should be viewed as a probe rather than a proof of a
generic concept.

One immediate use for these kind of evaluation plots
is that they show how specific sensors and contexts
contribute to overall dispersion. It is for instance possible
to inspect the plot for the largest increase of dispersion
when a sensor is added to the system, or contexts that
likewise decrease dispersion. Figure 10 shows for
instance that in a system with many sensors (e.g. more
than 10), dispersion will drop significantly if the last
seven contexts are added. Such a decrease can also be
noticed after the third, fourth and fifth context were
added.

Both plots (see Figure 9 and 10) show that the sensor
data enables most algorithms to perform better as the
number of sensors increases. The slight glitches, where
the performance for a set of contexts doesn’ t increase
monotonously as sensors are added, are caused by the
selection procedure in which the sensors are sorted per
added context based on their variance for the current set
of contexts. Fluctuations in the contexts-axis appear
occasionally for the same reason.

Another use for the latter plot is its indication on what
we earlier called the complexity of the contexts: the more
pattern-based contexts in our experiment, such as
running, jumping, or kicking appear on the lower half of
the plot of Figure 10 since their sensor readings are
intertwined with each other and those of the other
datasets. It is remarkable that these contexts do not
perform better after adding more than two sensors. These
same contexts appear early on in the first plot (Figure 9),
as only the means are taken into account and variance is
disregarded.

4. Example of context -aware clothing

It is, as indicated by our experiments, feasible to

distinguish certain activities of a wearer whose clothing

has an embedded distributed sensor network. These
activities could also include gestures made by the user.
Specifically more basic events related to garments, such
as putting on a coat or taking off a coat, can be
recognized with a reasonably high precision. This section
briefly elaborates on such a feasible application where
having a multitude of sensors and less (pre-) processing
is an advantage that is hard to top by the existing
traditional approaches.

The prototype system consists of a lab coat with an
embedded wearable computer, a dedicated authentication
station, and a number of terminals for which access
control is implemented. The lab coat is equipped with 14
accelerometers and holds an iPAQ in its front pocket (see
Figure 11). The sensors are connected to the PIC-based
I/O system which reads all the sensors and provides them
on the serial line to the iPAQ, which also has access to
the network using WLAN. The iPAQ calculates the
worn/ not worn context, based on the sensor data, and
communicates this to the authentication station for the
initial setup and to the terminals for authentication. The
iPAQ’s display is visible, similar to a name badge, to
other people, showing the name and function of the user,
a photo and whether or not the wearer is currently
granted a valid pass.

Figure 11. The iPAQ (left), integrated in the front pocket of
the lab coat, displays the current state, while (left)
accelerometers across the lab coat sense the coat’s movement
and position.

The wearer in our scenario can switch the lab coat
(via the iPAQ) he is wearing to ‘valid’ by first putting on
the coat, and then authenticating himself at an
authentication station (which is in our case a networked
PC, equipped with a retina scanner). The iPAQ then
stays in valid mode as long as the lab coat is being worn,
and can be used as part of a key for further identification.
Environments like hospitals, laboratories or airports,
where workers need to access information routinely

might apply this to speed up authentication or improve
identification.

5. Conclusions

Since multi-sensor wearable systems are relatively

hard to realize, our knowledge of both recognition and
added value of these systems is limited. Apart from the
traditional centralized processing architecture of the
sensor data, attention was given to truly distributed
sensor processing as well, resulting in self-organization
in a wireless sensor network. We aimed at extending our
understanding by evaluating a multi-sensor system and
analysing its data, under a variable number of sensors
and targeted contexts. Experimenting with a large
number of acceleration sensors distributed over the body,
we found that performance can depend heavily on the
number of sensors and contexts, but also on the nature of
the contexts.

Furthermore, an application scenario was presented
that takes advantage of the multitude of embedded
acceleration sensors, to detect whether it is being worn.
This is an attractive example, as designing this setup
with fewer sensors would result in a less precise, and
certainly less robust recognition of this context,
regardless of the recognition algorithm.

Acknowledgements

This research was partially funded by the Equator
IRC, EPSRC GR/N15986/01 (http://www.equator.ac.uk)
and the Smart-Its project (sponsored by the Information
Systems and Technology framework of the European
Commission, http://www.smart-its.org).

References

[1] G. Asada, M. Dong, T.S. Lin, F. Newberg, G. Pottie, W.J.

Kaiser, and H.O. Marcy. “Wireless Integrated Network
Sensors: Low Power Systems on a Chip.” Proceedings of the
1998 European Solid State Circuits Conference. 1998.

[2] R. R. Brooks. “Highly Redundant Sensing in Robotics –

Analogies From Biology: Distributed Sensing and
Learning” . In Proceedings of the NATO Advanced Research
Workshop on Highly Redundant Sensing in Robotic Systems,
Italy, 1988.

[3] P.J. Brown. “The stick-e Document: A Framework for

creating context-aware Applications” . Proc. EṔ 96, Palo
Alto, CA. (published in EP-odds, vol 8. No 2, pp. 259-72)
1996.

[4] E. Catterall, K. Van Laerhoven and M. Strohbach. “Self-

Organization in Ad Hoc Sensor Networks: An Empirical

Study” . In Proc. of Alife VIII: the 8th International
Conference on the Simulation and Synthesis of Living
Systems, Sydney, Australia. MIT Press, 2002.

[5] A. Cerpa and D. Estrin. “Ascent: Adaptive Self-Configuring

sEnsor Network Topologies” UCLA Computer Science
Department Technical Report UCLA/CSD-TR-01-0009, May
2001.

[6] K. Cheverst G. Blair, N. Davies, and A. Friday. “Supporting

Collaboration in Mobile-aware Groupware.” Personal
Technologies, Vol 3, No 1, March 1999.

[7] R. Joshi & A. C. Sanderson. “Multi Sensor Fusion: A

Minimal Representation Framework” . Series in Intelligent
Control and Intelligent Automation - Vol. 11. SWPC.

[8] J. M. Kahn, R. H. Katz and K. S. J. Pister, "Mobile

Networking for Smart Dust", ACM/IEEE Intl. Conf. on
Mobile Computing and Networking (MobiCom 99), Seattle,
WA, August 17-19, 1999.

[9] K. Kukkonen, T. Vuorela, J. Rantanen, O. Ryynänen, A.

Siili, and J. Vanhala “The Design and Implementation of
Electrically Heated Clothing.” In Proceedings of the Fifth
International Symposium on Wearable Computers
(ISWC’01), Zurich, 2001.

 [10] A. Lim "Distributed Services for Information

Dissemination in Self-Organizing Sensor Networks,",
Special Issue on Distributed Sensor Networks for Real-Time
Systems with Adaptive Reconfiguration, Journal of Franklin
Institute, Elsevier Science Publisher, Vol. 338, 2001, pp.
707-727.

[11] F. Michahelles, M. Samulowitz and B. Schiele, “Detecting

Context in Distributed Sensor Networks by Using Smart
Context-Aware Packets” . In International Conference on
Architecture of Computing Systems (ARCS) 2002,
Karlsruhe, Germany, April 2002.

[12] A. Schmidt and K. Van Laerhoven. “How to build smart

appliances” . In IEEE Personal Communications, Special
Issue on Pervasive Computing, August 2001, Vol. 8, No. 4.
pp. 66-71.

[13] The Smart-Its project: http://www.smart-its.org .

[14] T. Starner, B. Schiele, A. Pentland. “Visual Contextual

Awareness in Wearable Computing” . Proceeding of the
Second Int. Symposium on Wearable Computing. Pittsburgh,
October 1998.

[15] K. Van Laerhoven, K. Aidoo and S. Lowette “Real-time

Analysis of Data from Many Sensors with Neural
Networks” . In Proceedings of the Fifth International
Symposium on Wearable Computers (ISWC’01), Zurich,
2001.

