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Abstract 
 

Inspired by perception in biological systems, 
distribution of a massive amount of simple sensing 
devices is gaining more support in detection 
applications. A focus on fusion of sensor signals instead 
of strong analysis algorithms, and a scheme to distribute 
sensors, results in new issues. Especially in wearable 
computing, where sensor data continuously changes, and 
clothing provides an ideal supporting structure for 
simple sensors, this approach may prove to be 
favourable. Experiments with a body-distributed sensor 
system investigate the influence of two factors that affect 
classification of what has been sensed: an increase in 
sensors enhances recognition, while adding new classes 
or contexts depreciates the results. Finally, a wearable 
computing related scenario is discussed that exploits the 
presence of many sensors.  

 
 
1. Introduction 

 
The justification for using sensors in a wearable 

computing architecture ranges from use in intelligence 
augmentation (such as availability of a real-time clock 
and calendar, the exact room temperature, or CO-level) 
to automating tasks depending on particular features of 
the environment, situation or context (light level driving 
brightness of the display, temperature sensors regulating 
heat elements in the clothes [9], stick-e-notes [3], context 
aware tour guides [6], etc.). Regardless of whether these 
applications would be sought after by a large community, 
one trend that can be observed is that sensors are 
gradually becoming part of mobile and wearable devices.  

The goal of this paper is to characterize the use of a 
multitude of simple sensors, and the consequences of 
focusing on sensor-fusion instead of sensor-specific pre-
processing algorithms (such as image- or sound 
analysis). The idea takes encouragement from perception 

in biological organisms, where massively parallel neural 
pathways maintain a robust flow of sensed impulses to 
the brain [2].  

Distribution of sensors fits to a great degree in 
research that augments mundane objects with computing 
elements, commonly referred to as ubiquitous computing. 
Wearable computers are no exception to this concept 
either, since large surfaces of clothing are an ideal 
supporting platform for a multitude of sensors, provided 
they are miniaturized so that they do not obstruct the 
wearer. This size constraint often means that the quality 
of the sensor itself is compromised as well, which leads 
to the concept of many simple sensors [15].  

Once the choice has been made to employ many 
sensors, two fundamental approaches of where to fuse the 
sensor data appear: (1) distributed across a network or   
(2) centralized. After a description of both, we give a 
motivation for our choice of architecture for the paper’s 
experiment, which attempts to characterize the impact of 
both contexts and sensors on the quality of context 
awareness. 

 
2. Multi-sensor networks 
 

Finding the optimal way to interconnect many sensors 
in a network is still an unresolved issue in ongoing 
research. We distinguish approaches to collect and 
manage sensor data in large networks in two classes, 
based on how and where the data is fused. The first uses 
a tree-like hierarchy to assemble high-dimensional 
vectors at the root, so they can be fed into a classification 
algorithm that assigns a description to each input. The 
latter alternative processes the sensor data locally and 
then communicates further data to propagate throughout 
the entire network.  

We introduce our most recently prototyped hardware 
as specific examples of both approaches. Then we will 
continue to use the centrally-processed sensor platform in 
the experimental section of this paper.  



2.1. Centralized processing 
 
Most sensor architectures tend to stream all data, 

sometimes pre-processed, to one central location. The 
ease of implementation compared to a decentralized 
approach and the fact that most systems are inherently 
based on a single computer anyway, are most likely the 
prime reasons for this choice.  

 

Figure 1. Centralized processing and fusion of the data. 

 
2.2. In practice: the 30-accelerometer board 
 

Many approaches use some kind of bus to distribute 
data across a network and increase the number of 
sensors. The problem with this approach is an extra level 
of complexity: additional bus-communication requires a 
microcontroller per sensor(-module) or at least extra 
complexity in the sensor’s chip-design.  

Instead, we opted to optimize our current approach 
depicted in Figure 1 by increasing the number of sensors 
for one microcontroller to its absolute maximum without 
additional components (such as multiplexers / 
demultiplexers). By utilizing all of the Microchip PIC 
16F877 microprocessor’s input channels, we come to a 
maximum of thirty sensors that can be read and 
forwarded to a central processor or a hub via a traditional 
serial port. Since most standard computing platforms 
support at least four serial ports, 120 sensors could be 
attached without additional (custom-built) hardware. Of 
all sensor signals, 8 use the analog outputs of the 
ADXL202E to be converted to digital inside the 
microprocessor, and the other 22 use the Pulse Width 
Modulation (PWM) outputs to connect to the 
microprocessor’s digital input pins. Figure 2 depicts the 
internals of the sensor board. The remainder of this paper 
will specify accelerometers as the used sensors, the type 
we use (ADXL202E dual axis accelerometers from 
Analog Devices) outputs the acceleration in both analog 
and PWM. 

 

Figure 2. The PIC-based sensor-reading module, able to read 
thirty sensor values at once and stream them to the RS232 
serial port. Right are a few of the accelerometers. 

 
// read PWM0 
if (bad[0]<bad_buffer) {  

 high = 0; 
 while(input(PIN_C0)&& 
  (high<bad_overfl)  )  
  { high++; }  // wait until 

low  
 if (high>(bad_overfl-1))  
  { bad[0]++; };  
 high = 0;  
 while(!input(PIN_C0)&&   

  (high<bad_overfl)  )  
  { high++; } // wait until 

high  
 if (high>(bad_overfl-1))  
  { bad[0]++; };  
 high = 0;  
 while(input(PIN_C0)&& 
  (high<bad_overfl)  )  
  { high++; } // count high-

time  
 if (high>(bad_overfl-1))  
  { high=0; bad[0]++; }  
     val[8] = high; 

} 

Table 1. Part of the microcontroller’ s source code that converts 
the pulses on pin C0 into an acceleration value.  

The design of the printed circuit board (PCB) 1 of this 
setup contains mainly the microprocessor and an array of 

                                                
1 The PCB, schematics, and the PIC microprocessor’s 
source code are publicly available at this website: 
http://www.comp.lancs.ac.uk/~kristof/notes/thirtyacc/  
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connectors each providing power, ground, and two input 
channels for the acceleration sensors. The source code for 
the microprocessor is straightforward as well, converting 
the PWM and analog values to digital and printing it to 
the serial port. Table 1 contains a fragment of the source 
code in C to read one PWM value. The system waits until 
the most recent pulse ends, or until the counter 
(designated as ‘high’  since it counts how long the pulse 
remains in the high state) crosses a pre-defined 
maximum value (‘bad_overfl’ ).   

To increase the frequency of reading, time-out values 
(‘bad_buffer’ ) on the microprocessor check whether a 
sensor is still alive and should be polled in the next 
interval. This technique makes it possible to output 10-bit 
values for each sensor at 30 samples per second in the 
worst case (i.e. no PWM-based sensors are connected). A 
drawback is a slight slowdown in the output stream 
whenever the time-out values reset, which only becomes 
noticeable if most sensors are not connected or do not 
give a proper signal.  
 
2.3.  Distributed processing 
 

Decentralized sensing is a research field that is getting 
increasingly more attention (see [10] or [5]). An obvious 
advantage is the increased robustness of the network 
compared to the centralized approach: not just sensors, 
but also entire components can malfunction without 
failure of the entire system. In some distributed networks, 
nodes can also be more flexible: they can be introduced, 
moved, and removed in the network without having to 
reinitialize all nodes for the new topology. It is beyond 
the scope of this paper to go into detail about routing 
techniques in these networks or the specific 
implementation of communication (wired versus 
wireless, broadcasting, etc.) for which we refer to [1], 
[11], or [8]. 

 

Figure 3. Distributed processing of the sensor data. 

The main focus is on communication or interaction 
between nodes of the network, instead of fusion of all 

data in one place, and an emergent self-organisation 
between the nodes.  

Processing the data in a distributed manner shows also 
potential in avoiding the fusion of a multitude of sensor 
data at once, and adding units would be cost-effective 
since it would mostly involve duplicating the basic 
design. 

 
2.4.  Example: Distributed clustering  
 

In more theoretical work concentrating on the self-
organization within a network of sensor modules, a 
distributed version of the Kohonen Self-Organizing Map 
was implemented for clustering of the sensor data. The 
experiment was based on sensor modules from the Smart-
Its Project [13], which contain basic sensors 
(microphone, accelerometers, light sensor, pressure 
sensor, and thermometer), wireless communication, and 
basic processing (PIC-based microcontroller). Five 
Smart-Its modules were spread on a table while their 
common environment was altered by switching the light 
on or off, increasing the ambient temperature, and by 
introducing (audio) noise. Each sensor-module would 
then specialize itself to one of these states, using the 
Kohonen learning rule and thus forming a topological 
cluster network. Results and implementation details can 
be found in [4].  
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Figure 4. Local error (left Y-axis) and winning unit IDs (right 
axis) over time of the Self-Organizing Map. Units specialize 
themselves for different states of the environment: lights on (1-
330), talking people nearby while lights remain on (331-400), 
lights turned off (401-800), talking people nearby while light 
remain turned off (801-1000), and heating on (1090-1400). 
Source: [4]. 

 
2.5.  Rationale  
 

Scaling up the number of sensors for a wearable 
system is not straightforward, as can be deduced from the 
fact that few systems go over the 10-sensors barrier. 
Although sensing and communication on distributed 
platforms is currently available, we chose in our 
experiments to keep on using the traditional approach 
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where one microprocessor digitizes the outputs of the 
sensors and then sends them for further processing to a 
serial output.  

The primary motive for this choice is simplicity. 
Despite the feasible form factor of the distributed units 
for wearability, problems related to separate batteries and 
wireless communication make it a bad choice for 
forwarding the sensor values to a processor. However, if 
the required (pre-) processing could be done on the units 
themselves, distributed processing should be the 
preferred means for several reasons:  
• Scalability has in this paper proven to be an 

important factor for the quality of recognition. The 
distributed processing architecture would not need as 
much reconfiguration affecting the whole network. 

• Flexibility is an important issue if the assumption is 
made that the sensors should be embedded in 
clothing (which this paper does). People tend to 
remove, change, and add clothing regularly during 
the day (and night), which leads to reconfiguration 
in the sensor network. 

• Robustness is for the same reason a requirement 
since clothing will be washed and could be handled 
roughly, which could result in breaking sensor 
modules. 

 
3. Characterization of Multi-Sensor 

Classification 
 
One of the assumptions made in [15] was that 

increasing the number of sensors would enhance the 
recognition and classification of contexts. As we now 
have a truly multi-sensor hardware platform at our 
disposal, several experiments will test this claim. We will 
first start with further implementation details based on 
the hardware that was introduced in the previous section. 
After showing what the sensor data looks like and how it 
can be visualized, this wearable setup is put to use in an 
empirical study on the parameters that influence context 
awareness. 

 
3.1. A Multi-Accelerometer Outfit 

 
Using the hardware described in section 2.1.1., we are 

able to integrate thirty accelerometers into a wearable 
arrangement (depicted in Figure 6). The available 
accelerometers were spread over the body with the 
majority on the legs (16) and the rest divided over the 
arms and upper body (14). The accelerometers for the 
legs were integrated into a harness to enable testing and 
capturing of data from multiple users of different figure 
heights, while the others are attached on regular clothing 
using Velcro.   

 

 

Figure 5. The 30-accelerometer module with the harness and 
all sensors attached: eight accelerometers are distributed over 
each leg, close to the joints; the other 14 sensors are situated on 
the upper body and arms. 

 
3.2. A First Look at the Data 

 
Traditional visualization techniques for the sensor 

data become inadequate as the number of sensors 
increases, even when plotting to a three-dimensional 
time-series space. Figure 6 for example, shows a time-
series plot of the 30 body-worn acceleration sensors while 
the wearer is walking. Even if we were to provide more 
details on what accelerometers are positioned where on 
the body, this plot would be of little use apart from a very 
coarse-grained classification in amount, speed and 
patterns of movement. 
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Figure 6. The sensor signals of all accelerometers while the 
wearer is walking, visualized in a 3D time series plot.  



 
3.3. Classification Characteristics 

 
We treat context awareness here as a classification of 

sensor data by a given algorithm, trained by example. 
The output of this algorithm is a probability or 
confidence value that states how certain it is that the 
system is in a certain context, given the data that 
originated from the sensors. This section is an attempt to 
identify the parameters that affect the quality of context 
awareness, regardless of the algorithm that was chosen to 
do the mapping from sensor data to context: 

 
Quality of sensors. The output quality and resolution 

of sensors is clearly an important factor in recognition, as 
they determine the distance (according to an appropriate 
metric) between sensor data from two contexts in input 
space. When the sensor values are more precise, contexts 
are more likely to be distinguished. Furthermore, it is 
obvious that the choice between two sensors with the 
same function will result in the more reliable one. 

 
Number of sensors. A first less-examined influence 

on the quality of context awareness is the number of 
sensors. While concentrating on just the number of 
sensors (and thus not on the classification algorithm or 
robustness of the system), one could argue that including 
just the sensors that pick up the characteristic aspects of a 
context will be sufficient and adding sensors will not 
improve the recognition. However, sensor fusion theory 
[7] shows that recognition often becomes faster and more 
accurate as sensors get added.  

This leaves us with a few remaining questions: Is it 
really worth adding sensors to a system? (i.e. we want a 
quantification of the added value) And how much does 
the recognition improve per added sensor? The first 
question depends on case-specific properties such as the 
complexity of the system, the contexts to be recognized, 
and the application. However, we can answer the second 
question by examining the performance of classification 
as a function of the number of sensors. 

 
Complexity of contexts. Not all contexts are equally 

easy or hard to recognize. Contexts are often related to 
one or more concepts that can be perceived by sensors: 
“walking”  gives certain motion patterns for body-worn 
sensors, or “ in the sun”  might be recognized by the 
presence of a certain level in light and increase in 
temperature. The context “ in a meeting”  on the other 
hand, might be distinguished from other contexts by 
features in the signals coming from microphones and/or 
presence of people, but is in general much harder to 
characterize.  

 
Number of contexts. The number of contexts to be 

distinguished is an often overlooked factor in context 
awareness. Statistically, the bigger the set of candidate 
contexts gets, the more chance there is that the 
algorithm’s prediction will be wrong. We will test this 
theory on real-world sensor data by monitoring the 
recognition as the number of contexts goes up. 

  
3.4. Evaluation  

 
A combination of the two promises made in 3.3 (in 

italics) should give an indication how any context aware 
application could behave under a changing number of 
sensors and recognizable contexts. Using 20 motion-
related contexts and the previously mentioned 30-
accelerometer system, a 3D plot (Figure 9 and 10) was 
made with the following axes:  
• The X-axis showing the number of sensors used, 

starting with the best discriminating sensor (based 
on variance), and adding the next-best sensor until 
all 30 sensors were used, for each set of contexts 
(calculated as described in the Y-axis section). 

• The Y-axis showing the number of contexts to be 
distinguished, starting with one context, then adding 
the best distinguishable next context until all 10 
contexts are included. 

• The Z-axis contains the degree of dispersion for each 
set of contexts. The dispersion measure states how 
dissimilar the data from two contexts really is, and 
thus indicates how well algorithms could distinguish 
them. This will obviously be 100% for one context, 
and decreases as more contexts are added.  
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Figure 7. The means for all datasets, plotted in 3D space 
which is defined by the three best-performing sensors.  



We generalize dispersion here as the distance between 
the sensor data that is coming from two or more different 
contexts, not just a degree of spread among data from one 
class. Figure 8 shows an example where two-dimensional 
data from two contexts (distinguished by their colour, 
black or white) has either a high or low dispersion.  

 

 

Figure 8. Dispersion of sensor data for two contexts, black and 
white, and how it relates to performance of a context awareness 
algorithm: (1) a large dispersion indicates that algorithms can 
easily distinguish the two contexts, while (2) a small dispersion 
suggests the opposite. The data is visualized by circles, while 
the means of both data sets are designated by crosses. 

Plotting the data in this fashion allows evaluation of 
the effect that the number of sensors and number of 
contexts could have on classification without actually 
specifying an algorithm. We specify two simple choices 
for the units on the Z-axis (dispersion) in order to 
increase understanding of each plot.  
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Figure 9. The 3D evaluation plot with the dispersion of means 
as unit for the Z axis. The X and Y axes represent the numbers 
of sensors and the number of contexts respectively. 

The dispersion between the means is implemented as 
the standard variation between the mean vectors for each 
context:  

� �
=

= ���
�

���� ���
	

��−M

k

M

j
jk M

M1
1

1 µµ ,      

=

= N

i ij x
N 1

1µ   

where x is a dataset sample, N the number of samples per 
set, and M the number of sets. This gives an indication 
how far apart the mean vectors of the contexts are located 
from each other. Figure 7 shows a mapping of all 
datasets2 and their means for the three most varying 
sensors amongst the thirty available (similar, but more 
straightforward than other linear mappings such as 
Principal Component Analysis or Independent 
Component Analysis), while Figure 9 depicts the 
resulting evaluation plot. The dispersion between the two 
datasets in Figure 8 for instance would be the sum of the 
squares of the distance from each cross to the mean of all 
crosses, divided by 2. Alternatively, variance or (semi) 
interquartile range can also be applied instead of 
standard variation.  
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Figure 10. The 3D dispersion plot with the variance of the 
datasets incorporated. 

The dispersion between weighted means adds the 
spread per dataset to the equation. The measure of 
dispersion is decreased for datasets that are spread over a 
wider area by weighting the means with the average 
standard deviation over all datasets. Entangled datasets 
such as the one in figure 8.2 will therefore become less 
dispersed, resulting in a more accurate measure. Figure 
10 shows the plot with the dispersion between weighted 
means as the z-axis. 

                                                
2 All context-datasets and Matlab scripts that were used 
to create these plots are available at: 
http://www.comp.lancs.ac.uk/~kristof/notes/multi/  
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Many algorithms are based on either mean- or 
Gaussian-like modeling of the data, which leads to our 
assumption that this assessment is representative for a 
large number of classification algorithms.  

 
3.4. Discussion  

 
A first remark relates to the generalization of these 

particular plots: they are merely examples of how a 
context-aware algorithm would perform since they are 
primarily based on a basic (average- and variance based) 
modelling of each class. The dispersion measure is 
therefore not necessarily equal to recognition 
performance. The plots are furthermore highly dependent 
on both the chosen sensors and the contexts, so the plots 
should be viewed as a probe rather than a proof of a 
generic concept.  

One immediate use for these kind of evaluation plots 
is that they show how specific sensors and contexts 
contribute to overall dispersion. It is for instance possible 
to inspect the plot for the largest increase of dispersion 
when a sensor is added to the system, or contexts that 
likewise decrease dispersion. Figure 10 shows for 
instance that in a system with many sensors (e.g. more 
than 10), dispersion will drop significantly if the last 
seven contexts are added. Such a decrease can also be 
noticed after the third, fourth and fifth context were 
added. 

Both plots (see Figure 9 and 10) show that the sensor 
data enables most algorithms to perform better as the 
number of sensors increases. The slight glitches, where 
the performance for a set of contexts doesn’ t increase 
monotonously as sensors are added, are caused by the 
selection procedure in which the sensors are sorted per 
added context based on their variance for the current set 
of contexts. Fluctuations in the contexts-axis appear 
occasionally for the same reason.  

Another use for the latter plot is its indication on what 
we earlier called the complexity of the contexts: the more 
pattern-based contexts in our experiment, such as 
running, jumping, or kicking appear on the lower half of 
the plot of Figure 10 since their sensor readings are 
intertwined with each other and those of the other 
datasets. It is remarkable that these contexts do not 
perform better after adding more than two sensors. These 
same contexts appear early on in the first plot (Figure 9), 
as only the means are taken into account and variance is 
disregarded.  
 
4. Example of context -aware clothing 

 
It is, as indicated by our experiments, feasible to 

distinguish certain activities of a wearer whose clothing 

has an embedded distributed sensor network. These 
activities could also include gestures made by the user. 
Specifically more basic events related to garments, such 
as putting on a coat or taking off a coat, can be 
recognized with a reasonably high precision. This section 
briefly elaborates on such a feasible application where 
having a multitude of sensors and less (pre-) processing 
is an advantage that is hard to top by the existing 
traditional approaches. 

The prototype system consists of a lab coat with an 
embedded wearable computer, a dedicated authentication 
station, and a number of terminals for which access 
control is implemented. The lab coat is equipped with 14 
accelerometers and holds an iPAQ in its front pocket (see 
Figure 11). The sensors are connected to the PIC-based 
I/O system which reads all the sensors and provides them 
on the serial line to the iPAQ, which also has access to 
the network using WLAN. The iPAQ calculates the 
worn/ not worn context, based on the sensor data, and 
communicates this to the authentication station for the 
initial setup and to the terminals for authentication. The 
iPAQ’s display is visible, similar to a name badge, to 
other people, showing the name and function of the user, 
a photo and whether or not the wearer is currently 
granted a valid pass. 

 

  

Figure 11. The iPAQ (left), integrated in the front pocket of 
the lab coat, displays the current state, while (left) 
accelerometers across the lab coat sense the coat’s movement 
and position. 

The wearer in our scenario can switch the lab coat 
(via the iPAQ) he is wearing to ‘valid’  by first putting on 
the coat, and then authenticating himself at an 
authentication station (which is in our case a networked 
PC, equipped with a retina scanner). The iPAQ then 
stays in valid mode as long as the lab coat is being worn, 
and can be used as part of a key for further identification. 
Environments like hospitals, laboratories or airports, 
where workers need to access information routinely 



might apply this to speed up authentication or improve 
identification. 

 
5. Conclusions 

 
Since multi-sensor wearable systems are relatively 

hard to realize, our knowledge of both recognition and 
added value of these systems is limited. Apart from the 
traditional centralized processing architecture of the 
sensor data, attention was given to truly distributed 
sensor processing as well, resulting in self-organization 
in a wireless sensor network. We aimed at extending our 
understanding by evaluating a multi-sensor system and 
analysing its data, under a variable number of sensors 
and targeted contexts. Experimenting with a large 
number of acceleration sensors distributed over the body, 
we found that performance can depend heavily on the 
number of sensors and contexts, but also on the nature of 
the contexts.  

Furthermore, an application scenario was presented 
that takes advantage of the multitude of embedded 
acceleration sensors, to detect whether it is being worn. 
This is an attractive example, as designing this setup 
with fewer sensors would result in a less precise, and 
certainly less robust recognition of this context, 
regardless of the recognition algorithm. 

 
Acknowledgements  
 

This research was partially funded by the Equator 
IRC, EPSRC GR/N15986/01 (http://www.equator.ac.uk) 
and the Smart-Its project (sponsored by the Information 
Systems and Technology framework of the European 
Commission, http://www.smart-its.org ).  

 
References 
 
[1] G. Asada, M. Dong, T.S. Lin, F. Newberg, G. Pottie, W.J. 

Kaiser, and H.O. Marcy. “Wireless Integrated Network 
Sensors: Low Power Systems on a Chip.”  Proceedings of the 
1998 European Solid State Circuits Conference.  1998. 

 
[2] R. R. Brooks. “Highly Redundant Sensing in Robotics – 

Analogies From Biology: Distributed Sensing and 
Learning” . In Proceedings of the NATO Advanced Research 
Workshop on Highly Redundant Sensing in Robotic Systems, 
Italy, 1988. 

 
[3] P.J. Brown. “The stick-e Document: A Framework for 

creating context-aware Applications” . Proc. EṔ 96, Palo 
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