
CORTEX1: Towards Supporting Autonomous and Cooperating
Sentient Entities

P. Veríssimo

U. Lisboa
pjv@di.fc.ul.pt

V. Cahill
Trinity College Dublin
vinny.cahill@cs.tcd.ie

A. Casimiro
U. Lisboa

casim@di.fc.ul.pt

K. Cheverst
U. Lancaster

kc@comp.lanc.ac.uk

A. Friday
U. Lancaster

adrian@comp.lanc.ac.uk

J. Kaiser
U. Ulm

kaiser@informatik.uni-ulm.de

1 This work was partially supported by the EU, under the IST/FET programme, through project IST-2000-26031
(CORTEX- CO-operating Real-time senTient objects: architecture and EXperimental evaluation).

ABSTRACT
A new class of application that operates independently of
direct human control is starting to emerge. It is our belief
that the development of such applications is highlighting the
shortcomings of current communication architectures and
middleware infrastructures. In particular, they do not ade-
quately support advanced dynamic interaction models, e.g.,
in the field of autonomous agents, distributed AI, and mo-
bile co-operating entities. As we describe, our work repre-
sents the beginning of an attempt to bridge the gap between
the requirements being put on system support by these ad-
vances, and the shortcomings of current architectures and
middleware models.

Therefore, this paper explores the problem of providing in-
frastructure support for large distributed systems composed
of mobile autonomous components. It describes a pro-
gramming model supporting these applications based on the
concept of sentient objects, and a hierarchical distributed
communication architecture. Because the components may
be part of the physical environment, issues such as predict-
ability and environment awareness in the interactions be-
tween objects and environment deserve particular attention.

1 INTRODUCTION
Human society, at every level, is increasingly dependent on
information. Information systems such as the World-Wide
Web are now massively pervasive and critical to the func-
tioning of the global economy. We are now at the point
where the emergence of a new class of large-scale decen-
tralised and proactive applications, i.e., applications that
operate independently of direct human control, can be en-
visaged. However, this is also where the demands put on
system support by state-of-the-art programming models re-
quiring highly dynamic interactions, continuous system evo-
lution and predictable reaction to unanticipated situations,
e.g., in the field of co-operating autonomous robots, distrib-
uted AI and advanced process control go far beyond the
abilities of current architectures and middleware models.
Most of the recent research on support for such applications
has concentrated on the functional and behavioural charac-
teristics of the participants (objects, agents, etc.), but sur-
prisingly there has not yet been much attention given to the
non-functional requirements put on the supporting substrate.
Some characteristics we can anticipate include autonomy,

large scale, geographical dispersion, mobility and evolu-
tion. We believe that in the near future highly distributed,
autonomous, mission-critical computer systems will become
ubiquitous and pervasive. It is likely that such systems will
be built using networked components responding autono-
mously to a myriad of inputs, in order to affect and control
the surrounding environment. This introduces additional
non-functional characteristics of these applications, thereby
giving rise to a difficult combination of requirements to be
addressed: sentience, time and safety/security criticality.
 CORTEX proposes to devise an architecture and a set of
paradigms for the construction of applications composed of
collections of what may be called sentient objects - mobile
intelligent software components that accept input from a va-
riety of different sensors allowing them to sense the envi-
ronment in which they operate before deciding how to react.
Furthermore, the latter may organise themselves into
autonomous, mobile and rapidly composable co-operating
communities. In the future, we expect that sentient objects
will be pervasively included in almost every aspect of our
daily life. They will ubiquitously integrate all kinds of de-
vices and interact seamlessly amongst themselves in ways
that go far beyond the client/server paradigm supported by
current state-of-the-art middleware [11,13,21]. Applications
will form islands of co-operation inside a wider network
universe composed from different physical networks with
characteristics ranging from high speed backbones to wire-
less connections and deeply embedded field buses.
 In the long term, society will substantially rely on this
technology. To reduce vulnerability and provide a robust
failure resilient environment, middleware is required that
understands the metaphors of the high-level models, yet
keeps the underlying system (still a fragile computer and
network system) within correct operational envelopes.
 The remainder of this paper is structured as follows. In
section 2 we analyse the key characteristics of the advanced
applications mentioned above and the resulting problems.
Sections 3, 4 and 5 describe the major layers of the
CORTEX approach, the programming paradigm, the interac-
tion model and the system architecture respectively, follow-
ing a top-down system view. Section 6 sketches typical
large-scale proactive applications that will require the ad-
vanced middleware support to be developed in CORTEX.
Finally, section 7 presents our concluding remarks.

2 FUNDAMENTAL CHALLENGES IN SUPPORTING
SENTIENT APPLICATIONS
Fundamentally, CORTEX is concerned with helping to real-
ise a vision of ubiquitous computing and proactive applica-
tions that are able to operate independently of direct human
control. The approach of the project is to investigate the de-
velopment of intelligent middleware capable of supporting
appropriate computational models for this new generation of
applications. This middleware must enable adaptability to
new technologies, and provide the hooks for these applica-
tions to enforce non-functional quality attributes like reli-
ability and timeliness. In particular, the middleware is in-
tended to cope with applications that have some or all of the
following characteristics:
• Sentience – the ability to perceive the state of the sur-

rounding environment, through the fusion and interpre-
tation of information from possibly diverse sensors;

• Autonomy – components of these applications will be
capable of acting in a decentralised fashion, based
solely on the acquisition of information from the envi-
ronment and on their own knowledge;

• Large scale - typical applications may be composed of
billions of interacting hardware and software compo-
nents;

• Time criticality - these applications will typically inter-
act with the physical environment, and will have to
cope with its pace, regardless of adverse conditions due
to scale and technology shortcomings;

• Safety criticality – typical applications will interact with
human users, whose well-being will frequently rely on
them;

• Geographical dispersion - unlike current embedded sys-
tems, typical applications will integrate components
that are scattered over buildings, cities, countries, and
continents;

• Mobility – furthermore, they must possess the ability to
move between hosts possibly of different networks,
while remaining in continuous operation

• Evolution – these applications will have to cope with
changing conditions during their lifetimes. Not only
must the applications be designed to evolve, but their
underlying support must also be adaptable.

Traditional approaches to the design of time and safety criti-
cal distributed applications cannot handle the complexity
inherent in the scale and geographic dispersion of these new
applications.
 However, whereas basic technologies exist that make
autonomous decentralised systems a possibility, appropriate
architectures and paradigms for the construction of the rele-
vant applications are required. Consider applications com-
posed of collections of sentient objects: they must be able to
discover and interact with each other and with the physical
world in ways that demand predictable and sometimes guar-
anteed quality of service (QoS), encompassing both timeli-
ness and reliability guarantees, thus creating a fundamental
trade-off between the existence of a dynamic environment
and the need for predictable operation. To date, no compre-
hensive technology appropriate to the design and implemen-
tation of such applications exists.
 Sentient objects will exist at very different levels of ab-
straction. At the lowest level, such objects might represent
simple sensors or actuators capable of generating or con-

suming events. At a slightly higher level of abstraction, a
tightly-coupled embedded system that integrates many such
simple objects connected via a field bus might represent a
single sentient object that is itself capable of generating
and/or consuming events as a component of a larger system.

2.1 Communication, Co-ordination and Control
Irrespective of the level of abstraction at which we are
working, three fundamental problems have to be addressed
in order to support applications based on sentient objects:
(1) dissemination of information to create common knowl-
edge, mutual awareness and a basis for local decisions; (2)
achieving co-ordination amongst peer objects in order to
carry out actions in a consistent way; (3) acting upon the
environment, changing its state as a result of proactive or
reactive decisions.
 Consider an advanced vehicular telematics scenario in
which vehicles communicate with one another to provide a
look-ahead warning service for vehicles coming from be-
hind. If a vehicle detects an obstacle it sends an alert mes-
sage that, in turn, the receiving vehicles can exploit in order
to set new cruising parameters or brake as appropriate. In
such a scenario, we face the following problems/challenges:
• The scope of information dissemination is dynamically

determined by spatial parameters, i.e. those vehicles di-
rectly affected by the obstacle on the road.

• Communication is anonymous, hence group membership
is implicit and reliable assessment of who received the
message is difficult.

• The information is only valid in a restricted area.
• Many vehicles try to send similar messages, but the sys-

tem should prevent the communication medium from
being overloaded.

• Vehicles, which receive the message, must decide
whether it is necessary to continue propagation or to
stop.

The alert message would raise awareness between vehicles.
The next step would be to initiate co-operation between the
vehicles in order to enable vehicles to act in a coordinated
fashion. While awareness may be realised as a best effort
facility, co-operation needs a guaranteed quality of service
between communicating entities. Given the above scenario,
the underlying communications support must be able to de-
liver a wide range of qualities of service, in terms of both
data exchange and membership services. State-of-the-art
group communication protocols or generative anonymous
communication [3] based on publisher/subscriber models
definitely do not tackle these problems [20,23,24] and it is
an open question whether these problems can be solved in
the basic communication system alone.

2.2 Heterogeneity, Hierarchy and Scope
Again considering the example application outlined above, a
hierarchy of communication networks will be present inside
a vehicle to eventually convert the decision into deceleration
or warning signals. Thus, the cruising parameters resulting
from the higher-level co-ordination among vehicles have to
be set and controlled by networks of intelligent sensors and
actuators, that we generically call controller area networks
(CANs). In more general terminology, islands of control
must co-operate via gateways in a timely and reliable man-
ner, through the global wide area network (WAN). This mo-

tivates a crucial aspect of the CORTEX architecture, what
we call a WAN-of-CANs structure.
 The application example also unveils another important
issue, which is related to the limit the range and control the
quality of information propagation in the global system. Let
us assume the notion of a zone. An important issue for co-
operation is to establish what QoS can be sustained by the
zones in which participants reside. Typically, a single CAN
represents a zone with a very high level of predictability
compared to a zone in a wireless network [15,19,25,27,32].
In a mobile environment where migration from one zone to
another zone is likely to happen, it is a great challenge to
devise communication mechanisms that dynamically adapt
to these changing QoS attributes while maintaining a certain
level of guarantee. Paradigms like zoning and topology
awareness are relevant in our context, since they allow the
heterogeneity of the underlying support to be accommo-
dated, while not necessarily making it visible to the layers
above [22,26].

2.3 Predictability and Adaptability
Underlying all of these considerations is the fundamental
challenge of coping with the uncertainty of synchrony. In
principle, this can be achieved by adaptation. However,
while there is an increasing body of research on QoS
adaptation [2], most work has focused on protocol or
application-level heuristics and does not provide any
guarantees on how well the system adapts. The applications
we intend to support require predictability about timeliness.
This means that even if the timeliness of the system is
degrading, it should do so in a predictable way. In
consequence, the coverage of timeliness assumptions should
remain stable throughout the application’s lifetime.
 More demanding applications will require guarantees
about timeliness objectives, that is, not only the coverage
both also the assumed timeliness bounds should hold. Since
timing faults are difficult to prevent in the kinds of complex
and large-scale systems that we are considering, this pre-
sents us with a fundamental challenge of avoiding contami-
nation, i.e. incorrect logical behaviour when timing faults do
occur. This has been shown to be a significant problem even
in systems where synchrony expectations are minimal. En-
suring timely system operation despite timing faults, on the
other hand, requires timing fault tolerance mechanisms.
 These are challenging problems in large-scale systems
with uncertain synchrony, especially where wireless com-
munication is employed. We intend to use and build on pre-
vious results on partial synchrony systems, such as the timed
asynchronous and quasi-synchronous models [5, 28].

2.4 Scalability
Scalability represents a crucial transparency property con-
cerning the ability to accommodate growth in a large-scale
distributed system. Thus, connecting more participants to
the system dynamically, including adding entire additional
networks, or providing new services, should not be pre-
vented by factors originating in the system design. The no-
tion of anonymous event-based computing is central to ad-
dressing the needs of scalable systems in CORTEX. Never-
theless, supporting non-functional attributes like timeliness
and reliability guarantees adds new and challenging dimen-
sions to scalability.
 CORTEX aims at providing appropriate abstractions to
express awareness about the uncertainty and variations of

physical message transmission. The recursive WAN-of-CAN
concept and, on a higher level of abstraction, the notion of
zones contribute to this goal. Furthermore, we allow appli-
cations to exploit this information proactively, e.g. by trad-
ing precision against timeliness of information. We address
this problem in the context of a partial synchrony model,
providing adaptation whilst ensuring stability of the cover-
age of timeliness assumptions.

2.5 Fault Tolerance and Security
‘Real’ systems derived from the CORTEX approach will re-
quire measures enhancing their dependability, both from the
fault tolerance and the security aspects. The convergence of
ubiquitous wireless and anonymous networking, and of
powerful embedded computer systems, provides an interest-
ing spectrum of computer devices and information reposito-
ries that poses challenging security and reliability problems.
 While we give priority to problems concerning co-
ordination, control, predictability, adaptability, and scalabil-
ity, our architectural approach is in line with, and will easily
accommodate the incorporation of, known and emerging
paradigms in modular and distributed fault tolerance for
both large-scale systems and small-scale real-time systems,
and in cryptographic multiparty communication and proc-
essing.

3 PROGRAMMING PARADIGM
Mobile sentient objects have autonomous behaviour result-
ing from interactions with the physical environment, i.e.
driven by sensor inputs, as well as from the internal state of
the objects. Moreover, they must be able to discover and in-
teract with each other in ways that may lead to unpredictable
interaction patterns depending, for example, on their geo-
graphical proximity.
 Fundamentally, the CORTEX programming model de-
scribes the facilities that will be provided to application de-
velopers responsible for the construction of proactive appli-
cations that employ mobile sentient objects. At the heart of
the CORTEX programming model is an anonymous event-
based communication model, which we discuss later. Using
a non-blocking event-based model, we are able to achieve
autonomous sentient behaviour that is independent of the
problems associated with traditional blocking communica-
tion paradigms (such as RPC [1,10,14,18]). The program-
ming model includes mechanisms for the specification of
constraints on the propagation and delivery of events, and
the means to express incremental real-time and reliability
guarantees, in the form of QoS properties. QoS is taken as a
metric of predictability in terms of timeliness and reliability.
 From the programmer’s perspective, the system model is
therefore composed of the environment and a set of sentient
objects that interact with it. CORTEX adopts the active envi-
ronment metaphor. In more detail, the environment is part of
the system, which, whilst being active, is responsible for
disseminating information about its current state and/or
events that take place in the actual physical environment to
objects of the system. In addition, the environment may also
be acted upon or modified by these same objects. Sentient
objects are the active, mobile and autonomous entities in the
system and are capable of taking decisions, and influencing
both the environment and other objects. The programming
model supports several different aspects of the behaviour of
sentient objects including:

• acquiring information from the environment and other
objects (the sentience aspect);

• reacting to possibly unexpected situations (the auton-
omy aspect);

• and modifying the state of the environment (the control
aspect).

Unlike traditional distributed applications, sentient objects
will often need to send messages to a set of other objects
whose identities are not known to the sender and which can
only be determined at the time that the message was actually
sent. For example, an object may need to send a message to
all the objects that are nearby at a given time.
 While the basic concept of an event-based communica-
tion paradigm is simple and indeed hopefully intuitive, there
are a number of difficult issues that need to be tackled if the
paradigm is to be employed successfully in large scale pro-
active applications.
 Filters provide a basic mechanism to allow objects to
express interest, or lack thereof, in events of a certain type
or containing certain combinations of parameter values. Es-
sentially an object subscribing interest in events of a particu-
lar type should be able to provide a filter describing which
occurrences of events of that type it wants to be notified of.
Filters alone are, however, not sufficient. With filters an ob-
ject may still receive notifications of occurrences of events
in a part of the system with which it is not currently con-
cerned.
 Zones introduce a means of scoping or limiting the
propagation of event notifications in the system. Objects
can be organised into zones where a zone can be seen sim-
ply as a collection of objects and event notifications are only
propagated within the zone of the object raising the event.
Objects are organised into zones at the discretion of the ap-
plication programmer based on functionality, geographical
location or physical location on the network.
 While filters and zones allow an object to specify, at
some level, which event notifications it is interested in, they
do not address non-functional requirements related to the
delivery of such notifications. This will be achieved in the
CORTEX programming model through the introduction of a
generic means of expressing QoS properties encompassing
timeliness and reliability, including consistency and order-
ing of event notifications.

4 INTERACTION MODEL
Interaction comprises the aspects of communication and co-
ordination. An event-based programming model naturally
leads to the spontaneous generation of messages rather than
a request/response style of communication. This fact sug-
gests the use of an anonymous generative communication
model [3,23,24,7,17], using typed communication channels
to connect producers and consumers of events according to
a publisher/subscriber model. Autonomy is supported be-
cause the model does not force an explicit transfer of con-
trol, nor synchronization between producers of events and
their consumers. Therefore, the interaction model of
CORTEX is based on such a model reflecting the needs of
object autonomy, system robustness and evolution. We ex-
tend and modify existing approaches in two major direc-
tions:
• we consider the fact that sentient objects not only com-

municate via the network but also, indirectly, through

the environment, when they act on it. Thus the envi-
ronment constitutes an interaction and communication
channel and is in the control and awareness loop of the
objects.

• we address new adaptable ways of guaranteeing tempo-
ral properties of interactions, in the presence of uncer-
tain timeliness of the environment. It is intended to ex-
ploit context awareness of sentient objects to reach this
goal.

D
is
se

m
in
at

io
n

A
ct

ua
ti
on

Environment

Cooperation

Pe
rc

ep
ti
on

Interaction mechanisms Sentient Object

Feed-back

Figure 1: Events and object interactions in CORTEX

CORTEX must support several kinds of interactions (see
Figure 1):
• Environment-to-object interactions take the form of

unsolicited dissemination of the state of the former,
and/or notification about events taking place therein.
The transformation of events to state within the realm
of the active environment components is not precluded,
as a way to preserve the memory of past events.

• Object-to-object interactions serve two purposes. The
first is related with complementing the assessment of
each individual object about the state of the surrounding
space, which includes environment components and the
objects "within reach", that is, capable of influencing its
next decisions. The second is related to collaboration, in
which the object tries to influence other objects into
contributing to a common goal, or into reacting to an
unexpected situation.

• Object-to-environment interactions comprise the de-
liberate attempt at forcing a change in the state of the
environment. This may come as a consequence of the
pursuance of the object's own objectives, or of the reac-
tion to unexpected situations created by the environ-
ment or other objects.

Given the highly interactive nature of the envisaged applica-
tions, and the fact that actions will be dictated to a great ex-
tent by assessment of the state of the environment, CORTEX
falls under the typical constraints placed on distributed real-
time systems [31,16]. Thus, the communication abstractions
must support predictable timing behaviour.
 CORTEX exploits context and environmental aware-
ness, that is, use of internal and external context information
to facilitate object interaction in changing situations. Ob-
jects, for example whilst moving, may be confronted with
unpredictable communication needs or unanticipated inter-

action patterns with other objects and with the environment.
Context awareness in terms of "which network am I in?",
"how many hops away are my partners", "what delay am I to
expect for this message", as well as the detection of timing
failures or the assessment of membership all constitute ex-
amples of context awareness.
 The main issue introduced by co-operation in the inter-
action model is the predictability of the co-ordination
mechanisms necessary to carry out joint actions. Since ob-
jects operate in a real world environment, co-ordination has
to be achieved under temporal constraints. As a minimum,
this requires timeliness of communication, including those
primitives achieving consensus, ordering, and so forth.
 In order to address these issues, CORTEX combines the
group communication and the anonymous communication
paradigms in a flexible way, allowing non-functional prop-
erties such as the required degree of synchrony and the reli-
ability of communication to be specified on a per group and
per event basis.
 Achieving predictable timing behaviour is a hard task in
large-scale, heterogeneous systems that cannot be made
strictly synchronous at reasonable costs in transmission de-
lay and bandwidth. However, despite some of the adverse
conditions just described, applications have to exhibit a cer-
tain degree of predictability. Approaches to this problem
under uncertain operating conditions have been addressed in
the mission-critical systems arena. Systems would normally
have pre-defined operational envelopes, to which they
would switch in a best effort to achieve their goal [12,29].
In more general terms, this is also the track followed by the
QoS based adaptive systems. This adaptation is generally
done in an ad-hoc manner, and may sometimes not bring the
system to an optimal tuning.
 In contrast, we address the hard problems in the time
domain in the light of partial synchrony models, which can
withstand varying timeliness or synchrony conditions, and
the occurrence of timing failures. Our approach follows re-
cent work on timing and QoS failure detection oracles [30]
under partial synchrony models that reason in terms of the
<assumption,coverage> binomial. This may help provide a
precise definition of predictability, in terms of an assurance
to which a probability is attached, and thus provide condi-
tions for objects to make justifiable tradeoffs between main-
taining their original goals with a reduced probability of
success, or relaxing their goals whilst maintaining the initial
probability.

5 SYSTEM ARCHITECTURE
The architecture of CORTEX must recognize two facts:
much of the real infrastructure may actually be unknown
prior to system deployment time, thus requiring the capacity
for discovery of topology, services and so forth. Moreover,
components are of an extremely heterogeneous nature, both
in technological and exploitation terms (wired vs. wireless,
public vs. private).
 CORTEX features an abstract network architecture that
reflects the hierarchical structure of large-scale heterogene-
ous networks, while defining the necessary mappings from
this abstract description to real networks, including sen-
sor/actuator busses and wireless links. In the architecture,
non-functional properties are translated to QoS require-
ments, specified at the level of the interaction model
abstractions. We define gateways as crucial architecture
components, which serve as brokers for both the functional
and non-functional (e.g. QoS) properties of the subsystems

non-functional (e.g. QoS) properties of the subsystems they
hide.
 The basic infrastructure is composed of a global wide
area network (WAN) that comprises substructures sub-
sumed by the abstraction of a Controller Area Network
(CAN). The WAN comprises all that makes the globally
available, mostly wired, ostensibly public and wide range
network infrastructure. A CAN represents a confined envi-
ronment in which a certain quality of communication in
terms of bandwidth, transmission delays, and reliability can
be enforced. The WAN-of-CAN structure allows a hierar-
chical composition of heterogeneous environments with re-
spect to timeliness: at the lowest level we may find networks
with highly predictable communication, controlling physical
devices such as sensors and actuators.
 This WAN-of-CAN structure is assembled by means of
gateways. A gateway is a crucial architectural construct that
provides the propagation of QoS constraints on event flows,
and on the events proper, while ensuring timeliness con-
finement between parts of the architecture, namely in what
concerns CAN modules. From an architectural point of
view, gateways can be seen as artefacts that provide a repre-
sentation of a certain environment to the outside world.
Therefore, they must provide means to specify how this rep-
resentation will be established and how the events will flow
from, and to the outside environment.
 CORTEX, in common with many other complex sys-
tems, offers a set of basic support services through a mid-
dleware layer. Today, the focus of middleware is on inter-
operability by providing functionally compatible interfaces.
A number of mobile-specific distributed systems services
have been developed in recent years that aim to operate in
challenging mobile environments [4,9,8]. However, to date
such services are not designed to offer sufficient levels of
dependability or support the highly asynchronous interac-
tion model required by the CORTEX computational para-
digm. In more detail, when targeting mission and safety
critical applications, e.g. traffic management systems, pre-
dictability under widely varying load and fault conditions
becomes an additional decisive requirement. It is the con-
flict between technical conditions and the application re-
quirements that makes predictability one of the greatest
challenges for the middleware of the future.
 The ability to enforce and check timeliness of actions
with given coverage assumptions is necessary in order to
achieve dependable execution in face of uncertain timeli-
ness. This requires the availability of a number of basic ser-
vices, such as timing failure detection and clock synchroni-
zation. Similarly, discovery services are mandatory, not only
in terms of topology, but also in terms of services offered by
the infrastructure. Together, these are the distinctive ser-
vices supplied by the CORTEX middleware.

6 APPLICATION SCENARIOS
In this section, we illustrate with a few scenarios the rele-
vance of the CORTEX architecture.

6.1 Supporting field workers in the electricity industry
Field workers in the electricity supply industry work in a
highly distributed safety critical and real-time environment.
Current best working practice is based on a centralised co-
ordination body (the control centre). However, such cen-
tralisation inevitably proves to be a bottleneck and potential
point of failure during periods of high activity, such as dur-

ing lightning storms. Furthermore, the highly mobile field
engineers are often unable to establish contact with the con-
trol centre in a timely fashion, although they may well be
able to establish ad-hoc dialogues with neighbouring col-
leagues. By enhancing collaboration between colleagues and
replicating the view of the current network state to all field
engineers, there is the potential to distribute operational con-
trol and co-ordination [6].
 One potential application of CORTEX involves placing
intelligence and monitoring capabilities into the power dis-
tribution network infrastructure itself (e.g. at substation
switches). This would allow predictable action by providing
different levels of dependability in isolated parts of the net-
work. A switch might, for example, take autonomous action
to ensure fail-safe behaviour under certain conditions. Al-
ternatively, these ‘sentient switches’ may take a proactive
role in collaborating with field engineers directly. Such col-
laboration will, we believe, facilitate the establishment of
pockets or zones of co-ordination, enabling useful work to
be performed, despite the inability to achieve direct com-
munication with a centralised control centre.

6.2 Mountain rescue
Mountain rescue workers are constantly faced with search
and rescue operations in which they are called upon to lo-
cate stranded, and possibly injured, people in extremely hos-
tile conditions. Such environments also place stringent con-
straints on mobile computational devices, such as weight,
battery life and communications availability. To affect a
successful search of a mountain-side requires a co-ordinated
effort by a team of rescuers who are themselves vulnerable
to hostile weather conditions, can become separated and
even injured. In such scenarios, tracking the location of
search team members is required in order to provide both
the control centre and rescuers with an awareness of the lo-
cation of those team members involved in the rescue. Shar-
ing of location information poses a technical challenge; the
availability of the communications infrastructure and parti-
tioning of the search team is greatly affected by the topol-
ogy of the mountain terrain and unpredictability of the pre-
vailing weather conditions.
 Ad-hoc networking can enable collaborations between
neighbouring team members and promote the sharing of in-
formation, such as location and medical telemetry, to en-
hance the effectiveness of a typical search and rescue opera-
tion. Moreover, information gathered in the field can be re-
layed back to remote experts at the base or local accident
and emergency departments.
 The dynamic nature of such collaborations is poorly
supported by existing distributed systems given the general
bias towards a reliable and fixed communications infrastruc-
ture. The CORTEX paradigm fits well to this application
domain by supporting the notion of zones that, in this sce-
nario, could represent zones of network availability.

6.3 Next generation cars
As a more futuristic example, consider the reaction of a
queue of cars to an accident on a typically busy motorway
carriageway. A driver in the queue will be forced to brake
suddenly, but when the next driver reacts, she will brake
hard enough to stop her car within the remaining braking
distance. Each car in the queue reacts similarly. The usual
outcome of this behaviour is that a number of drivers will

not have sufficient braking distance left and a multiple car
collision will occur.
 Using the CORTEX paradigm, a more co-ordinated ap-
proach could be achieved in which vehicles publish events
(such as the fact that they are performing an emergency
brake or that the car will be stationary in a number of milli-
seconds) to other interested parties (e.g., cars following
within a certain distance). Sentient objects (located within
other cars in the queue) can ask to receive the braking event,
and when notified can take appropriate braking action (pub-
lishing their own braking events). In this way, the entire
queue of vehicles can be brought to a halt in a progressive
and controlled manner.

7 CONCLUSIONS
In this paper, we have explored the issues that arise in sup-
porting an emerging class of applications that operate inde-
pendently of direct human control. We have presented the
necessary support mechanisms in terms of system architec-
ture and middleware models. Furthermore, we have derived
a set of key characteristics for such a model, including sen-
tience, autonomy, large scale, geographical dispersion, mo-
bility and evolution.
 The paper introduces a programming model that pro-
vides the necessary means for application developers to
construct proactive applications that employ mobile sentient
objects. We described the fundamental aspects of the
CORTEX programming model, proposing anonymous
event-based communication and the possibility of specifying
constraints and guarantees in the form of QoS properties.
We also introduced a number of important concepts for the
programming model, e.g. filters and zones.
 The interaction among the objects in the system, which
comprise the aspects of communication and co-ordination,
are dealt with in the proposed interaction model. We also
propose the fundamentals of a system architecture, which
defines the mechanisms that are necessary to implement the
communication abstractions identified in the interaction
model. A key aspect of this architecture is that it must be
capable of handling the extremely heterogeneous nature of
possible components.
 The CORTEX project has already taken the first steps
towards defining the fundamental paradigms and solutions
needed to address this class of sentient and proactive appli-
cations. However, as we continue to revise our model, we
are constructing several proof-of-concept prototypes to
illustrate the feasibility of our ideas. We have been using
several application scenarios to drive our work, of which the
ones presented in this paper are just an illustrative subset.
We expect to publish further results of our ongoing work in
a near future.

REFERENCES
[1] Bakre, A. and Badrinath, B.R., M-RPC: A Remote Pro-

cedure Call Service for Mobile Clients. Technical Re-
port WINLAB TR-98, Department of Computer Sci-
ence, Rutgers University, USA, June 1995.

[2] Campbell, A. and Coulson, G., A QoS adaptive transport
system: Design, implementation and experience. In Pro-
ceedings of the Fourth ACM Multimedia Conference,
pages117-128, New York, NY, USA, Nov 1996.

[3] Carriero, N. and Gelernter, D., Linda in Context. Com-
munications of the ACM, 32(4):444-458, Apr. 1989.

[4] Cheverst, K., Development of a Group Service to Sup-
port Collaborative Mobile Groupware. Ph.D. Thesis,
Computing Department, Lancaster University, Bailrigg,
Lancaster, LA1 4YR, U.K., Apr. 1999.

[5] Cristian, F. and Fetzer, C., The Timed Asynchronous
System Model. In Proceedings of the 28th Annual Inter-
national Symposium on Fault-Tolerant Computing,
pages 140-149, Munich, Germany, June 1998.

[6] Davies, N. and Friday, A. and Blair, G.S. and Cheverst,
K., Distributed Systems Support for Adaptive Mobile
Applications. In ACM Mobile Networks and Applica-
tions, special issue Mobile Computing – System Ser-
vices, 4(5), 1996.

[7] Estrin, D. and Govindan, R. and Heidemann, J., Scalable
coordination in sensor networks. In Proc. of the 5th
ACM/IEEE International Conference on Mobile Com-
puting and Networking, Seattle, WA, USA, 1999.

[8] Franz, W. and Hartenstein, H. and Bochow, B., Internet
on the Road via Inter-Vehicle Communications. In Proc.
GI/OCG Annual Conference: Workshop on Mobile
Communications over Wireless LAN: Research and Ap-
plications, Vienna, Sept. 2001.

[9] Friday, A., Infrastructure Support for Adaptive Mobile
Applications. Ph.D. Thesis, Computing Department,
Lancaster University, Bailrigg, Lancaster, LA1 4YR,
U.K., Sept. 1996.

[10] Haahr, M. and Cunningham, R. and Cahill. V., Sup-
porting CORBA Applications in a Mobile Environment.
In Proc. of the 5th ACM/IEEE International Conference
on Mobile Computing and Seattle, WA, USA, 1999.

[11] Horstmann, M. and Kirtland, M., DCOM Architecture.
http://www.microsoft.com/jini/specs/.

[12] Jensen, E. and Northcutt, J., Alpha: A non-proprietary
os for large, complex, distributed real-time. In Procs. of
the IEEE Workshop on Experimental Distributed Sys-
tems, pages 35-41, Alabama, USA, 1990.

[13] JINI Technology 1.1. Specification, Sun Microsys-
tems, http://www.sun.com/jini/specs/.

[14] Joseph, A. and deLespinasse, A. and Tauber, J. and
Gifford, D. and Kaashoek, M.F., Rover: A Toolkit for
Mobile Information Access. In Proc. 15th ACM Symp.
on Operating System Principles, Vol.29, pp.156-171,
Copper Mountain Resort, Colorado, USA, Dec 1995.

[15] Kopetz, H. and Grünsteidl, G., TTP - A Time-
Triggered Protocol for Fault-Tolerant Real-Time Sys-
tems.Research Report 12/92, Institut für Technische In-
formatik, Technische Universität Wien, 1992.

[16] Kopetz, H., Real-Time Systems, Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, 1997.

[17] Kulik, J. and Rabiner, W. and Balakrishnan, H., Adap-
tive protocols for information dissemination in wireless
sensor networks. In Proc. of the 5th ACM/IEEE Interna-
tional Conference on Mobile Computing and Seattle,
WA, USA, 1999.

[18] Kümmel, S. and Schill, A. and Volkmann, G., RPC
over Advanced Network Technologies: Evaluation and
Experiences. In Proceedings of the 3rd International
Workshop on Services in Distributed Networked Envi-
ronments, Macau, China, June 1996.

[19] Livani, M.A. and Kaiser, J. and Jia, W.J., Scheduling
Hard and Soft Real-Time Communication in the Con-
troller Area Network (CAN). In 23rd IFAC/IFIP Work-
shop on Real Time Programming, Shantou, China, June
1998.

[20] Maffeis, S., iBus - The Java Intranet Software Bus. Ol-
sen&Associates, www.olsen.ch, 1997.

[21] Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification. OMG
Document 96-03-04, July 1995.

[22] O'Connell, K. and Dinneen, T. and Collins, S. and
Tangney, B. and Harris, N. and Cahill, V., Techniques
for Handling Scale and Distribution in Virtual Worlds.
In Proceedings of the 7th ACM SIGOPS European
Workshop, pp.17-24, Connemara, Ireland, Sept. 1996.

[23] Oki, B. and Pfluegl, M. and Seigel, A. and Skeen, D.,
The information Bus®- An Architecture for Extensible
Distributed Systems. 14th ACM Symp. on Operating
System Principles, pp.58-68, Asheville, NC, Dec. 1993.

[24] Rajkumar, R. and Gagliardi, M. and Sha, L., The Real-
Time Publisher/Subscribe Inter-Process Communication
Model for Distributed Real-Time Systems: Design and
Implementation. In IEEE Real-time Technology and Ap-
plications Symposium, June 1995.

[25] Rufino, J. and Veríssimo, P. and Almeida, C. and Rod-
rigues, L., Fault-Tolerant Broadcasts in CAN. In Digest
of Papers, The 28th International Symposium on Fault-
Tolerant Computing Systems, Munich, Germany, June
1998.

[26] Starovic, G. and Cahill, V. and Tangney, B., An Event
Based Object Model for Distributed Programming. In
OOIS (Object-Oriented Information Systems) '95, pages
72-86, Dec. 1995.

[27] Tindell, K. and Burns, A., Guaranteed Message laten-
cies for Distributed Safety-Critical Hard Real Time Con-
trol Networks. Technical Report YCS229, Dept. of
Comp. Science, University of York, May 1994.

[28] Veríssimo, P. and Almeida, C., Quasi-synchronism: a
step away from the traditional fault-tolerant real-time
system models, Bulletin of the Technical Committee on
Operating Systems and Application Environments
(TCOS), 7(4):35-39, Winter 1995.

[29] Veríssimo, P. and Barrett, P. and Bond, P. and Hil-
borne, A. and Rodrigues L. and Seaton, D., The Extra
Performance Architecture (XPA). In Delta-4 - A Ge-
neric Architecture for Dependable Distributed Comput-
ing, D. Powell ed., pages 211-266, Springer Verlag,
ESPRIT Research Reports Series, 1991.

[30] Veríssimo, P. and Casimiro, A. and Fetzer, C., The
Timely Computing Base: Timely actions in the presence
of uncertain timeliness. In Proceedings of the Interna-
tional Conference on Dependable Systems and Net-
works, pages 533-542, New York, USA, June 2000.

[31] Veríssimo, P. and Rodrigues, L., Distributed Systems
for System Architects, Kluwer Academic Publishers,
2001.

[32] Zuberi, K.M. and Shin, K.G., Non-Preemptive Sched-
uling of messages on Controller Area Network for Real-
Time Control Applications. Technical Report, Univer-
sity of Michigan, 1995.

