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ABSTRACT 

An approach to the implementation of Schenkerian 

analysis in a computer program is described. It would 

appear that a single piece of music has a number of 

possible analyses related exponentially to the size of the 

piece. The approach described differs from previous 

attempts at the computer implementation of Schenkerian 

analysis by not aiming to build an analysis directly from 

the notes of the score, but instead to construct a matrix 

which contains, in different paths through the matrix, all 

possible analyses. The size of the matrix is related to the 

square of the size of the piece, and the time-complexity 

of its generation to the cube. Generation of the matrix is 

therefore a tractable problem. An analysis can be 

derived from the matrix in time related to the square of 

the size of the piece, but the complexity of deriving 

analyses with particular properties has yet to be 

investigated. 

1. INTRODUCTION 

Schenkerian analysis is a common and extremely 

important tool in the academic study of music. The 

theory has been likened to transformational grammar in 

language because it describes the structure of music in 

terms of common, simpler structures underlying their 

manifestation in elaborated ways on the musical 

‘surface’. The analogy can be taken further in that a tool 

which automated the process of Schenkerian analysis 

could yield similar benefits to automatic parsing of 

language: segmentation into meaningful units, intelligent 

editing, discovery of hidden similarities, etc. Elsewhere I 

have demonstrated how a system similar to the one 

described here allows the representation of melodic 

patterns even where they are ‘disguised’ on the musical 

surface through processes such as variation [7]. In 

another project, the same system was used as the basis 

for software which generated melodies allowing explicit 

control over their degree of similarity [8]. 

Research on implementation of Schenkerian theory 

has previously been conducted by Kassler [4, 5] and 

Smoliar and others [1, 2, 13]. These did not result in an 

implementation capable of deriving a complete analysis 

from a musical score, though Kassler’s software can 

derive an analysis from a ‘middleground’. 

The theory of Lerdahl and Jackendoff [6], which is 

indebted to Schenker in some of its reductional 

formulations, appears at first more immediately 

implementable than Schenker’s theory because of its 

formulation as a rule system. However, attempts at 

implementation of the theory (most recently [3]) have 

not yet resulted in a complete and useful analytical tool. 

This paper reports on a project which aims to re-

examine the problem of automatic Schenkerian analysis 

by computer. It differs fundamentally from earlier 

approaches by avoiding making decisions about which 

analytical interpretation to adopt from among 

alternatives. Instead, all possibilities are gathered into a 

matrix, reducing the apparent exponential complexity of 

the full analytical problem to polynomial complexity. A 

complete analysis can be derived from the matrix, 

though this aspect of the problem has yet to be fully 

addressed.  

2. SCHENKERIAN THEORY 

Schenkerian analysis represents a piece of music as a 

multi-levelled structure. From one perspective each 

‘higher’ level is derived from the preceding level by a 

process of reduction, leaving only the structurally more 

important notes. From the other perspective, each 

‘lower’ level builds upon the previous level by a process 

of elaboration. Only certain kinds of 

reduction/elaboration are possible, and they must follow 

certain harmonic and tonal constraints. The analytical 

process therefore consists essentially of deciding, for 

each small segment of a piece, and in a recursive 

process, what kind of elaboration is present, and 

therefore which notes should be retained at the higher 

level. 

3. THE UNDERLYING REPRESENTATION 

SYSTEM 

3.1. Notes and Elaborations 

The representation system used here is described in 

detail in [7], but revised and extended as described in 

[9]. It is simplest to think of as a tree, with two 

alternating kinds of elements: notes (or rests) and 

elaborations (though in fact a representation is not 

necessarily a tree, but rather a directed acyclic graph, 

because of measures to allow the representation of 

polyphony). An elaboration has (usually) a single parent 

note, and generates two or more child notes (or a note 

and a rest) which occupy the time span of the parent 

note. This is illustrated in Figure 1. The detail of the 



  

 

 

children produced by an elaboration is influenced by the 

context of metre, harmony and tonality of the parent 

note. This is the reason for the differences between the 

two ‘repetition’ elaborations, and the two ‘consonant 

skip’ elaborations (the first of which could apply in a G-

major harmonic context and the second in E minor). The 

same sequence of notes can often be produced by more 

than one kind of elaboration, as shown in the last 

example on the upper pair of staves, where an ‘upper 

neighbour note’ elaboration (E-D) produces the same 

sequence of notes as the previous elaboration.  

Some elaborations require information from a note 

immediately following (in the case of neighbour notes 

and passing notes) or preceding (in the case of 

suspensions). A link to the appropriate note is recorded 

with the elaboration (causing a deviation from a simple 

tree structure). Although the parent note is often copied 

as the first of the children, this is not the case for some 

elaborations, such as appoggiaturas and suspensions, as 

shown in Figure 1, where the parent note is displaced by 

a new note before it.  

3.2. Rhythm 

Elaborations produce notes at points of time which are, 

by default, spread within the time span of the parent note 

as evenly as possible within the given metrical context. 

For metrical divisions which are not divisible by two, 

such as the triple division of the second example in 

Figure 1, the minimally longer time interval(s) is/are, by 

default, placed at the start of the sequence. Deviations 

from these default temporal divisions are possible by 

explicitly specifying a time division with the elaboration, 

as in some cases in the following figures. 

3.3. Polyphony 

As originally developed, the representation system 

applied to melodies only. The simplest way to extend it 

to music with multiple voices is to allow more than one 

simultaneous tree of elaborations. In the simplest cases, 

each voice of a piece of music will be represented by a 

separate elaboration tree. However, not all cases can be 

or should be represented so simply. The number of 

voices is not constant throughout a piece of music, and 

some melodies have an underlying polyphonic structure. 

Two mechanisms handle cases where two voices can 

become one or one become two. (Both cause the 

structure of the representation to deviate from a simple 

tree.) Firstly, a particular kind of elaboration called an 

‘unfolding’ (see Figure 1) has two (or more) 

simultaneous parent notes, and causes these to be 

‘unfolded’ into a single sequence of notes in the 

children. Secondly, a single parent note can have more 

than one elaboration, and a single child note can be 

produced by more than one elaboration.  

Brief analyses using this system are given in [9]. 

4. THE REDUCTIONAL MATRIX 

4.1. Complexity of the Analysis Problem 

To derive an analysis from a representation giving the 

pitch and duration of each note on the ‘surface’ of a 

piece of music would be quite possible. Essentially the 

problem is to identify, for small sequences of notes, 

what elaboration(s) could generate the sequence. 

Sequences will generally be pairs of notes, but in some 

cases longer. The elaboration might imply certain 

constraints of metre, harmony and key. It will also imply 

a certain parent note (or possible parent notes) at the 

next higher level. The same elaboration-identifying 

process can be applied recursively to this level, until the 

highest level consists of just a single chord. 

At each step, all the information required to identify 

the possible applicable elaborations is available locally. 

The problem, however, is that there is no obvious way of 

determining locally which among the several possible 

candidate elaborations, or among the possible candidate 

segmentations of the surface, will lead to an acceptable 

final analysis. The constraints implied by simultaneous 

elaborations might, for example, turn out to be 

unfolding 
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Figure 1. Examples of elaborations. The upper stave of each pair shows parents, the lower stave children. 



  

 

 

inconsistent, or the parent notes might turn out not to 

form a sequence which could be produced by any 

elaboration. If a complete analysis of the piece does 

exist, it would eventually be found by exhaustive search 

through a backtracking process. However, the problem 

is essentially a combinatorial one, and the number of 

possible combinations of elaborations is related 

exponentially to the size of a piece of music.  

An analysis method which relied on exhaustive search 

would therefore be practical only for very small 

segments of music.  While there are some bases for a 

pruning strategy in work on method for Schenkerian 

analysis (e.g., [10, 11, 12]) and in the theory of Lerdahl 

& Jackendoff [6], there seems no guarantee that these 

will lead to a practical analytical procedure. 

This project therefore takes a different route to 

reduction in complexity. The exponential ‘explosion’ of 

the original problem arises from two sources. The first is 

the segmentation of the surface and subsequent levels 

into sequences of notes to be children of elaborations. 

The actual number of total possible segments is related 

to the square of the size of the piece; it is the number of 

possible combinations of different segments which rises 

exponentially. The second is similarly the combination 

of different elaborations in the tree structure(s). 

However, the information required to identify possible 

elaborations is only the sequence of notes and any 

constraints of harmony and tonality attached to them. 

Information about the combination of elaborations 

which led to these notes is irrelevant. There is a limited 

number of possible pitches, and the number of possible 

constraints is also limited. Thus the number of possible 

simultaneous notes-plus-constraints in any possible 

segment is limited, and therefore the total number of 

possible elaborations in any analysis of a piece of music 

is some multiple of the total number of possible 

segments, i.e., related to the square of the size of that 

piece. 

4.2. Derivation of the Reductional Matrix 

Automatic derivation of the set of all possible 

elaborations for all possible segmentations of a piece is 

therefore realistic, even for large pieces of music, and 

software to automate this derivation is currently under 

development. The procedure is best illustrated by an 

example (Figure 2), which shows the matrix derived 

from a miniature contrived piece. (Figure 2 is a 

simplification from the matrix as represented in 

software. Information concerning constraints, valid 

subsets of notes, and elaborations is not shown.) 

The first step is to divide the piece into a sequence of 

segments, each of which consists of a single chord. This 

produces the bottom row of Figure 2, labelled ‘1’. Each 

pair of consecutive segments could be joined in an 

analysis to form a single segment at a higher level by 

finding elaborations which have children from each of 

the lower level segments, producing parent notes which 

make up the segment at the higher level. (Cases where 

an elaboration has more than two children, such as the 

‘passing’ elaboration of Figure 1 with three children, are 

decomposed to combinations of elaborations with two 

children, whose parents (except for the highest level) are 

special kinds of ‘notes’ which stand for a sequence of 

notes. This introduces additional complexity, but it is 

not common and always localised.) The next step of 

deriving the reductional matrix is to find all such pairs of 

consecutive segments, resulting in the ‘size-two’ 

segments in Figure 2 labelled ‘2’. The same process can 

now be applied recursively to find all ‘size-three’ 

segments, and so on.  
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Figure 2. Illustration of a reductional matrix. 



  

 

 

The process continues, forming segments of 

increasing size, until a single segment covers the entire 

piece. The total number of segments is n(n+1)/2, where 

n is the number of segments at the lowest level. 

However, the number of ways of forming segments 

increases with their size (there are two pairs of lower-

level segments which can form each size-three segment, 

and three pairs for each size-four segment, etc.), so the 

total number of pairs of segments which must be 

considered is n(n+1)(n+2)/6. Thus the space 

requirement for the reductional matrix is related to the 

square of the size of a piece, whereas the processing 

time required is related to the cube. 

The crucial part of the reduction is to fill these 

segments with the notes plus elaborations and 

constraints which can be derived from the notes in the 

pairs of segments from which they are composed. This is 

achieved simply by considering what elaborations could 

apply to each pair of notes between each pair of 

segments. The possible parent notes are placed in the 

higher-level segment, together with references to the 

elaborations which could generate them plus any 

constraints. Valid subsets of parent notes are formed 

from subsets of the possible elaborations whose 

constraints are consistent and which are ‘complete’ in 

the sense that every note in the first child segment and 

every note in the second child segment participates in at 

least one elaboration. (It is these subsets which form the 

basis for the discovery of possible elaborations at the 

next higher level, rather than the full set of possible 

parent notes which is shown in Figure 2.) In some cases 

there will be subsets of elaborations with inconsistent 

constraints, corresponding to places in the analysis 

where more than one harmony or key is possible. Such 

cases are shown in Figure 2 with an oblique stroke 

between the inconsistent subsets. In the fourth segment 

of level 2, for example, the harmony could be either G 

major or E minor. In other cases, there will be no subsets 

of elaborations with consistent constraints, and a 

segment will remain empty and cannot participate in any 

complete analysis. This is the case for the second 

segment of level 2, where there is no combination of 

elaborations with consistent harmonic constraints which 

covers both the notes C4 and B4. 

4.3. Extraction of an Analysis from the Matrix 

A complete analysis can be extracted from the 

reductional matrix in a top-down manner. First one of 

the subsets of notes in the top-level segment must be 

chosen. Associated with this subset are the sets of 

elaborations and pairs of lower-level segments which 

produce these parent notes. One set of elaborations and 

pair of lower level segments is then chosen, and the 

same process applied recursively to the subsets of notes 

in those lower-level segments which are the children of 

the elaborations. When elaborations are chosen which 

require particular notes in neighbour segments as 

context, subsets with those notes must be marked for 

selection later in the process. It is this which causes the 

analysis-extraction procedure to have complexity related 

to n
2
. 

This process is not guaranteed to produce an 

acceptable analysis. It remains to be investigated 

whether information can be recorded in the matrix-

derivation process which will allow an acceptable 

analysis to be extracted without significantly increasing 

complexity. 
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