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6 Implementing a tagger for Urdu 

 

 In this chapter, I will describe the work undertaken to design, develop and test 

a tagger for Urdu based on the tagset outlined in chapters 3 and 4 and the rule-based 

tagging methodology selected in chapter 5. My aim in this chapter is to demonstrate 

how the optimal set-up for a rule-based Urdu tagger was arrived at. A secondary aim 

is to evaluate what, if anything, can be learned about the linguistic nature of Urdu 

based on the process of designing the tagger in itself1, as will be discussed in section 

6.4.4. 

 As pointed out by van Halteren and Voutilainen (1999: 109) in the section 

quoted at length at the outset of the previous chapter, the task of tagging may be 

divided into three tasks. These are tokenisation – where the tokens of the text are 

segmented from one another as a preparatory step for analysis – followed by analysis 

of each token in isolation and the assignment of one or more potential tags to it, and 

finally disambiguation based on context to determine which tag is appropriate for that 

token. Although a large part of the discussion in this chapter will be devoted to the 

process of rule-based disambiguation (6.2.4, 6.4), for reasons outlined in the previous 

chapter, I will also discuss the programs that tokenise and analyse the text (see 6.2.2 

and 6.2.3 respectively). Prior to that, I will discuss the computational structure into 

which these programs fit (see section 6.2.1). However, before moving on to these 

central issues, I will discuss a necessary preliminary factor: the difficulty of 

measuring the success of a tagger or any component of it. 

                                                 
1 It goes without saying that the output of the tagger – the tagged texts and corpora – will be of use in 

investigating the linguistic structure of Urdu. However, it lies beyond the scope of this thesis to 

consider applications for the tagged text in any depth. 



 303

 

6.1 Measuring performance in a tagger experiment 

 

 As outlined in section 5.6.1, there is no universal agreement on an appropriate 

standard measure of tagger performance, making it very difficult to compare the 

results reported by different studies of part-of-speech tagging. However, within a 

single study the various factors which make comparison problematic can be 

controlled for. Furthermore it is clearly necessary for some measure of performance to 

be used to evaluate the tagger or components of it. In this section I will outline the 

measure used in this chapter. 

 The most developed model of rule-based tagging, Constraint Grammar (see 

section 5.2.2), uses a dual measure of precision and recall. It might therefore be 

supposed that for a tagger such as the one discussed here, utilising rule-based 

disambiguation, the precision/recall measure would be preferable. However, I intend 

instead to use the measures of accuracy (or “correctness”) and ambiguity. This is for 

two reasons. Firstly, I do not consider precision to be as perspicuous a measure as 

ambiguity in terms of conveying at a glance how many extraneous analyses have been 

preserved2. Secondly, accuracy would appear to be more commonly in the majority of 

the studies reviewed in the previous chapter used than precision/recall. Therefore, for 

the highly problematic comparison between this study and others to be as legitimate 

as possible given the circumstances, the use of accuracy (and ambiguity where 

appropriate) is preferable. 

 The definitions of accuracy and ambiguity which I will utilise in this chapter 

                                                 
2 In commenting that correctness/ambiguity are easier to understand than precision/recall, van Halteren 

(1999b: 81) essentially concurs with my impression here. 
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are effectively the same as those of van Halteren (1999b: 82)3. I will consider 

accuracy as being equal to the number of tokens that have received the correct tag, 

divided by the total number of tokens. This will be expressed as a percentage to one 

decimal place, in accordance with established tradition. I will consider ambiguity as 

being equal to the total number of tags that have been received by all tokens, divided 

by the number of tokens – that is, ambiguity equals the mean number of tags per 

token. This will be expressed to two decimal places. Some toy examples in English 

will suffice to demonstrate these principles: 

 

• The_DET cat_NOUN sat_VERB on_PREP the_DET mat_NOUN 

Accuracy 100%, ambiguity 1 

• The_DET cat_ADJ sat_NOUN on_PREP the_DET mat_NOUN 

Accuracy 66.7%, ambiguity 1 

• The_DET cat_ADJ/NOUN sat_NOUN/VERB on_PREP the_DET 

mat_NOUN 

Accuracy 100%, ambiguity 1.33 

• The_DET cat_ADJ/ADV sat_NOUN/ADJ on_PREP/VERB the_DET 

mat_NOUN 

Accuracy 66.7%, ambiguity 1.5 

 

 A related issue is the question of what level of performance is to be seen as a 

“successful” result to a tagger experiment? This is not unproblematic. As can be seen 

from the above toy examples, the ideal accuracy is 100% and the ideal ambiguity is 1. 

However, the success rates reported for the taggers discussed in the previous chapters 

                                                 
3 Note however that van Halteren is among those who prefers the term “correctness” to “accuracy”. 
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suggest that this is unattainable in practice. As outlined in section 5.7.1, accuracy 

rates of around 97%, or greater if some ambiguity remains, have been attained using 

most of the various disambiguation methodologies. However, Church and Mercer 

(1993: 9) suggest that even if no disambiguation technique at all were used, an 

accuracy of 90% could be achieved simply by selecting the most common tag for each 

token. This measurement appears to have been made for English, and there is of 

course no guarantee that the same will apply to Urdu. 

 Another problem lies with the trade-off between accuracy and ambiguity. 

Many strategies which remove extraneous tags may also at some point remove 

accurate tags which ought to be preserved. Thus as ambiguity falls, so too will 

accuracy. Conversely, a “better safe than sorry” strategy of preserving any tag which 

might conceivably be correct will lead to very high accuracy, but also very high 

ambiguity. It is not clear exactly what level of ambiguity would be great enough to 

debase the corresponding achievement in accuracy. Likewise, it is not clear what loss 

of accuracy would be too high a price to pay for unambiguous output. Is 98.3% with 

ambiguity 1.41 better or worse than 95.5% with ambiguity 1.19? Conceivably, the 

answer will depend on the intended purpose of the tagger’s output. 

 Given the intractable nature of these difficulties, I will not attempt to quantify 

answers to the questions posed above. Instead, I will adopt an essentially ad hoc 

approach to such trade-off problems, justifying each decision as it is taken. 

 Where accuracy and ambiguity figures are quoted in the discussion in the 

remainder of this chapter, they have been assessed by comparison with the benchmark 

version of the training dataset created by manual tagging (see 4.5). The comparison 
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has been done automatically using a program called Comparetag4. This program loads 

each line5 of each file being compared, together with the corresponding line from the 

benchmark corpus, and adds any errors or ambiguities found to a running total. When 

this process is complete, the final accuracy and ambiguity figures are calculated and 

printed to a report file. This also contains copies of lines where errors were found, to 

facilitate analysis of what is being tagged incorrectly. The program is dependent on 

identical tokenisation between the two files, so this must be ensured (by hand where 

necessary) prior to running Comparetag. 

 

6.2 A description of the tagger system 

 

6.2.1 General system philosophy and architecture 

 

 Prior to describing the algorithms underlying the various components of the 

Urdu tagging system, I will describe here the general philosophy of the system before 

going on to detail the structure of the system. 

 The system is named Unitag. This name has been chosen because the tagger 

                                                 
4 This program, like all those written for this project and described in this chapter, was written in the C 

programming language using the Microsoft Visual C++ programming environment and compiler. 

Virtually all code written by myself conforms to ANSI standard C. The programs were written to run 

on a desktop PC (Pentium processor with 128Mb of RAM) operating under Microsoft Windows NT. 

User interface with the programs is in most cases via command-line arguments. Source code for all the 

programs is freely available and has been distributed with the EMILLE Corpus. 

5 See 6.2.1.3 below for a description of the vertical layout of tagging files. 
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functions solely and entirely on two-byte Unicode text6. So far as I am aware, it is the 

only tagger yet designed for which this is the case. Unitag is conceived, not as a 

tagger per se, but as a program for managing calls to other programs, each of which 

handles a stage of the tagging process. 

 The rationale for this is that, as stated above, it is common to divide tagging 

into the stage of tokenisation, initial tag analysis, and tag disambiguation. This 

computational task is more tractable to the programmer if handled by several different 

programs, each called in turn by Unitag7. However, handling each of these tasks by 

means of a separate program also allows them to be used independently where this is 

of benefit. For example, Verticalise, the tokeniser described in section 6.2.2 below 

was also used to prepare the raw text to be manually tagged (see also Chapter 4). 

 A further benefit to realising each stage of the task as an independent program 

is that it opens the possibility of reusing component programs. For example, 

tokenisation is a fairly low-level technique. Once one suitably well-performing 

tokenisation program has been written, there should be no reason for anyone with the 

opportunity to use that program8 ever to write another. Thus, anyone wishing to 

perform tagging on Unicode text could make use of Unitag and Verticalise, and 

perhaps write their own programs for the more complicated procedures of analysis 

and disambiguation. This would save time otherwise spent, in effect, reinventing the 

wheel. It should be noted that, although it was written to form the basis of the Urdu 

                                                 
6 Files used by Unitag containing filenames or program names, however, are required to be in ASCII, 

as ASCII text is needed for the system call. 

7 This was accomplished simply by using the C library function system( ) to issue instructions to the 

operating system.  

8 In this context it should be noted that all the programs described in this chapter are freely available to 

all on request. 
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tagging system, Unitag itself is entirely language-independent. It consists of a 

functional typology of disambiguation systems (for not all perform the same task), a 

structure into which the programs fit, a formalism for these programs to communicate 

with one another, and a system for declaring which programs are to be used at each 

stage. In the following sections, each of these aspects of Unitag will be described. 

 

6.2.1.1 Classification of disambiguation systems within Unitag 

 

 Although all taggers have some component which can be described as 

performing disambiguation, not all work in exactly the same way, though their effect 

on the text is equivalent. All disambiguation systems receive text which is tagged 

ambiguously – that is, in which any given token is tagged with one or more tags, of 

which one is correct. They all output text in which as many as possible of the 

incorrect tags have been removed. However, they differ in how they do this. 

 Some, for example Constraint Grammar taggers, the early TAGGIT system, or 

de Marcken’s (1990) probabilistic system, remove incorrect analyses without 

necessarily selecting a single tag per token. This does not remove all the ambiguity; it 

is commonly referred to as n-best tagging (see also section 5.2.1 in the previous 

chapter). 

 Others always select a single tag from the available options. Most Markov 

model taggers operate in this way. Yet a third type do not narrow down ambiguous 

input at all; instead they take unambiguous input and reduce the number of errors that 

it contains. Of this type are Brill’s transformation-based tagger, and the IDIOMTAG 

unit within the CLAWS system, for example. 

 These three types are not incompatible. For example, Brill’s tagger can take as 
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its input the output of another tagger (Brill 1995: 545); and as Chanod and 

Tapanainen (1995a) demonstrate, different types of disambiguation system can be 

linked in serial. 

 It would therefore seem desirable to allow Unitag to call any of these types of 

program. To clarify the following discussion, I will define these three types of 

disambiguation system as follows: 

 

• A disambiguator receives ambiguous input and removes some of the 

ambiguity, without necessarily selecting a single tag. 

• A decider receives ambiguous input and selects a single tag per token. 

• An improver receives unambiguously tagged input and alters the tagging in 

some way to reduce the number of errors. 

 

 The order in which these three types of system are listed is the order in which 

they must operate. Any other order would make no sense. An improver cannot 

function unless a decider has already removed all ambiguity; a disambiguator cannot 

operate after a decider as it requires ambiguity in the input. So that each module in the 

tagging system may be referred to unambiguously, I will define the term analyser to 

refer to the program which provides the initial ambiguous set of tags to the tokenised 

input. 

 On the basis of the components now defined, and their necessary relative 

ordering, the structure of the Unitag system may now be defined. 
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6.2.1.2 The structure of Unitag 

 

 The overall structure of the Unitag system can be represented 

diagrammatically as below: 

Input text 
↓ 

Tokeniser 
↓ 

Analyser 
↓ 

Disambiguator 
↓ 

Decider 
↓ 

Improver 
↓ 

Output text 
Fig. 6.1 

 

 An additional stage of reallocating probabilities will be discussed below. 

 Whilst the tokeniser and analyser are compulsory in the Unitag system, all the 

other units are optional (with the restriction that an improver must be preceded by a 

decider). Therefore, minimally, one could define an instantiation of Unitag which 

produced non-disambiguated text straight from the analyser. Of course, this would not 

be of particularly great use. Maximally, one could define an instantiation of Unitag 

which called, for instance, a Constraint Grammar-type disambiguator, a Markov 

model decider and a transformation-based improver, thus utilising the benefits of 

every approach. In the instantiation of Unitag which constitutes the tagger for Urdu, 

only a disambiguator is used, because, as has been explained, a rule-based procedure 

is to be used. However, it is my belief that the facility of future work on tagging in 

Urdu will be greatly enhanced by creating the Urdu tagger in a framework which is 
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ultimately very open to having new components added to it. 

 There follows a toy example in English of what might be the output at each 

stage, if a disambiguator, decider and improver were all specified in an instantiation 

of Unitag. 

 
The cat  sat  on  a  bright  green  mat 

 

The cat  sat  on  a  bright  green  mat 
art N N P art N N N 
 V V   V V V 
 R R   R R R 
 J J   J J J 
 
The cat  sat  on  a  bright  green  mat 
art N N P art R N N 
 J V   J V V 
  R    R R 
  J    J J 
 
The cat  sat  on  a  bright  green  mat 
art N V P art J N N 
 
The cat  sat  on  a  bright  green  mat 
art N V P art J J N 

 

 In this example, the analyser (perhaps by reference to a lexicon) recognises the 

non-lexical words and assigns them the correct category, but assigns all the lexical 

words a set of open category tags. The disambiguator (perhaps using a rule that says 

verbs and adverbs do not follow articles) is able to reduce the ambiguity for the words 

“cat” and “bright”. The decider, its task thus simplified somewhat, is then able to 

select using a Markov model what it considers the most likely string of tags for the 

sentence. It is not quite right, however, and one of the remaining two errors is picked 

up by the improver and corrected. 

 It should be noted that if more than one of the disambiguator, decider and 

improver are utilised within a particular instantiation of Unitag, that does not imply 

Tokeniser 

Disambiguator 

Decider 

Improver 

Analyser 
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that they shoulder an equal burden of the work. For example, if one wished to define a 

tagger like Brill’s within Unitag, one could call a fairly naïve decider, and most of the 

actual work would be done by the improver (thus approximating Brill’s process of an 

initial-state annotator producing inaccurate but unambiguously tagged text which is 

then corrected using learned rules: see Brill 1995). 

 There are several rules which apply to programs to be called by Unitag: 

 

1. The programs must be callable from the command line. 

At present, Unitag and all other programs described in this chapter are called from 

MS-DOS. There is however no reason why they should not be recompiled for, 

say, Unix, and linked via a Unix shell script. However, command-line arguments 

are indispensable, as they are at the core of how Unitag communicates with the 

programs it calls. Windows programs, for instance, cannot be called in this way. 

2. They must handle two-byte Unicode text. 

This is the very raison d’être of Unitag. 

3. The first command-line argument after the program name must be the filename of 

the text file to be processed. The second must be the filename in which the output 

is to be placed. 

This is so that Unitag is able to construct the correct system calls. 

4. The programs must handle one file at a time. 

While Unitag itself is capable of running in batch mode on a set of files specified 

in another text file, it does this on one file at a time. Therefore, the programs 

called must also be capable of handling a single file, specified as a command-line 

argument. 

5. The programs must handle text which is laid out in the Unitag file format, as 
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described in the following section. 

Again, this is to ensure effective communication between the different programs 

called by Unitag. 

 

 Whilst the first two of these restrictions are evidently necessary, it might seem 

that the other three might needlessly exclude from incorporation in Unitag programs 

which have already been written that do not conform with their requirements. 

However, this is not the case. A program called by Unitag may, naturally, itself call 

another program. So if, for instance, one wishes to incorporate into Unitag a 

disambiguator which uses a non-Unitag file format, and which takes the name of the 

file to be tagged as its third argument, this would not be impossible. A program would 

have to be written to call the disambiguator, having reordered the arguments and 

mapped the file to be tagged into the disambiguator’s preferred input format. It would 

also have to map the format back to Unitag format after the disambiguator had run on 

it. This would be computationally trivial. The instantiation of Unitag would then be 

defined so that it calls this new, intermediary program. In this way, almost any 

program that performs the function of analyser, disambiguator, decider or improver 

can be included within an instantiation of Unitag. 

 It would be possible to go further with this, and incorporate programs that do 

not even use Unicode, if the intermediary program maps the file to some suitable 

eight-bit format and back again. It is also be possible to make the Unitag model more 

flexible. For example, one might wish to use more than one disambiguator – quite 

legitimately, as there would be ambiguity remaining after the first one for the second 
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one to reduce9. In this case, an intermediary program would be needed that ran first 

one, then the other, on each file. This program would then be called by Unitag, which 

would treat the intermediary exactly as a single-program disambiguator. 

 

6.2.1.3 The Unitag file format 

 

 As stated earlier, there is a set formalism used within Unitag for the various 

programs to communicate with one another. This is the Unitag file format, within 

which information about each token is stored in a particular layout, so that each 

program knows exactly what input it is receiving from the previous program in the 

chain. I will in this section describe and (where necessary) justify the format. 

 It is anticipated that the text to be tagged will be either plain text without any 

markup or text marked up in SGML/XML. The EMILLE Corpus10 is in the latter 

format, as are most text corpora nowadays. Therefore, it will for now be assumed that 

this is the case without further comment. Should it be desired to employ Unitag on 

text in some format radically different to plain text or SGML, it might prove 

necessary to pre-process the text into a format suitable for Unitag. The role of the 

tokeniser in Unitag (see the next section) is to transform the SGML into the Unitag 

format, which as a matter of definition includes tokenisation. 

 The layout of a file in Unitag format is vertical, i.e. each token is laid out on a 

                                                 
9 It would also be legitimate to use more than one improver. However, the nature of the decider is such 

that using more than one runs contrary to its definition. 

10 See section 1.3. 
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separate line11. Whilst the exact content of each line varies slightly depending on what 

point in the tagging process the file has reached, some things are consistent 

throughout. The following is an example of line from a file in the Unitag format: 

 
 

s00004 w001 <body> *VE NULL 
 

 
 At the start of the line are two serial numbers which identify the token12. The 

first is a segment number. A segment consists of a string of less than 1,000 tokens, 

divided by the tokeniser in any way that the programmer deems appropriate13. The 

tokens within a segment are indicated by the word number, which is the second 

number on the line. Both numbers are followed by a space character (Unicode 0020). 

This two-number system has been adopted to facilitate finding particular lines in the 

file with ease.  

 After the second space character, there follows the token itself (in the example 

above, an SGML element). Then, there is a horizontal tab character (Unicode 0009). 

The following three characters are a code for “last modified by”. In this case, *VE 

indicates that Verticalise has been the last program to modify this line. The code need 

                                                 
11 This is very similar to one of the output formats produced by the CLAWS tagger, which I find easy 

to work with. Since this format is easily mapped to some other format at any point, it seemed 

acceptable to follow my personal preference on this point. 

12 This identification is not necessarily unique. The numbers are assigned by the tokeniser, so if the 

tokenisation is corrected by some later module (e.g. the analyser) one or more adjacent tokens may 

have the same number. As the numbers are intended for human reference primarily, rather than 

machine processing, this is not seen as a problematic issue.  

13 In text processed by Verticalise (see section 6.2.2), a new segment begins with the token after each 

SGML element. Since in the EMILLE corpus, each utterance or sentence begins and ends with an 

SGML element, this seemed a reasonable way of breaking up files into manageable segments. 
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not only indicate the program, but may also indicate which procedure within the 

program which has last altered the line. In post-editing, if a human changes a line, 

they should insert their initials here. Note that these responsibility markers must be 

exactly three characters in length. 

 After the responsibility marker is another space character. After that follows 

the tag or tags which are currently assigned to that token. In this case, since the 

“token” is actually an SGML tag, it receives the special NULL tag, indicating that this 

is not a unit which can meaningfully be tagged. There then follows a carriage return 

(Unicode characters 000d, 000a) before the next line. 

 The first line in the file is preceded by the Unicode byte-order mark, Unicode 

FEFF, as is standard for many Unicode files. Other than that, all lines follow the 

format detailed above, with the following variations in what occurs in the part of the 

line where the tag is given. 

 Prior to the analyser running on the file, it is possible for there to be nothing at 

all here (although there is still a space after the responsibility marker)14: 

 
 

s00010 w001  *VE  
 

 
 After the analyser has run, up until the point at which the decider runs, there 

may be several tags: 

 
 

s00010 w001  *VE VVSV2 VC2 
 

 
 The tags must consist of characters other than control characters, white space, 

                                                 
14 I am now using Urdu examples from files in the benchmark corpus, in some cases manipulated 

slightly to illustrate a point. 
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the underscore character (Unicode 005F) or the forward slash character (Unicode 

002F). They need not be from the ASCII range – any Unicode characters may be 

used. Between each tag is a space. This might seem to preclude the use of any tagset 

where tags which are not single strings of letters and numbers are utilised, such as the 

tagsets used in Constraint Grammar tagging (see 5.2.2). However, it would again be 

computationally simple to map such a tagset to one which is acceptable in the Unitag 

file format, and back again, as necessary. 

 After the decider has run, there are two possibilities for a line. It may contain a 

single tag, in which case that is the tag allocated to that token. Alternatively it may be 

a string of tags in which the first one, preceded by an underscore character, is the tag 

allocated to that token and the remaining tags represent rejected potential tags. The 

reason that the possibility of retaining the rejected tags on the line is allowed for in the 

Unitag file format is that it is possible to conceive of a situation where either an 

improver or some manual post-editing process makes use of the information in the 

tags rejected by the decider15. However, as no instantiation of Unitag discussed in this 

chapter uses this feature, I will not discuss it further. The two possible formats are as 

follows (the responsibility marker is that of a hypothetical decider program): 

 
 

s00010 w001  *DE VVSV2 

s00010 w001  *DE _VVSV2 VC2 
 

 
 Given that Unitag is intended to allow the usage of both rule-based and 

probabilistic systems within a single framework, it is necessary for some information 

                                                 
15 This feature, like the layout in general, was inspired by the CLAWS vertical layout, although I am 

unaware whether the CLAWS layout was motivated by the same considerations that influenced my 

decision here. 
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about the relative probabilities of the different tags to be communicable between the 

different programs called by Unitag. This would normally take the form of tag 

frequencies, for instance if the analyser uses information in a lexicon to give the 

relative frequencies of the different tags it has suggested. However, there are other 

possibilities: for example, if a Markov model disambiguator marks on the different 

tags what it judges to be their probabilities in context. In either case, the probability of 

a tag is expressed as a percentage to no decimal places, which is laid out following the 

tag and separated from it by a forward slash character, as illustrated below: 

 
 

s00010 w001  *LE VVSV2/50 VC2/50 
 

 
 These probabilities are optional at all levels: a tagged file need not contain 

them, and if a file does then not every line in the file nor every tag on the line need 

have them. This stipulation is necessary because, of course, some analysers will not 

provide these probabilities, for example analysers designed to work with rule-based 

disambiguators. 

 However, so that any module which is probabilistic in nature may handle the 

file format robustly it is a condition of the format that where tags have no probability 

given, they are assumed to have an equal share of the probability remaining on that 

line. So for example, if two tags are given on the line and neither has a stated 

probability, then both are assumed to have a probability of 50%. If two tags are given, 

one with a stated probability of 75% and the other without stated probability, then the 

latter is assumed to have a probability of 25%. If four tags are given, one stated as 

20% and one as 25%, then the remaining two are assumed each to have a probability 

of 27.5%. 

 It should be noted that the possibility of combining probabilistic and non-
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probabilistic modules introduces a potential problem. If a non-probabilistic 

disambiguator eliminates some superfluous tags, the probabilities on a line will no 

longer total 100. This might pose problems for a subsequent Markov model decider or 

disambiguator. In such a case, the instantiation of Unitag might require an 

intermediary program to be used which called a program to adjust the probabilities so 

that they total 100 on each line again. 

 Although the Unitag file format is primarily for use internally within the 

program, I have used the same format for manual tagging, and the final output is left 

in that format. I have written a program, Deverticalise, which converts the Unitag 

format to a more widely-used SGML format (each line being condensed as follows: 

<w pos="TAG">TOKEN</w> ), but this is not included in the Unitag architecture so 

that post-editing may be undertaken on the vertically formatted text. 

 

6.2.1.4 Defining an instantiation of Unitag 

 

 I have at numerous points used the notion of an “instantiation” of Unitag. An 

instantiation of Unitag is defined simply as a specified set of programs working in the 

appropriate positions within the Unitag structure. The instantiation is specified in an 

ASCII text file, which is read by Unitag and used to construct its system calls. It 

contains the names of each of the programs, plus information about any additional 

arguments required by calls to those programs subsequent to the filename of the file to 

be tagged. 

 A Unitag instantiation file has the following form: 

 

• On a separate line each, the analyser, disambiguator, decider and improver are 



 320

specified. 

• Each specification consists of a single word saying what module is being 

specified, followed by a space, followed by the program name, followed by a line 

break. 

• On the line after a program is specified are typed any command-line arguments 

which should follow the filename of the output file in the system call to that 

program, exactly as they would be entered at command line. If no arguments are 

specified, that line should contain the string “NULL”. Therefore, the file as a 

whole consists of eight lines. 

• If no program is to be specified for a given module, then instead of a program 

name the file should contain the string “NULL”. 

• Lines beginning with a forward slash are ignored as comments. 

 

 The following would therefore be a possible instantiation of Unitag for 

tagging Urdu: 

 

/ Unitag for Urdu 

/ Version testing new Urdu lexicon 

analyser urdutag 

new_urdu_lexicon.txt 

disambiguator unirule 

urdu_rulefile.txt  

/ no decider used for now 

decider NULL 

NULL 

improver NULL 

NULL 

 

 No option is included to specify a tokeniser, as Verticalise (outlined in the 

following section) has been designed specifically to produce the Unitag format and 
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perform tokenisation at the same time. Note that Unitag will only call an improver if a 

decider has been specified. 

 The Unitag program itself is called by the following instruction on the 

command line: unitag instantiation_filename raw_text_filename . The first argument 

after the program name is the filename of the text file containing the instantiation 

details. The second argument is the name of the text file to be tagged. If an optional 

third argument consisting of a single L is present, then the second argument will be 

interpreted as an ASCII file containing a list of multiple files to be tagged all at once, 

with one filename on each line. 

 

6.2.2 The design of the tokeniser program 

 

 Like the general Unitag program, the tokeniser program (called Verticalise) is 

language-independent and does not incorporate any particular linguistic knowledge. It 

takes in untokenised text and performs the following actions: 

 

• Any character or stretch of characters consisting solely of  white space characters 

is replaced by a token break (unless it occurs within an SGML element). 

• A token break is inserted before and after every punctuation mark. 

• A token break is inserted before and after every SGML element (which is treated 

as a single token). 

• The text is laid out in the vertical format described in 6.2.1.3 above. 

• All SGML elements are given the NULL tag. 

 

 As can be seen, Verticalise does not consider what the words actually are in 
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any way. Such fine-tuning to the tokenisation as splitting clitics off from the word 

they are attached to is left to the analyser to perform using the language-specific 

knowledge which it must necessarily possess. 

 

6.2.3 An analyser program for Urdu 

 

 In the following section, I outline the structure of the analyser program written 

for the Urdu tagger, which assigns the initial set of contextually ambiguous tags to the 

tokens of the text. Unlike the Unitag and Verticalise programs, this program is 

language-specific; for this reason it is called Urdutag. It uses several means of 

analysis, including lexical lookup, character type analysis, and morphological 

analysis. These will be discussed in 6.2.3.1, 6.2.3.2 and 6.2.3.3 respectively.  

 

6.2.3.1 Lexical lookup in Urdutag 

 

 Lexical lookup in Urdutag is fairly basic. A lexicon is specified as one of the 

program’s command-line arguments and is held in memory by the analyser. The first 

step in the analysis of a given token is to look its wordform up on the lexicon list16. If 

it is found, then all the tags that the word in the lexicon possesses are assigned to the 

token in the text. Neither the character types nor the morphology of the word will be 

analysed if a wordform is found in the lexicon. 

                                                 
16 Vowel diacritics are stripped from the word prior to the process of analysis, so a single lexicon can 

be used for both text without vowel marks and the much rarer vowelled texts. 
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 No attempt is made to lemmatise17 tokens. Although this might lead to a 

greater success rate in looking things up in the lexicon, there was a significant risk 

that I would bias the model away from the patterns of language as it really is. My 

model of the language, Schmidt’s (1999) grammar, is not comprehensive enough to 

form the basis of a robust lemmatisation algorithm. Therefore, I would have to make 

judgements about the possible occurrence of, and predict the forms of, words that are 

not discussed or cited by Schmidt or by any other writer. As a non-native speaker I 

felt it imprudent to attempt this. It may be theorised that a larger lexicon may help 

offset the disadvantages of missing lemmatisation. 

 The format of the lexicon and the procedures used to optimise it will be 

discussed in 6.3.1 below, where I introduce the Unilex program (a companion tool to 

the Unitag suite) which was used to automatically derive and manage the lexicons 

described in this chapter. 

 

6.2.3.2 Character type analysis in Urdutag 

 

 If no analysis is produced by lexical analysis, Urdutag attempts to allocate a 

tag by analysing the characters that make up the token. This algorithm is currently 

very primitive, detecting only the JDNU and FX categories: 

 

• If all the characters in the token are numerals (Arabic or ASCII), the tag JDNU is 

assigned. 

• If the token contains characters from outside the Arabic alphabet, the tag FX is 

                                                 
17 To lemmatise a token is to remove any inflectional morphemes and derive the “root” or “basic” form 

of the word. 
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assigned. 

 

 If after both lexicon lookup and character type analysis, no tag has been 

assigned, the word is morphologically analysed. It is in this area, discussed in the 

following section, that the most knowledge about the language has been built in to the 

Urdutag program. 

 

6.2.3.3 Morphological analysis in Urdutag 

 

 As with the tagset, the Urdu grammar of Schmidt (1999) was used as a model 

of the language to develop an algorithm for morphological analysis of Urdu tokens, 

which was implemented in the code of Urdutag. 

 The inflectional morphology of Urdu is in some ways simple. There are no 

inflectional prefixes, only suffixes, and each word has at most a single inflectional 

suffix. Derivational affixes (which can also help to identify the category of a word) 

are also primarily suffixes. This makes the action of the morphological analyser 

computationally very simple18: it reads characters from the word, one by one, starting 

from the end, and matches the longest suffix it can. When it has matched a suffix, it 

assigns a set of tags associated with that suffix (or a default set of tags if no suffix is 

                                                 
18 One slightly more complex aspect of the analysis, computationally speaking, is identifying clitics and 

splitting the token which contains them so clitic and host word can be tagged separately. However, 

despite its computational complexity, it is linguistically simple (since it merely involves spotting the 

relevant string at the start or end of a word) and I will not discuss it further here except to note that the 

process of spotting and splitting off clitics comes before suffix analysis. The clitics identified are al–, 

-gunā, and the various clitic forms of hī and kō, the last two being homographs in some contexts (see 

3.5 and 3.12.1). 
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matched). These sets can be quite large, as there is a great deal of ambiguity among 

suffixes in use in Urdu. This was discussed to some extent in section 3.1.5, with 

regard to noun suffixes. But the problem is in evidence across most morphosyntactic 

categories. This means that inevitably, the ambiguity inherent in the wordform is 

reproduced in the output of the analyser. 

 To illustrate this, I will list all the suffixes mentioned by Schmidt (1999) 

which could be of use in allocating a tag. I deviate here from my usual system of 

transliterating Urdu, in order to represent more clearly the actual characters that occur 

in the Indo-Perso-Arabic text. So the Unicode character 06CC, chōTī yē, , which 

has been transcribed variously as y, ī, and (medially) ē and ai19, is here shown as Y, 

regardless of its phonetic value; the character vāō, , transcribed as v, ū, ō, or au, is 

here shown as V; baRī yē, , is indicated by E, and chōTī yē with superscript hamza, 

, usually left untranscribed, is indicated by [hoy] (for “hamza over yē”). I have 

also left out the vowels which are not present in the original word. 

 The suffixes listed below fall into three distinct groups: those native to Urdu, 

those confined to Arabic loanwords, and those confined to Persian loanwords. The 

                                                 
19 Some added explanation is warranted here. In theory, baRī yē represents the ē and ai sounds, and 

chōTī yē the y and ī sounds. However, the medial forms of the two letters are identical, which has led 

some Urdu typists to use chōTī yē when typing a letter representing any of the four sounds in medial 

position. This procedure was adapted as standard on the EMILLE project, following the example set by 

the BBC’s Urdu webpage (one of very few in the world that use Unicode) and at the suggestion of one 

of the typists on the project. This means that for the purposes of the morphological analyser, baRī yē 

(E) will be assumed to always occur finally, since if it was medial, chōTī yē (Y) would be typed 

instead. However, it remains a possibility that the system may be used to tag text where baRī yē has 

been used medially, and therefore medial baRī yē is changed to chōTī yē at the same time as any vowel 

diacritics are removed. 
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first group are contained in the following table. The symbol (***) indicates that all 

words falling into this category were “exceptions” of one sort or another, either by 

virtue of being considered “rare” by Schmidt or by going against another, more 

general pattern of suffix-tag match-up20. These exceptions are not implemented in 

Urdutag, and must therefore be held in the lexicon, as discussed at greater length 

below. 

 

Table 6.1 

Suffix Tag indicated 

Noun suffixes 

ā NNMM1N (NPMM1N21) 

h NNMM1N 

Yh NNMM1N 

ā~ NNMM1N 
(***) 

Y NNUM1N NNUM1O NNUM1V NNUM2N 
(as occupational suffix – ***) 

gāh NNUF1N NNUF1O NNUF1V 

(Note also that the preceding derivational suffix may be anticipated to also take 
inflectional suffixes to create relevant forms for NNUF2N, NNUF2O, NNUF2V) 

ā[hoy]E NNUF1N NNUF1O NNUF1V 
(Persian feminine ending – ***) 

                                                 
20 The suffixes –Y and –gY are identified as a Persian feminine ending by Schmidt (1999); however, she 

does not state whether the nouns it appears on are marked or unmarked (one might anticipate the 

former from their form, but the latter from their provenance). In the former case, there is nothing to 

distinguish this ending from that of the standard marked feminine noun; but in the latter case, all words 

of this type will be included in the lexicon as exceptions to the standard marked feminine pattern. 

21 A single proper noun tag is given here for purposes of demonstration. In fact, since Urdutag was 

written to tag using the U2 tagset, this was not implemented in the program. See also 4.2.2.4. 
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Y NNUF1N NNUF1O NNUF1V 
(***) 

gY NNUF1N NNUF1O NNUF1V 
(Persian feminine ending – ***) 

stān NNUM1N NNUM1O NNUM1V NNUM2N 

(Note that this derivational suffix may be anticipated to also take inflectional suffixes 
to create relevant forms for NNUM2O and NNUM1V) 

V NNUM1N NNUM1O NNUM1V NNUM2N 
(***) 

pn NNUM1N NNUM1O NNUM1V NNUM2N 

(Note that this derivational suffix may be anticipated to also take inflectional suffixes 
to create relevant forms for NNUM2O and NNUM1V) 

pā NNMM1N22 

Y NNMF1N NNMF1O NNMF1V 

Yā NNMF1N NNMF1O NNMF1V 

āhT NNMF1N NNMF1O NNMF1V 

āVT NNMF1N NNMF1O NNMF1V 

Yt NNMF1N NNMF1O NNMF1V 

(Note also that the three preceding derivational suffixes may be anticipated to also 
take inflectional suffixes to create relevant forms for NNUF2N, NNUF2O, NNUF2V) 

E NNMM1O NNMM1V NNMM2N 

[hoy]E NNMM1O NNMM1V NNMM2N 
(nouns such as rūpae) 

Y~ NNMM1O NNMM1V NNMM2N 
(***) 

Yā~ NNMF2N 

YV~ NNMF2O 

Y~ NNUF2N  

[hoy]Y~ NNUF2N 

                                                 
22 It is not entirely clear from Schmidt’s description whether this suffix indicates marked or unmarked 

nouns. However, consultation with one of my native-speaker informants confirms that, as one would 

expect from its form, this suffix indicates marked nouns. 
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V~ NNMM2O NNUM2O NNUF2O 

V NNMM2V NNMF2V NNUM2V NNUF2V 

Adjective suffixes 

ā JJM1N 

ā~ JJM1N 
(***) 

Y JJF1N JJF1O JJF2N JJF2O 

Y~ JJF1N JJF1O JJF2N JJF2O JJM1O JJM2N JJM2O RRJ 
(***) 

E JJM1O JJM2N JJM2O RRJ 

Y JJU 
(as a derivational ending – ***) 

ā or Y JJU 
(some Arabic loanwords – ***) 

Vā~ JDNM1N 

VY~ JDNM1O JDNM2N JDNM2O JDNF1N JDNF1O JDNF2N 
JDNF2O 

Adverb suffixes 

[Unicode character 
U+064B] 

RR 
(Arabic loans ending in the “tanvīn” character) 

Verb suffixes 

nā VVNM1N 

nE VVNM1O, VVNM2 

nY VVNF1, VVNF2 

tā VVTM1N 

tE VVTM1O, VVTM2N, VVTM2O 

tY VVTF1N, VVTF1O, VVTF2N, VVTF2O 

tY~ VVTF2N 

ā VVYM1N 

Yā VVYM1N 
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E VVYM1O, VVYM2N, VVYM2O 

Y VVYF1N, VVYF1O, VVYF2N23, VVYF2O 

Y~ VVYF2N 

V~ VVSM1 

E VVST1 VVSV1 

Y~ VVSM2 VVSV2 

V VVST2 VVIT2 

[hoy]E VVIA 

[hoy]YE VVIA 
 

 Also native to Urdu are a collection of related suffixes (ā / lā / vā / lvā) which 

increase the valency of verbs, creating transitive and causative verbs from intransitive 

roots (see Schmidt 1999: 158-174). Occurring before the verbal inflectional suffixes, 

it might be possible to analyse these suffixes, and use them to identify the word 

definitively as a verb (as opposed to the tentative identification which might otherwise 

result from the similarities between the verbal suffixes and other suffixes). However, 

this has not been attempted, as internal change to the verb root frequently 

accompanies the addition of these derivational affixes; the suffixes may also occur as 

infixes (e.g. bōlnā > bulānā; TūTnā > tōRnā; biknā > bēcnā; nikalnā > nikālnā). To 

allow for all these changes would be computationally tricky. Rather, the derived 

transitive or causative verb will be treated as a lexical item in its own right (much like 

sit and set in English). 

 Under the heading of “Arabic suffixes” fall various forms of the Arabic 

feminine suffix, -ā / -t / -h / -āh / -āt / -Yt, the dual/plural ending –Yn, and an adjective 

ending –ānY. The Persian suffixes consist of the following group. All indicate either 

                                                 
23 Schmidt (1999) does not specify whether or not the –Y ending may represent a feminine plural 

perfective participle, but one of my native-speaker informants reports that it can. 
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unmarked nouns or unmarked adjectives24. 

 
Y, gY, kār, gār, gr, cY, bān, Vān, gāh, ābād, stān, zār, ch, īch, k, dān, dānY, dār, āVr, 

Vr, Yār, Yr, mnd, Y, h, ānh, nāk, gYn, ān, gān, Yān 

 

 As can be seen, some endings (especially Y, E, ā, Y~ and V) are highly 

polysemous. This problem only gets worse when Arabic and Persian suffixes are 

taken into account, since in many cases, the tendencies demonstrated by the borrowed 

affixes are opposite to those in the native vocabulary (e.g. –ā indicates masculine 

marked nouns in Indo-Aryan words, but feminine unmarked nouns in Arabic 

loanwords). 

 It  is not entirely clear from the literature on Urdu grammar (see 2.3) to what 

extent Arabic and Persian loanwords are prevalent in the language. While there are 

clearly very many such words, their frequency in usage has not been quantified. One 

might well hypothesise that they are too infrequent to be concerned with. Therefore, it 

did not seem worthwhile complicating the analysis algorithm with the Arabic and 

Persian endings until it could be seen to what degree they were needed. That being the 

case, the initial form of the suffix analysis algorithm will contain all and only the 

categories listed above as native to Urdu, with those categories marked (***) as 

exceptions to be stored in the lexicon. The suffixes that the algorithm looks for (in 

reverse order, so that –stān is represented as “n-ā-t-s”) and the Unicode strings that 

represent them are listed below. Urdutag always matches the longest suffix it can; 

                                                 
24 In fact, some of the suffixes listed in the “native to Urdu” group are actually derived from either 

Persian or Arabic. However, in Schmidt’s discussion, these suffixes are pointed out as being a 

particular help in identifying part-of-speech and/or noun gender, and so I retain them in this group 

whilst putting those that Schmidt discusses solely in the context of loanwords in another group. 
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therefore, if a word ends in –pā, Urdutag will assign the set of tags for “ā-p” 

(NNMM1N), not the set of tags for “ā” (NNMM1N, JJM1N, VVYM1N). 

 

Table 6.2 

Unicode string25 Suffix Set of tags to allocate 

U+0627, 062a ā-t VVTM1N 

U+0627, 0646 ā-n VVNM1N 

U+0627, 067e ā-p NNMM1N 

U+0627, 06cc ā-Y NNMF1N, NNMF1O, NNMF1V, VVYM1N 

U+0627 ā NNMM1N, JJM1N, VVYM1N 

U+062a, 06cc t-Y NNUF1N, NNUF1O, NNUF1V 

U+0646, 0627, 062a, 

0633 

n-ā-t-s NNUM1N, NNUM1O, NNUM1V, 

NNUM2N 

U+0646, 067e n-p NNUM1N, NNUM1O, NNUM1V, 

NNUM2N 

U+0648, 062a, 06cc V-t-Y NNUF2V 

U+0648, 0646, 0627, 

062a, 0633 

V-n-ā-t-s NNUM2V 

U+0648, 0646, 067e V-n-p NNUM2V 

U+0648, 0679, 0648, 

0627 

V-T-V-ā NNUF2V 

U+0648, 0679, 06c1, V-T-h-ā NNUF2V 

                                                 
25 It should be noted that, as I was writing in C code, it was necessary to enter Unicode strings as 

hexadecimal codes, character by character, in a similar form to the layout in this table. This was one 

factor which made programming this part of the analyser troublesome. 
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0627 

U+0648, 06c1, 0627, 

06af 

V-h-ā-g NNUF2V 

U+0648 V NNMM2V, NNMF2V, NNUM2V, 

NNUF2V, VVST2, VVIT2 

U+064b [tanvīn] RR 

U+0679, 0648, 0627 T-V-ā NNUF1N, NNUF1O, NNUF1V 

U+0679, 06c1, 0627 T-h-ā NNUF1N, NNUF1O, NNUF1V 

U+06ba, 0627, 0648 ~-ā-V JDNM1N26 

U+06ba, 0627, 06cc ~-ā-Y NNMF2N 

U+06ba, 0648, 0646, 

0627, 062a, 0633 

~-V-n-ā-t-s NNUM2O 

U+06ba, 0648, 0646, 

067e 

~-V-n-p NNUM2O 

U+06ba, 0648, 062a, 

06cc 

~-V-t-Y NNUF2O 

U+06ba, 0648, 0679, 

0648, 0627 

~-V-T-V-ā NNUF2O 

U+06ba, 0648, 0679, 

06c1, 0627 

~-V-T-h-ā NNUF2O 

                                                 
26 For this category (and the other ordinal number category, ~-Y-V) it would be possible to write a 

special algorithm to check whether what is left after the suffix is removed is a cardinal number, and to 

reject the numeral tags if this is not the case. However, since the –vā~ suffix is non-ambiguous, it was 

decided to leave this until and unless it became obviously necessary at a later stage. Irregular ordinals 

(the majority between “first” and “twentieth”: see Schmidt 1999: 229) are stored in the lexicon. 
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U+06ba, 0648, 06c1, 

0627, 06af 

~-V-h-ā-g NNUF2O 

U+06ba, 0648, 06cc ~-V-Y NNMF2O 

U+06ba, 0648 ~-V NNMM2O, NNUM2O, NNUF2O, VVSM1 

U+06ba, 06cc, 0626 ~-Y-[hoy] NNUF2N 

U+06ba, 06cc, 062a, 

06cc 

~-Y-t-Y NNUF2N 

U+06ba, 06cc, 062a ~-Y-t VVTF2N 

U+06ba, 06cc, 0648 ~-Y-V JDNM1O JDNM2N JDNM2O JDNF1N 

JDNF1O JDNF2N JDNF2O 

U+06ba, 06cc, 0679, 

0648, 0627 

~-Y-T-V-ā NNUF2N 

U+06ba, 06cc, 0679, 

06c1, 0627 

~-Y-T-h-ā NNUF2N 

U+06ba, 06cc, 06c1, 

0627, 06af 

~-Y-h-ā-g NNUF2N 

U+06ba, 06cc ~-Y NNUF2N , VVSM2,  VVSV2, VVYF2N 

U+06c1, 0627, 06af h-ā-g NNUF1N, NNUF1O, NNUF1V 

U+06c1, 06cc h-Y NNMM1N 

U+06c1 h NNMM1N 

U+06cc, 062a Y-t VVTF1N, VVTF1O, VVTF2N, VVTF2O 

U+06cc, 0646 Y-n VVNF1, VVNF2 

U+06cc Y NNMF1N, NNMF1O, NNMF1V, JJF1N, 

JJF1O, JJF2N, JJF2O, VVYF1N, VVYF1O, 

VVYF2N, VVYF2O 
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U+06d2, 0626, 0627 E-[hoy]-ā NNUF1N, NNUF1O, NNUF1V 

U+06d2, 0626 E-[hoy] VVIA, NNMM1O, NNMM1V, NNMM2N 

U+06d2, 062a E-t VVTM1O, VVTM2N, VVTM2O 

U+06d2, 0646 E-n VVNM1O, VVNM2 

U+06d2, 06cc, 0626  E-Y-[hoy] VVIA 

U+06d2 E NNMM1O, NNMM1V, NNMM2N, JJM1O,  

JJM2N,  JJM2O, VVYM1O, VVYM2N, 

VVYM2O, VVST1,  VVSV1, RRJ 

 

 The default set of tags is as follows (tags for proper nouns, shown in brackets, 

are not implemented in Urdutag, but would be required in a system designed to tag the 

U1 or U0 tagsets). 

 

 
JJU, NNUM1N, NNUM1O, NNUM1V, NNUM2N, NNUF1N, NNUF1O, NNUF1V, 

RR, VVIT1, VV0 (NPUM1N NPUM1O NPUM1V NPUM2N NPUF1N NPUF1O 

NPUF1V) 

 

 The codes used by Urdutag to indicate that it has changed the tagging of a 

token are as follows: 

 

Table 6.3 

Code Process by which the tag was assigned 

A10 Item found in lexicon 

A30 Tags assigned by suffix analysis 
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A50 Tags assigned by character analysis 

A70 Tags assigned by the part of algorithm which spots and 

separates proclitic al–. 

A90 Default set of tags assigned to unknown word 

 

 It was originally hoped that the algorithm above would provide 100% tagging 

correctness, albeit with a high ambiguity rate, when used in conjunction with a 

suitable lexicon (one containing not only the classes of exceptions listed above but 

also any other “exceptional” words encountered whilst developing the tagger). This 

did prove to be possible, but only when using an automatic lexicon derived from the 

data that was being tagged (so that all the tokens could be found by lexical lookup, 

and the problem became one of disambiguation only). Using a more modest lexicon, 

of around 1,000 words of closed category words plus the most common words in the 

training data27, accuracy rates tended to be in the region of 86 to 94%, depending on 

the text being tagged. This is rather poor. 

 I therefore analysed the errors made tagging the training data in this way. 

Almost 30% of these errors were due to FF (about 20%), FU, and FB in the training 

data – tags which Urdutag cannot assign, since it has no way of knowing what is a 

foreign word or not. As I noted in an earlier chapter, the manual tagger tended to 

overuse these tags. However, it is also probably due to the nature of the data 

(transcripts of UK-based Hindi-Urdu radio programmes) that foreign words are so 

common. It would therefore seem that unless these words are included in the lexicon, 

they cannot be tagged correctly. Another cause of errors was typographic errors and 

typographic variants in the data. Nothing can be done about this, either, other than 

                                                 
27 See 4.5 for a discussion of the composition of the training dataset. 
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storing variants in the lexicon28. 

 The other major cause of errors was that Urdutag was spotting suffixes where 

none existed – i.e. giving an inappropriate analysis to a word which appeared to end 

in an inflectional suffix, which was actually an unalterable part of the root. For 

example, many unmarked adjectives end in –ī; many words that are not imperfective 

participles end in –tā, –tē and –tī; and so on and so forth. Even the “default set” of 

tags for words with no suffix was sometimes generating errors, for instance with 

Persian- or Arabic-derived plural forms, which unlike normal unmarked plurals have 

no ending in the oblique. So , for example, could easily be NNUM2O – but 

this tag was not being assigned by default. 

 Given these problems, I tried two experiments. Firstly, I removed the suffix 

analysis part of the program altogether, so that anything not in the lexicon or tagged 

by character analysis got the default set of tags. Accuracy fell by about 0.5% - 

although it was getting different words wrong. For instance, JJU was almost always 

correctly tagged by the altered system, whereas before it had frequently been wrongly 

tagged. To test the value of smaller changes to the algorithm, I added all the 

unmarked plural noun tags to the default set, to try and handle the Arabic and Persian 

plurals. It increased accuracy by 0.2%, but also increased ambiguity by 0.36 tags per 

word. Given that a lexicon that contains more of the problematic words has a much 

more dramatic effect, the value of this modification is uncertain, and it has not been 

generally implemented. 

                                                 
28 It might be possible to employ fuzzy matching algorithms in an attempt to identify variant spellings, 

as has been explored, for example, by Piao and McEnery (2003) with regard to Early Modern English. 

Due to the complexity of achieving this goal in Urdu, it lies beyond the scope of this thesis; however I 

note this as a possibility for future researchers to explore. 
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 Some other small modifications were made to Urdutag, however. For instance, 

the ending “–[hoy]Y~” as a predictor for NNUF2N was frequently incorrect, so it was 

removed. Words ending in this string were given the default tags for “–Y~” instead 

(which include NNUF2N). 

 

6.2.4 The design of the disambiguator program 

 

 In this section, I will discuss the Unirule program, the rule-based 

disambiguator written to function within Unitag. The development and optimisation 

of the set of rules used to disambiguate tagged Urdu text will be discussed in section 

6.4. Here, however, I will restrict my comments to the general operation and 

formalism of Unirule (although drawing on examples from my experience with Urdu 

where appropriate). 

 A rule-based disambiguator requires some kind of formalism in which its rules 

can be expressed and stored. This formalism will necessarily restrict the type of rules 

that can be implemented by the system. The formalism devised for Unirule was based 

on a brief survey of best practice as exemplified by the rule formalisms of Constraint 

Grammar (see section 5.2.2) and Brill’s transformation-based tagger (see section 

5.4.2). 

 

6.2.4.1 The formalisms of rules in Constraint Grammar and Brill’s 

tagger 

 

 In Constraint Grammar (Karlsson 1995b), rules or “constraints” consist of a 

domain, a target, an operator, and context conditions. The domain specifies a word-
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form to which the constraint applies29. The target consists of a set of features (tags or 

a lemma); any given analysis of a token is affected by the constraint if it has all those 

features. The operator indicates what operation will be performed on the analysis or 

analyses that match the target. Possible operations are: 1) discard all analyses except 

the one that matches the target if the context conditions are fulfilled, but otherwise 

discard the analysis that matches the target; 2) discard all analyses except the one that 

matches the target if the context conditions are fulfilled; 3) discard the analysis that 

matches the target if the context conditions are fulfilled. 

 The context conditions have the form <polarity, position, set>. Polarity 

expresses whether the constraint is positive or negative (i.e. NOT). Position defines 

the location of the word that the condition refers to, relative to the word that is 

matched by the target. It may be of the form “x words left/right”, or “x or more words 

left/right”; the CG program can look up to 25 words each way. The set is a set name 

which must be declared by the user to refer to a set of feature combinations (i.e. a set 

of items within the tagset). If the word in position has an analysis that is within the 

set, then the condition is fulfilled. If one constraint has multiple conditions, then all 

must be satisfied for the operation to be carried out. 

 Conditions have an optional “careful mode” – when this is on, all analyses of 

a given token must be within the set for a condition referring to that token to be 

satisfied, thus allowing the writer of the constraint to stipulate whether ambiguously-

tagged words can be used as context to disambiguate other words or not. Other 

features of the Constraint Grammar formalism include relative positions (i.e. when a 

condition has found something in position x, it looks a further y words along for some 

                                                 
29 This may be left unspecified, in which case the constraint will apply to any token that matches the 

target. 
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other context condition to be fulfilled), a marker to prevent a constraint from 

operating across clause boundaries, and ways of defining phrases (for instance, noun 

phrases) so that any of a variety of types of such phrases will be accepted as fulfilling 

the condition. One final feature of the constraints in this system is a distinction 

between “safe” constraints (which never reduce the accuracy of the tagging, but only 

remove incorrect analyses) and heuristic constraints (which may possibly remove 

correct analyses). 

 The rules in Brill’s transformation-based tagger are of a rather simpler form, 

as they have a different purpose. Rather than being a formalism allowing a linguist to 

express some generalisation they are aware of in ways that a computer program can 

implement, Brill’s rules are templates for a program which develops its own rules. 

Brill’s rule templates are all of a like form, to wit, “Change tag a to tag b when” some 

condition is fulfilled (1995: 553). The condition is a tag which must be found on a 

specified token to be fulfilled – the previous token (or the token before that), or the 

next token (or the token after that), or either of the two tokens before, or either of the 

two tokens after. The condition may also stipulate that two such matches must be 

made for the condition to be fulfilled. The “lexicalised” version of Brill’s tagger 

allows rules to refer to the forms of nearby tokens as well as the analyses given to 

those tokens; again combinations of conditions are allowed. In the n-best version of 

Brill’s tagger, the transformations add tags to those already there instead of changing 

tags. In the unsupervised version of Brill’s tagger, the transformations reduce sets of 

tags to single tags. 

 In summary, a number of features may be perceived as being shared by the 

formalisms of Brill’s tagger and Constraint Grammar, two approaches which are 

otherwise quite distinct. All rules consist of some operation to be carried out on the 



 340

analyses given to a token if a given set of conditions is fulfilled. One of these 

conditions refers to the analysis to be changed; this is the “target” in Constraint 

Grammar, and the “tag a” in Brill’s paraphrase “Change tag a to tag b…”. The other 

conditions may refer to the analyses on nearby tokens (ambiguously or 

unambiguously), or to the wordforms of nearby tokens, or (in the case of Constraint 

Grammar) to the lemma of a nearby token. There is provision for multiple conditions 

which incorporate, in some form or another, logical OR and logical AND. The 

operations that may be performed include imposing a specified analysis (in Brill’s 

tagger), selecting a specified analysis from those currently given to the token in 

question, or deleting a specified analysis from those currently given to the token in 

question. 

 Although to actually use either the CG formalism or Brill’s formalism for 

Unirule would have been computationally unfeasible, these shared features were used 

as the guiding principles of the Unirule formalism, which is discussed in the following 

section. 

 

6.2.4.2 The Unirule formalism 

 

 When creating Unirule, I aimed to create a formalism which would be as 

flexible as possible, so as not to exclude the possibility of other researchers using it, 

whilst at the same time making the rules as transparent as possible to the non-

specialist. 

 In Unirule, a rule consists of conditions and an action (the different types of 

conditions held in the domain, target and conditions of CG rules are treated simply as 

“conditions” in the Unirule formalism). The conditions are given before the actions, 
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each on a separate line. 

 

6.2.4.2.1 Actions 

 

 The action is the operation which is performed on the “current” token30 if the 

conditions are fulfilled. There are four possible actions, assign, select, delete and 

deletenot. An action is specified as follows in the Unirule formalism: 

 

• a select NNMM1N 

 

 The initial “a” indicates that this is an action, the following word specifies the 

type of action that is required, and the tag given at the end is the argument of the 

action. The types of action are as follows: 

 

assign  The token is assigned the tag as given. All other tags are deleted. 

select If one of the tags listed for that token matches the tag as given, then all 

other tags are deleted. If more than one tag listed for that token 

matches the tag as given, then the first such tag in the list is selected, 

and all other tags deleted. If no tags match the tag as given, then no 

action is taken. 

delete Any tag matching the tag as given is deleted, unless it is the only tag 

remaining on the list. 

deletenot Any tag not matching the tag as given is deleted, unless it is the only 

                                                 
30 That is, the token that Unirule is currently analysing in the course of sequentially examining every 

token in the file. 
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tag remaining on the list. 

 

 The option which exists in Constraint Grammar to discard all but the target 

reading if the context conditions are fulfilled, and discard target reading if it is not, is 

not implemented in the Unirule formalism. However, the same effect could be 

achieved with two rules, one covering the positive case, and one the negative. 

 The actions select and deletenot are very similar. Indeed, in a best-case 

scenario, they would be identical. For example, the following two actions are identical 

if applied to a token which has the tag NNMM1N in its list of tags: 

 

• a select NNMM1N 

• a deletenot NNMM1N 

 

 However, a difference will become apparent if these actions are applied to a 

token which does not have NNMM1N in its list of tags. In this situation, select will 

take no action at all, whereas deletenot will remove all the tags except the last one on 

the list (in effect, selecting a random tag). Clearly, therefore, select is the better choice 

in this situation. 

 However, select has disadvantages if the given tag includes a wildcard 

character. Unirule recognises two wildcard characters. The asterisk (*) can represent 

any single character. So in rules for disambiguating Urdu, NNM*1N can be used to 

represent either NNMM1N or NNMF1N, since M and F are the only two characters 

that can appear in this context in the Urdu tagset. The tag given in an action may 

contain any number of this first type of wildcard character. The second wildcard 

character is #. This may only appear at the end of a string and represents any zero or 
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more characters up to the next white-space character. Thus, a string with # at the end 

may be used to specify the start of the tag without saying anything about the end. This 

feature has been particularly designed to take advantage of hierarchical tagsets31, so 

N# can refer to all nouns, NNMM# to all masculine nouns, J# to all adjectives, JD# to 

all determiner-like adjectives, VH# to any form of the verb hōnā, and so on. 

 Obviously, when wildcard characters are used, it is possible for more than one 

tag on the list of a particular token to match the tag specified in the action. If select is 

the action used, then in such a circumstance, it would select the first such tag on the 

list – again, effectively a random selection. By contrast, when used with a tag 

containing wildcards, deletenot will leave intact any tags that match the tag as given – 

however many that might prove to be. Of course, deletenot will still impose a random 

selection if none of the tags given to that particular token matches the string (as 

deletenot will delete all but the last remaining tag). 

 

6.2.4.2.2 Conditions 

 

 The conditions state what the features of the context must be for the action to 

be performed on the current token. A condition consists of an instruction on what type 

of comparison to carry out, the range of the comparison, and what is being looked for. 

For example: 

 

• c ifnextwordis 1 be 

 

 The “c” specifies that this is a condition. The following word specifies the 

                                                 
31 Note, however, that Unirule is still entirely compatible with non-hierarchical tagsets. 
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comparison type; it is followed by an integer indicating the range, and then by the 

string which is the basis for that comparison. This example condition will be fulfilled 

if the first word after the current token is the same as the defined string (in this case, 

the word “be”). 

 In the current version of Unirule, the range may be up to 25 words in either 

direction (not counting the current token). I chose this value to make sure that Unirule 

could handle the long-range constraints used in Constraint Grammar32. Unirule has no 

direct means of specifying ranges in terms of “up to x words” or “more than x words” 

as Constraint Grammar and Brill’s tagger both have to some degree. However, such 

rules may be expressed indirectly, by the use of multiple rules (an approach which I 

personally find more perspicuous). SGML elements (or anything else tagged as 

NULL) are not counted when calculating a range33. 

 There are 18 comparison types. A comparison may look at the current token, 

the previous, or the next (3 options); it may compare the wordforms, or it may look 

for a tag that is to be matched unambiguously, or it may look for a tag simply 

                                                 
32 Note however that because Unirule does not make reference to clause boundaries – an important 

feature of Constraint Grammar – the upper end of the 25-word range is not likely to be used very much 

by Unirule. Unfortunately, making reference to clause boundaries necessitates a degree of prior 

syntactic analysis which Unirule cannot afford to assume in its input. 

33 However, since Unirule’s scope is implemented using a window of 25 tokens each way, any SGML 

elements within this window will reduce the maximum possible range. So if there is an SGML element 

(tagged NULL) immediately before the “current” token, then a previous-type condition with range 3 

will actually look at the 4th word before the current token – but a condition with range 25 could not in 

such a circumstance be evaluated, and would be treated as not fulfilled. This is incidentally the key 

difference between the negative functions and a simple logical negation of the positive functions – 

ifprevwordis 25 XXX and ifprevwordisnot 25 XXX would both be treated as not fulfilled if the 25th word 

before the current token was not accessible due to intervening SGML. 
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occurring in the list of possible tags (3 options). Furthermore each type of comparison 

has its negative as well (2 options). The full list of comparison types is as follows: 

 

ifthiswordis  Fulfilled if the word-form of this token34 matches 

ifthistagis  Fulfilled if all the tags on this token match35 

ifthistaginc  Fulfilled if at least one of the tags on this token matches 

(these first three, and the corresponding negatives below, have no range) 

ifprevwordis x Fulfilled if the word-form of the xth token before this token 

matches 

ifprevtagis x  Fulfilled if all the tags on the xth token before this token match 

ifprevtaginc x Fulfilled if at least one of the tags on the xth token before this 

token matches 

ifnextwordis x Fulfilled if the word-form of the xth token after this token 

matches 

ifnexttagis x Fulfilled if all the tags on the xth token after this token match 

ifnexttaginc x Fulfilled if at least one of the tags on the xth token after this 

token matches 

ifthiswordisnot Fulfilled if the word-form of this token does not match 

ifthistagisnot Fulfilled if at least one of the tags on this token does not match 

(i.e. if this token is not unambiguously tagged as…) 

ifthistagincnot Fulfilled if all the tags on this token do not match (i.e. if none 

of the tags on this token are the same as) 

ifprevwordisnot x Fulfilled if the word-form of the xth token before this token 

does not match 

ifprevtagisnot x Fulfilled if at least one of the tags on the xth token before this 

token does not match 

ifprevtagincnot x Fulfilled if all the tags on the xth token before this token do not 

match 

ifnextwordisnot x Fulfilled if the word-form of the xth token after this token does 
                                                 
34 That is, the “current” token as previously defined (the one which Unirule is currently analysing). 

35 That is, if this word is unambiguously tagged as – compare ifthistaginc, which will accept 

ambiguously tagged words for its comparison; ifthistagis will not do this. 
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not match 

ifnexttagisnot x Fulfilled if at least one of the tags on the xth token after this 

token does not match 

ifnexttagincnot x Fulfilled if all the tags on the xth token after this token do not 

match 

 

 Note that in the negative forms of the above conditions, the “all the tags” 

conditions apply to “ifthistagisnot”, etc., and the “at least one of the tags” conditions 

apply to “ifthistagincnot”, etc. This is for reasons of logic. The negation of ifthistagis 

would be that if all the tags match the string given, then the condition is not fulfilled. 

Therefore the corresponding negative condition would be fulfilled if at least one of the 

tags failed to match the string. Conversely the negation of ifthistaginc would be that if 

at least one of the tags matches the string given, then the condition is not fulfilled. 

Therefore the corresponding negative condition would be fulfilled if all the tags failed 

to match the string. 

 The terms “previous”  and “next” have been used to refer to direction instead 

of “left” and “right”, because Unirule was designed from the outset to be non-

language specific, and therefore it is better to avoid terminology rooted in any 

particular writing system which is not universally applicable. The conditions in 

Unirule are rather wordier and more bulky than the comparable conditions in – say – 

Constraint Grammar. However, I believe that this makes them more perspicuous to 

the untrained reader and is thus by no means necessarily a drawback. 

 

6.2.4.2.3 Some example rules 

 

 A single rule consists of an action, and all its accompanying conditions, which 

are listed directly before the action (and after the immediately preceding action). If an 
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action has no conditions, it will be triggered on every token. If the action has more 

than one condition, then all the conditions must be fulfilled for the action to take 

effect (logical AND). In the interests of simplicity there is no logical OR, though this 

effect could easily be achieved by adding another rule with the same action and a 

different condition. 

 It is my intention and my belief that one can express in the Unirule formalism 

any generalisation or constraint that could be expressed in Brill’s formalism or the CG 

formalism, although it has not been possible to find out for certain whether this is 

indeed the case. One unique feature of Unirule is that it only accepts rules saved in 

files in Unicode format – this allows conditions like “ifnextwordis” to refer directly to 

actual Unicode forms. 

 A Unirule rule file is a single Unicode text file consisting of a string of 

conditions and actions. Comment lines may be included (beginning in / ) and empty 

lines are passed over. There follows an example of a very short set of rules (actually a 

toy ruleset for Urdu used in the development of the Unirule software). 

 

 
/ postpositions follow (pro)nouns, therefore delete verb, adjective and adverb tags 

c ifnexttagis 1 II# 

a delete V# 

/ note: this does not account for infinitives, which may precede postpositions 

c ifnexttagis 1 II# 

a delete J# 

c ifnexttagis 1 II# 

a delete R# 

/ postpositions follow oblique case, therefore delete nominative and vocative 

c ifnexttagis 1 II# 

a delete N****N 
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c ifnexttagis 1 II# 

a delete N****V 

/ pronouns can be nominative before nē but are oblique before other postpositions 

c ifnexttagis 1 II# 

c ifnextwordisnot 1  

a delete PP**N 

 

6.2.4.3 How Unirule works 

 

 As has already been mentioned, Unirule requires a set of rules to run, which it 

loads in from a text file at time of running. For input it requires Unicode text in the 

Unitag vertical format, analysed ambiguously. The rules are stored in a linked list (if 

any of the rules is malformed according to the system already described, the reading 

will abort, and disambiguation will be performed with a truncated rule list). The entire 

set of rules is applied, in the order they appear in the rule file, to each token in the text 

file in turn. Any given rule may or may not alter the tagging of a particular token. If it 

does, then the responsibility tag is changed to that of the Unirule program. This is an 

R followed by the number of the rule in question – rules are numbered in base 36 (i.e. 

using all digits and letters) from the start of the rule file to the end. 

 Thus Unirule produces an output file which is the same as the input file with 

some of ambiguities removed. While it is ultimately based on a single-pass algorithm, 

Unirule can be instructed to make a multiple passes of a single file, to allow rules to 

take advantage of the unambiguous context that the application of other rules has 

provided36. 
                                                 
36 Of course, multiple passes can also be simulated by repeating rules within a rule list. The later copy 

of the rules will be using more precise information than the earlier copy, and therefore may do better 

than the first copy of the rule. 
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 Although primarily designed as a disambiguator, Unirule could also work as 

an improver – for example, if one did not use the ambiguity-tolerant comparison-

types, and only used the assign action, then Unirule could easily be used to implement 

an improver. 

 A call to Unirule from the command line has the following form: unirule 

input_filename output_filename rulelist_filename no_passes . Within Unitag, 

therefore, the name of the file containing the list of rules and the number of passes 

must be specified in the instantiation file. 

 

6.3 Creating and optimising the lexicon 

 

 In this section, I will firstly discuss Unilex, the software which manages 

lexicons within the Unitag framework; I will secondly discuss the manual lexicons 

used within the Urdu tagging system, and finally I will describe how the lexicon was 

optimised for use in tagging. 

 

6.3.1 The Unilex software 

 

 The Unilex program is an adjunct to the Unitag tagger architecture. It uses the 

same formats as Unitag, and can be used to acquire and manage the lexicons which 

programs like Urdutag require to analyse text. 

 Unilex has several functions. As well as being able to sort lexicons by 

wordform or by first tag and merge two lexicons together (ensuring that no word is 

omitted or repeated), it can also derive a lexicon automatically from a tagged file in 

the Unitag vertical format. Lexicons are stored in a similar format. A line of a lexicon 
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file looks like this: 

 
 

i000365  VVNF1 VVNF2 
 

 
 The serial number begins with “i” (for “item”) and is followed by 6 figures (to 

distinguish lexicons from tagged files). This is followed by a space, and then the 

wordform. There is then a horizontal tab character, followed by a list of all possible 

tags fro that wordform separated by spaces, followed by a carriage return. As with the 

Unitag format, the lexicon format may contain “probabilities”, in this format: 

 
 

i000365  VVNF1/50 VVNF2/50 
 

 
 The same rules apply to probabilities in Unilex and its associated file format 

as to the Unitag format (see 6.2.1.3 above). Unilex produces these probabilities by 

counting all the instances of the wordform-tag combinations, and dividing by the total 

number of occurrences of the wordform. It does not allow probability to reach 100%, 

so the highest value that can occur is 99. 

 A key parameter for the function of Unilex which acquires lexicons from text 

files is the “frequency threshold”. This is an integer, selected by the user, which sets a 

minimum number of occurrences below which a word will not be included in the 

lexicon. So if the threshold is set at 3, and the word kitāb occurs twice in the file, it 

will not be included in the lexicon. See 6.3.3.1 and 6.3.3.2 below for a discussion of 

the importance of this parameter. 

 In the development of the Urdu tagging system, Unilex was used to create a 

spoken lexicon, a written lexicon (each emanating from the relevant training data) and 

to combine the lexicons together in various ways to create the lexicons that Urdutag 
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actually uses. 

 

6.3.2 Manual lexicons 

 

 The lexicon actually used by Urdutag is a combination, compiled using 

Unilex, of four separate lexicons. The first is the lexicon acquired automatically from 

the training dataset (see 4.5). The other three were written manually using a Unicode 

word processor37. One contains approximately 30 words which consist of words 

incorporating clitic forms that must be split off. These are not given tags, but instead 

markers to indicate that this is what they are; this is part of the system-internal 

workings of Urdutag and should not be seen as part of the lexicon per se. 

 The second contains, to date, 63 words which are classified as “exceptions”. 

That is to say, these are words which go against the tendencies written into the suffix-

analysing algorithm in Urdutag, or disrupt the workings of the tagging system in some 

other way, and would be tagged incorrectly if not contained in the lexicon. The first 

words in this category were the ones identified as exceptions during the design of 

Urdutag (marked with a (***) in 6.2.3.3 above). To this were added all words 

beginning in al– where this did not represent the Arabic definite article (if these were 

not in the lexicon, Urdutag would split off the al– as a clitic). More words were added 

in order to correct errors made by Urdutag and bring the analyser’s accuracy as close 

as possible to 100%, as discussed above in 6.2.3. A few more were added during the 

                                                 
37 As well as automatic derivation and manual creation, it is also, as a general rule, possible to obtain  a 

tagging lexicon from a pre-existing electronic lexicon or dictionary. Unfortunately, for Urdu, there do 

not appear to exist any suitable electronic lexicons. Thus, the lexicon described here was created 

entirely from scratch. 
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process of devising the rule list (see below). For example, the adjective purānā, “old”, 

had to be added to this exceptions list because of its formal resemblance to an 

infinitive verb, as did the unmarked noun pānī, “water”, because of its resemblance to 

a marked feminine noun or adjective. 

 The third and final manual lexicon contains all words in the closed categories, 

with the exception of regularly formed ordinal numbers. Holding all non-lexical 

words in the lexicon avoids the problems one might get if one attempted to acquire 

the non-lexical words from a text. For example, the word hai is probably one of the 

most common in the Urdu language38; it is usually VHHV1 (third person singular 

present tense form of the auxiliary verb hōna). However, it can also be VHHT1 

(second person singular). Because of the very restricted usage of the second person 

singular in Urdu, it would be entirely plausible for hai_VHHT1 never to occur in a 

text or set of texts. In the largest of the spoken texts in the training corpus, which is 

over 16 thousand words in length, VHHT1 does not occur at all (compared to 526 

occurrences of VHHV1 – i.e. roughly one word in every 32). It would therefore be 

quite possible for Unilex to create lexicons which stated that the only permissible tag 

for hai was VHHV1. But this is not the case; its other use may be rare but it is not 

non-existent, and assuming otherwise will eventually lead to an error. The manual 

closed-class lexicon contains both VHHT1 and VHHV1 for hai and therefore avoids 

this pitfall. 

 

                                                 
38 The unavailability of fully Perso-Arabic compatible corpus analysis software made it impossible to 

create a wordlist and quantify this (although new versions of the SARA and WordSmith software 

forthcoming in the near future will hopefully amend this lack). However, hai occurs 1,213 times in the 

38,000 word training dataset – clearly this word is very common. 
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6.3.3 Optimising the lexicon 

 

 Given that there are a number of variables involved in the production of a 

lexicon for tagging, it is reasonable to ask what the optimal values or settings for these 

variables are. This is the issue that I address in this section. Firstly, I will identify and 

discuss some aspects of lexicon creation which must be optimised. Then, in the 

following subsections (6.3.3.2 to 6.3.3.4) I will describe the optimisation of these 

aspects, before describing (in 6.3.3.5) the optimal lexicon eventually arrived at. 

 

6.3.3.1 Variables in lexicon creation 

 

 In this section, by “variable” I do not necessary mean a variable in the strict 

mathematical sense, but rather some aspect or point in the process which may differ 

and whose difference might conceivably have an effect on the ultimate output. 

 Clearly not all aspects of lexicon creation which may have such an effect are 

possible to manipulate. The manual lexicons, for example, must simply be as good as 

can be achieved, in the time available, based on the knowledge available. For these 

latter two variables, “optimised” essentially means “maximised” – and as they have 

been, there is no further benefit to be had experimenting with them. Therefore, we 

may treat the closed-category lexicon and the exceptions lexicon as fixed once 

complete39, and consider the automatic acquisition as something which needs to be 

optimised. In that case, what are the variables in the process of acquiring a lexicon 

automatically which can be manipulated in an effort to find the maximal 

                                                 
39 Of course, in practice, both manual lexicons, like the majority of aspects of the tagging system, 

underwent continual, incremental revision and improvement during the development process. 
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configuration? 

 The most obvious of these, arising from the nature of the Unilex program, is 

the threshold. As defined above, the frequency threshold is the minimum number of 

times that a wordform must occur in the source file if it is to be included in the 

lexicon, and this is specified by the user when Unilex is creating the lexicon. 

 The advantage of a low threshold is clear: since it includes many wordforms 

(or every wordform), a lexicon created this way is more capable of giving to any 

token a tag that has been attested in the training data. While one might therefore 

expect a low threshold to give the best results, and while this ought indeed to be the 

case when looking at just the training data, this may not hold for other text. This is 

because of the order of operations in Urdutag’s analysis algorithm. Lexical look-up 

precedes and pre-empts morphological analysis. It might be possible for a lexicon 

acquired from training data to exclude a legitimate tag for a given wordform, simply 

because an instance of the word having that tag did not occur in the training data; in 

this case, the lexical look-up will perform less well than the suffix-analysis part of 

Urdutag, which might well have deduced the correct tag for the shape of the word. 

For example, if the word sunī~/sunē~40, “hear (perfective participle/subjunctive)” 

occurs only as VVYF2N in the training text, Urdutag would use lexical look-up to 

determine that every instance of sunī~/sunē~ must be VVYF2N. But sunī~/sunē~ may 

also be VVSV2 or VVSM2, and an instance of sunī~/sunē~ as a subjunctive verb just 

does not happen to have occurred in the training text. In this case, Urdutag would 

have achieved better accuracy by letting the suffix analyser work on the form of the 

word, to produce the following list of tags: NNUF2N, VVSM2,  VVSV2, VVYF2N. 

                                                 
40 The two words (though not homophonous) are identical in Indo-Perso-Arabic script; see 6.2.3.3 for 

more on this phenomenon. 
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This list includes all the correct readings (plus an extraneous noun tag). This is 

obviously more likely to happen with words that occur relatively infrequently in the 

source text. Thus, a higher threshold can prevent these kinds of “blocking” entries 

taking root in the lexicon. 

 So, in the light of the comprehensiveness given by a low threshold, and the 

exclusion of partial relationships that might block the suffix analysis given by a high 

threshold, we are entitled to conclude that the optimum threshold in terms of tagging 

accuracy is not obvious a priori. 

 The second variable that can be changed in the creation of the lexicon is the 

source data used to produce it. It would thus have been desirable to compare a lexicon 

derived from spoken data, a lexicon derived from written data, and a lexicon derived 

from both (see Smith 1997: 141-142 for a discussion of the differences which may 

occur between a spoken lexicon and a written lexicon). However it was not possible 

to do this, because only for spoken Urdu was enough training data available (see 

4.5)41. 

 The third variable is the variable of combination with the manual lexicons. 

Although one would naturally assume that adding in the closed-class and exceptions 

lexicons would improve accuracy, this is again by no means proven.  By 

experimenting with different combinations of the automatic and manual lexicons, this 

hypothesis can either be confirmed or disproved, in either case to the benefit of the 

overall standard of tagging produced. 

 

                                                 
41 A further potentially valuable step, that of crafting supplementary lexicons for specific text genres, 

was clearly impossible given the small quantity of available data. 
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6.3.3.2 Deducing the optimal threshold 

 

 To discover the effect of the lexicon threshold, Urdutag was run on the 

training data and the two test texts using 11 different lexicons, created using 

automatic lexicons with thresholds of 1 to 10 and, in addition, the manual lexicon on 

its own42. Fig. 6.2 below shows the number of items in each lexicon, and those items’ 

provenance; Fig. 6.3 shows the resulting accuracy43. 

 

 
Fig. 6.2 

 

                                                 
42 This experiment was performed with an early version of Urdutag. I make the assumption that the 

optimal lexicon with this early version would remain optimal with an improved analyser and in 

combination with a disambiguator. This assumption – also made with regard to other tests described in 

this chapter – could not be tested. This is a problem inherent in this kind of multivariate system. To 

examine all the different combinations is impossible, so the variables (lexicon, rule list, and so on) 

must be treated as if they were independent for testing purposes. 

43 Accuracy rates are not commensurate with those ultimately attained by the tagging system. 
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Fig. 6.3 

 

 From this experiment, it seemed clear that my initial suspicions were correct. 

Apart from the clear indication that a lexicon derived from the data being tagged is 

very useful (thus the much better performance achieved on the training data), several 

points arise from these results. The manual lexicon alone produces poor results. A 

threshold 1 lexicon produces excellent results for the training data from which it was 

derived, but on other data does not necessarily perform better than a lexicon with a 

higher threshold. The threshold 1 and threshold 4 lexicons do equally well on the 

spoken test data, and a threshold 2 lexicon does best on the written data. 

 I then looked in more detail at the first 25 errors44 made on the written data 

with a lexicon threshold of 1 that were not made when the threshold was 2. They were 

without exception caused by process A10 (i.e. lexical lookup) in Urdutag. In each 

                                                 
44 It was necessary to look at a relatively small number of errors, because sorting through an error 

report from Comparetag is a very time-intensive task. 
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case only a single tag was offered, and it almost always represented a category which 

was (inflectionally speaking) of the same form as another category. These are exactly 

the categories in which one would expect a suffix analyser to catch what a low-

threshold lexicon might miss45. Some examples are shown below: 

 

 

 

 Within the same section of the error list, there was only one error made by the 

morphological analyser that the lexical lookup had avoided (tagging purānē, “old”, 

JJM2N, as an infinitive verb). 

 Although it is clear from this that the “blocking” effect described above is real, 

and problematic for tagging, the experiment does not give sufficient evidence to select 

an optimum threshold, since the two test texts behaved somewhat differently. I 

therefore considered another way to get around the blocking “problem”. Instead of 

removing the offending entries from the lexicon by raising the threshold, it seemed 

logical to attempt to enrich the lexicon in an attempt to add to those entries the tags 

that they were missing. 

 

                                                 
45 There were also some words that were wrongly tagged by both suffix analysis and lexical lookup. 
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6.3.3.3 Enriching a lexicon 

 

 I wrote a program, Growurdulex, to enrich an automatically acquired lexicon. 

It does this by adding tags to the entries in the lexicon on the basis of the tags that are 

already there. I did not attempt to infer any new entries, as this would be tantamount 

to lemmatisation, which I had already decided to avoid. Instead, several groups of tags 

were designated that applied to forms which were morphologically identical. If an 

entry in the lexicon had any member of a group, then the other members were added 

if not already there46. An example of a group is JJM1O~JJM2N~JJM2O, all of which 

take the suffix –ē. 

 When the experiment described above was redone with enriched lexicons, the 

results were as shown in Fig. 6.4. 

 

                                                 
46 There were also some non-reciprocal additions, for example if RRJ was present then 

JJM1O~JJM2N~JJM2O would be added, but not vice versa. Another operation performed by 

Growurdulex was to standardise the use of vowels in the lexicon to comply with the expectations of 

Urdutag’s lexical lookup (see footnote 19 on page 325). 



 360

 
Fig. 6.4 

 

 As can be seen, the blocking effect vanishes, so that the threshold 1 lexicon 

performs best for all three datasets. There is also a noticeable gain in overall best 

accuracy: 1.9% for the spoken text, 0.6% for the written text. Moreover this comes at 

a relatively small cost in extra ambiguity (0.28) for the spoken text, and with a 

reduction in ambiguity for the written text47. Therefore, the capacity to enrich a 

lexicon resolves the problem of finding an optimal threshold: it is 1. 

 

6.3.3.4 Different combinations of lexicons 

 

 One would anticipate that the addition of the manual lexicon to the automatic 
                                                 
47 The reduction in ambiguity was possible because the best-performing enriched lexicon had a lower 

threshold than the best-performing non-enriched lexicon. Increasing the threshold increased the 

ambiguity in the output in both experiments. 
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lexicon would be an improvement. In this section, I aim to demonstrate this. Using an 

automatic lexicon of threshold 1 and the manual “closed class” and “exceptions” 

lexicons, run on both test texts alone and in combination48. The results were as 

follows:  

 

Table 6.4 

Type of Lexicon Items in lexicon Accuracy 
(spoken text) 

Accuracy 
(written text) 

Automatic 3536 89.2% 84.3% 

Closed class 730 82.7% 87.6% 

Exceptions 95 29.5% 32.5% 

Automatic + Closed 3867 89.5% 88.1% 

Automatic + Exceptions 3562 89.2% 84.3% 

Closed + Exceptions 788 82.9% 87.9% 

All three 3893 89.6% 88.1% 

 

 As anticipated, the best results are obtained by the combination of all three, 

although for both texts the contribution of the exceptions lexicon is small. This is not 

unexpected as it is a fraction the size of the closed class lexicon. 

 

6.3.3.5 Summary: the optimal lexicon 

 

 The optimal lexicon is an automatically-derived lexicon created using an 

                                                 
48 All were run in combination with the lexicon containing the Urdutag-internal codes for words with 

clitics. The training text was not used for this experiment, as with a threshold of 1 it would be tagged 

with 100% accuracy. 
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inclusion threshold of 1 (i.e. every word-from in the training text included), enriched 

with morphologically parallel tags, and combined with the manually-created lists of 

closed category words and exception words. 

There is evidence to suggest that the genre of the text from which the lexicon 

is derived is critical. Notice that the spoken test text was at all points easier for 

Urdutag to handle than the written text, since the training data is also spoken. 

 

6.4 Developing a rule list for Urdu 

 

6.4.1 How the rule list was developed 

 

 There are two conceivable ways to go about arriving at a list of 

disambiguation rules. One way begins with linguistic knowledge. The designer uses 

their knowledge of the language in question to find generalisations about sequences of 

parts-of-speech which they anticipate will reduce ambiguity. Rules are then devised to 

encode these generalisations. The other way is based on examination of the data. The 

designer looks at errors that have been made and ambiguity that remains, and the 

context in which these occur, in a set of training data that has been subjected to the 

rules as they stand. In the light of this, the designer creates or modifies the rules to 

prevent the errors or reduce the ambiguity. 

 The latter method is that recommended for use by Voutilainen (1999c: 226) in 

the Constraint Grammar framework. It is also, in effect, employed in Brill’s 

transformation-based error-driven learning methodology (although in this case, the 

rules are learnt automatically)49. 

                                                 
49 See 5.2.2 on Constraint Grammar and 5.4.2 on Brill’s methodology. 
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 However, in my case, an initial period was devoted to working on rules based 

on linguistic knowledge – in particular using my model of Urdu grammar, Schmidt 

(1999), as a source of potential rules. It is desirable to reduce the level of ambiguity to 

a somewhat more manageable level before attempting to analyse it, by implementing 

the obvious rules which arise from the syntactic structure of Urdu. Furthermore, this 

course of action allowed some work to be done on the rule list before the full set of 

training data was available. The “acid test” of the rules, however acquired, was their 

performance rather than any notion of their linguistic accuracy or descriptiveness. 

 Following this stage, existing rules were corrected, and further rules 

developed, by examining output from Unirule for errors and remaining ambiguity50. 

 However the rule was developed, it was necessary to move from a 

generalisation about the surface structure of the language to one, or in most cases 

more than one, rules in the Unirule formalism. This process is illustrated in the 

following section. All rules – including those derived from Schmidt’s description – 

remained permanently open to being edited or deleted from the list in the light of 

experience with actual data, throughout the development of the rule list. 

 

6.4.2 The nature of the rules 

 

 I began with a set of 105 rules based on my knowledge of the structure of 

Urdu derived from studying Schmidt (1999). In each case, a principle of Urdu 

grammar was translated into one or, in most cases, several rules in the Unirule 

formalism. These principles were as follows (numbers in brackets indicate the number 

                                                 
50 This stage of the project – and the creation of the rule list in general –was greatly hampered by the 

lack of a Unicode text processor able to handle large text files and display their contents correctly. 
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of rules related to that principle): 

 

• Postpositions follow nouns and verb infinitives (4) 

• Nouns and pronouns take the oblique case before postpositions (6) 

• The particle hī is clitic after the oblique case of plural personal pronouns, but 

not the nominative (2) 

• In the phrase āp kā / kē / kī, āp is reflexive, not honorific (1) 

• In a compound postposition consisting of kē plus adverb, kē is IIM1O (1) 

• Words with adjective-like inflection (i.e. marked adjectives, the marked 

postposition kā, marked determiner-like adjectives such as ordinal numerals, 

the adjectival particle sā , and possessive pronouns) agree with a following 

noun for case, gender and number (78) 

• The auxiliary rahā is preceded by a verb in the root form (1) 

• General auxiliary verbs and the verbal postposition kē always follow a verb in 

the root form (3) 

• The future auxiliary follows a subjunctive verb (1) 

• An infinitive before cāhiē~ (VC2) is not singular (1) 

• kyā at the start of a clause is a question marker rather than an interrogative 

pronoun51 (2) 

• The principle that Unirule should always delete an F* tag, especially FU, if 

another analysis was available was also adopted (5) 

 

 As an example of how these principles translate into rules, let us take the 

principle that nouns and pronoun are oblique before postpositions. It was first 
                                                 
51 This principle turned out to be unreliable in practice and was removed at a later stage. 
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necessary to consider what kind of operation should be performed. The rule could be 

stated as “if the next word is unambiguously tagged as a postposition, remove any 

tags indicating a nominative or vocative noun”. This translates into the Unirule 

formalism as: 

c ifnexttagis 1 II# 

a delete N****N 

c ifnexttagis 1 II# 

a delete N****V 

This only covers nouns. Pronouns are more complicated. Personal pronouns are 

nominative, not oblique, before the postposition nē. Furthermore, pronoun tags vary 

in length, so the same wildcard template will not fit all pronoun tags, as is the case for 

nouns. The rules for pronouns are as follows: 

c ifnexttagis 1 II# 

c ifnextwordisnot 1  

a delete PP**N 

c ifnexttagis 1 II 

c ifnextwordis 1  

a delete PP**O 

c ifnexttagis 1 II# 

a delete P**N 

c ifnexttagis 1 II# 

a delete PNN 

Two rules handle the personal pronouns (one for if the next word is nē, and one for if 

it is not); another deals with the pronouns of the Y-V-K-J set; and the last handles the 

indefinite pronoun. 
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 These 105 rules were applied to data analysed using Urdutag and the optimal 

lexicon (see above). Before the application of the rules, accuracy was 100% and 

ambiguity 2.89; afterwards, they were 97.8% and 2.55, respectively. This 

performance was then improved by adding additional rules using the training data, 

and by using multiple passes as described below, to reach 99.0% and 1.73. 

 Some of these rules were very general – for example inspection of the data 

revealed that a participle which was followed by a verb is nominative rather than 

oblique, a principle which (in the manner described above) led to four rules that 

removed a large amount of ambiguity. Other rules were dataset-specific – for 

example, rules to select FB tags for the phrase bī bī sī, “BBC”, quite common in 

transcripts from the BBC Asian Network. Others were specific to speech rather than 

writing (e.g. a rule which selects vocative tags if a noun is followed by the greeting 

alsalām ’alaikum). However, the presence of such rules should not cause errors in 

texts that lack these features (as the rules will simply not be triggered). So far as it has 

been possible to verify this in practice using the written test data, this has proven to be 

the case. 

 Ultimately a total of 274 rules were written. Some of these disambiguate only 

one or two tokens each; others disambiguate hundreds of tokens. 

 

6.4.3 The remaining ambiguity 

 

 The remaining ambiguity was very difficult to remove without causing large 

numbers of errors. Some of this was down to categories which have identical forms – 

such as the various tags for feminine adjectives. JJF1N, JJF1O, JJF2N and JJF2O are 

impossible to tell apart from their form. If it is not followed by a noun whose case and 
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number features are unambiguous, then disambiguating the case and number features 

of a feminine adjective is more or less impossible. Another problem was 

disambiguating words that could be adjectives or adverbs (i.e. JJU/RR or 

JJM1O/RRJ). I was unable to find any way based on context to tell the difference 

between these two. There were also individual problematic words. For instance  

(sau, “seven”, or sō, a multiple homonym) was extremely difficult to disambiguate. 

Virtually all instances of this word retain the tags JDNU52, CC and RR. 

 

6.4.4 What can be learnt from the rules? 

 

 The original rules were based on statements made by Schmidt (1999); 

subsequent rules were developed with continued use of Schmidt’s descriptions as a 

reference model. It is therefore not to be expected that any great insight should 

emerge from the writing of the grammatical rules that was not already there in 

Schmidt’s description. However, some minor points of Urdu grammar did emerge that 

were not present in the original model. 

 For instance, the rules based on the principle of a verb root followed by a 

general auxiliary verb (VV0 followed by VX#) originally caused a large number of 

errors. Examination of these errors showed that it was possible for there to be an 

intervening word of one of these categories: XH, XT, RM, RMN. This structure (verb 

root – particle/adverb – general auxiliary verb) is not outlined explicitly in Schmidt’s 

model. But the necessity to amend the rules to allow for this structure brought it to my 

attention. 

                                                 
52 Any word homonymous with a numeral is difficult to fully disambiguate since the numerals may 

occur in a great variety of syntactic settings. 
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 No claim is made that the above details represent an original discovery about 

Urdu grammar. They were, however, unknown to me until the process of rule writing 

brought them to light. It would therefore seem clear that the process of developing a 

rule list can in and of itself be linguistically informative. 

 

6.4.5 The order of the rules 

 

 The rules are stored in the rule list in an order designed for ease of editing; the 

rules relating to different parts of speech are grouped together. In Brill’s system, rules 

are ordered according to their individual effectiveness (1995: 552). However, I made 

no effort to do this with the Urdu disambiguation rules. This was mainly because the 

amount of training data was not sufficient for differences in the effectiveness of the 

rules to be measured with any certainty. However, in Unirule, ordering is not 

necessary, because all rules are applied on each pass through the file, as opposed to 

Brill’s system, where one rule is applied at a time. 

 It would also be theoretically possible to order the rules according to their 

collective effectiveness, i.e. to compare the performance of lists with the rules in 

different sequences and select the best order. One could easily imagine a situation 

where a rule low down in the list alters the annotation of a token in such a way that 

would cause a rule high in the list to operate, too late for that rule to come into effect. 

But to find an optimal ordering for 274 rules would involve the analysis of more 

possible sequences than could practicably be assessed. Therefore, I exploited the 

ability of Unirule to perform more than one pass of each text. This ought to 

compensate for sub-optimal ordering of the rules (since context altered by a late rule 

can trigger the early rule on a subsequent pass). This is discussed in the following 
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section. 

 That said, there were some rules which very clearly had to be in a particular 

relative order. For example, there are rules which delete all F* tags; these plainly 

conflict with rules such as the one which selects FB FB FB for the phrase bī bī sī. In 

these cases it is necessary for the rule with more specific conditions to occur earlier. 

The rules deleting F* tags, for instance, were placed at the end of the file, to give 

other rules (such as those for bī bī sī) every chance of selecting an F* tag, since the 

F*-deleting rules will allow F* to remain if all other tags have been eliminated. 

 

6.4.6 The number of cycles of disambiguation 

 

 Unirule allows the user to specify how many cycles of disambiguation a file 

should be put through. On second and subsequent passes through a file, rules may be 

triggered which did not apply on earlier passes, the earlier phases having created the 

conditions necessary for the word to apply. 

 For example, one Urdu rule selects oblique tags for nouns on the basis of a 

following postposition. But if the following word is not tagged unambiguously as a 

postposition, the rule cannot operate – even if another rule will subsequently 

disambiguate the postposition. 

 There are thus benefits to making multiple passes over the file. However, there 

is also a risk that multiple passes would decrease the accuracy of the tagging in 

unpredictable ways, since the rules were devised and tested using a single pass of the 

training corpus. 

 To establish what the optimal number of passes through the file might be, I 

compared the results obtained on all three datasets using a number of passes varying 
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from one to ten53. The results are given below. 

 

Table 6.5 

Training data Spoken test data Written test data Unirule 
passes 

Accuracy Ambiguity Accuracy Ambiguity Accuracy Ambiguity

0 100.0 2.58 92.5 3.11 89.9 3.97 

1 99.6 2.12 91.6 2.66 89.4 3.50 

2 99.3 2.06 91.4 2.58 89.0 3.33 

3 99.3 2.06 91.4 2.58 89.0 3.33 

4 99.3 2.06 91.4 2.58 89.0 3.33 
 

 There were no noticeable changes in accuracy or ambiguity after the second 

pass. The third pass caused reductions in both too small to show up in figures of the 

given degree of precision. There were no changes at all after the third pass. 

 This is encouraging, because if errors on one pass were causing more errors on 

later passes, one might expect performance to degrade more sharply with each pass. 

The exact opposite is the case. It is also gratifying that maximum results are obtained 

with a relatively small number of passes, since the computer time required for a pass 

is not negligible. On my system (see footnote 4 on page 306), a pass of the training 

data took slightly more than a minute. 

 On the basis of these results, I felt able to add to the rule list a set of rules that 

would necessarily only be activated on the second pass of a file, because they required 

some word occurring afterwards to be disambiguated. I also adopted a policy of 

running Unirule for whatever number of passes might be required to reach the final 

rate of accuracy/ambiguity. 

 
                                                 
53 This was done at a stage when 155 rules had been developed. 
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6.5 Concluding remarks 

 

 In this chapter, I have given an overview of the software and formalisms used 

to build the Urdu tagger. I have also discussed two main processes in developing the 

tagger, the creation of a lexicon and the creation of a list of rules for use in 

disambiguation. The net result is a working system capable of tagging running Urdu 

text. 

 This completes my description of the tagging system for Urdu. In the 

following chapter, I will discuss the conclusions which may be drawn from the 

experiments outlined here, and from this entire thesis. 


