Lancaster EPrints

Fire-mediated dieback and compositional cascade in an Amazonian forest.

Barlow, Jos and Peres, C. A. (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions B: Biological Sciences, 363 (1498). pp. 1787-1794. ISSN 0962-8436

Full text not available from this repository.

Abstract

The only fully coupled land–atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10–20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.

Item Type: Article
Journal or Publication Title: Philosophical Transactions B: Biological Sciences
Uncontrolled Keywords: savannization ; tropical forests ; tree mortality ; resilience ; climate change
Subjects: Q Science > QH Natural history > QH301 Biology
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 10348
Deposited By: Dr Jos Barlow
Deposited On: 14 Jul 2008 08:55
Refereed?: Yes
Published?: Published
Last Modified: 26 Oct 2013 00:01
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/10348

Actions (login required)

View Item