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ABSTRACT

Particle filters have become a useful tool for the task of object
tracking due to their applicability to a wide range of situations. To
be able to obtain an accurate estimate from a particle filter a large
number of particles is usually necessary. A crucial step in the de-
sign of a particle filter is the choice of the proposal distribution. A
common choice for the proposal distribution is to use the transition
distribution which models the dynamics of the system but takes no
account of the current measurements. We present a particle fil-
ter for tracking rigid objects in video sequences that makes use of
image gradients in the current frame to improve the proposal distri-
bution. The gradient information is efficiently incorporated in the
filter to minimise the computational cost. Results from synthetic
and natural sequences show that the gradient information improves
the accuracy and reduces the number of particles required.

1. INTRODUCTION

Tracking objects in video is an important task due to its ap-
plications in diverse areas such as augmented reality, medi-
cal applications and surveillance. The general aim of track-
ing is to keep track of the pose and location of one or more
objects through a sequence of frames.

Particle filtering [1, 2, 3, 4] is a powerful approach for
tracking because it makes no assumptions of Gaussian noises
and it is able to cope with highly non-linear models de-
scribing the image features and system dynamics. Chal-
lenges arise when accurate state representations are required
in (near) real-time. To obtain results that are accurate a very
good model for the proposal distribution is needed. Often
the transition distribution is used to model the proposal dis-
tribution, this choice does not usually model the proposal
distribution accurately so a large number of particles are
required. As one would expect increasing the number of
particles increases the complexity of the algorithm. This is
particularly true for tracking in video sequences because the
cost of evaluating the likelihood tends to be high.

∗This work has been conducted with support from the UK MOD Data
and Information Fusion Defence Technology Centre under project DIF
DTC 2.2.

There are a number of variants of the particle filter that
attempt to address the problem of the proposal distribution.
Some of them rely on additional strategies for the proposal
distribution such as Monte Carlo Markov chains or the use
of gradient information in order to move particles toward
more likely regions. The idea of using gradient informa-
tion in the proposal distribution has previously been applied
to the area of wireless communications [5]. An additional
MOVE step is introduced before the sampling step. The gra-
dient information to guide the move to regions of higher
likelihood is calculated from the likelihood model.

In [6] the generation of particles is controlled by a mo-
mentum term. Particles with a momentum below a thresh-
old are propagated through a deterministic, gradient-descent
search the remaining particles are propagated by sampling
from the transition density function. An alternative method
that moves particles toward regions of higher likelihood is
the Kernel Particle Filter [7]. In this approach the mean shift
tracker [8] is embedded in a particle filter. Following resam-
pling the mean shift iteratively estimates the local likelihood
density gradient and moves the particles toward stationary
points, which include the modes. The result is that parti-
cles are focused around stationary points in the likelihood
density.

The aim of the work here is in a similar vein to the
works mentioned above, in that gradient information is used
to shift the particles. In the present paper an error func-
tion is defined and optimised in an efficient gradient-descent
method based on the image gradient information available
in the frame. In [5] a Levenburg-Marquardt optimisation
approach is used whilst here a Newton-Raphson approach
to gradient descent allows the development of an efficient
implementation. This approach works for a range of linear
and non-linear motions, including common motions such as
the translation and affine models. The benefit of embedding
this in a particle filter framework is the ability to maintain
multiple hypothesis, something not possible in a purely de-
terministic framework.

An introduction to particle filtering is provided in Sec-
tion 2. Details of the colour histogram based likelihood
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model are included in Section 3. A general description of
the gradient descent is given in Section 4, from this an ef-
ficient gradient measurement for video sequences is devel-
oped. The gradient information is incorporated into the par-
ticle filtering framework along with implementation details
in Section 5. Results are presented in Section 6 and conclu-
sions are given in Section 7.

2. PARTICLE FILTERING

Given a system transition function ft : R
n × R

m → R
n

xt+1 = ft(xt,wt), (1)

the system state vector xt ∈ R
n is estimated at time t where

wt ∈ R
m is a zero mean, white noise sequence independent

of past and current states with a known probability density
function (PDF).

Table 1: Generic Particle Filter

1. Initialisation
For n = 1, . . . , N set wn

0 = 1
N .

2. Importance Sampling
For n = 1, . . . , N

• Sample xn
t+1 ∼ q(xt+1|x

n
t ,yt+1)

• Evaluate the weights

wn
t+1 = wn

t

p(yt+1|x
n
t+1)p(xn

t+1|x
n
t )

q(xn
t+1|x

n
t ,yt+1)

(2)

• Normalise the weights, w̃n
t+1 =

wn

t+1
∑

N

m=1
wm

t+1

Evaluate N̂eff = 1
∑

N

n=1
(w̃n

t+1
)2

3. Output
Estimate the current state

x̂t+1 =
N

∑

n=1

w̃n
t+1x

n
t+1. (3)

4. Resampling
If N̂eff ≤ Nthres

• For n = 1, . . . , N , resample with replacement
N particles xi

t+1 according to their weights,
where Nthres is a given threshold value.

Measurements yt ∈ R
p are related to the state vector

via the observation equation

yt = ht(xt,vt), (4)

where ht : R
n × R

r → R
p is the measurement func-

tion and vt ∈ R
r is a different zero mean, white noise se-

quence with known PDF, independent of past and present
states of the system noise. The Bayesian interpretation of
the tracking problem is to recursively calculate a degree
of belief in the state xt at time t given the measurements
y1:t = {y1, . . . ,yt}. This is represented by the posterior
PDF p(xt|y1:t).

The posterior PDF p(xt|y1:t) of the state xt is approxi-
mated by the particle filter given a measurement y1:t and a
set of particles xn

t each with a corresponding weight wn
t

p(xt|y1:t) ≈
N

∑

n=1

wn
t δ(xt − xn

t ), (5)

where δ(.) is the Kronecker delta function. Each one of
the particles xn

t+1 is drawn from the proposal distribution
q(xn

t+1|x
n
0:t,y1:t+1) and assigned a weight wn

t+1 calculated
recursively at each time step by evaluating the transition
density p(xt+1|xt) the likelihood p(yt+1|xt+1) and the ev-
idence q(xn

t+1|x
n
t ,yt+1). The generic particle filter is given

in Table 1.
Note that the resampling stage of Table 1 is necessary

to limit the effects of degeneracy [4, 9], the case when only
one particle has significant weight.

In the design of a particle filter it is critical to choose a
suitable importance density q(xt+1|x

n
0:t,y0:t+1). A com-

mon choice for the importance density q(xt+1|xn
t ,yt+1) is

to use the transition density

q(xt+1|x
n
t ,yt+1) = p(xt+1|x

n
t ). (6)

This choice only takes into account the system dynam-
ics, no account is taken of the measurements. The transition
prior is chosen because it leads to a straightforward imple-
mentation.

3. LIKELIHOOD MODEL

Weighted colour histogram cues extracted from the frame
are used as the result of the measurement function. The
weighted histogram Hi,x for bin i and state x is given by

Hi,x = CH

∑

r∈Sx

kN

(

∥

∥

∥

∥

r̄ − r

a

∥

∥

∥

∥

2
)

δi(br), i = 1 . . . B,

(7)
where r̄ = (x̄, ȳ) is the location of the center pixel, CH is
a normalisation constant such that

∑B
i=1 Hi,x = 1, a is the

size of the kernel, br ∈ {1, . . . , B} denotes the histogram
bins, δi(.) is the Kronecker delta function at i and Sx is the
set of pixel locations {r1, . . . , rR} defined by the state x

and the model g (see Section 4.2). The Gaussian kernel,
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kN , is used to weight pixels in the center of the region more
highly than pixels at the edge of the region

kN (r) = (2π)−1/2e−
1
2
r. (8)

The Bhattacharyya coefficient ρ determines the distance
between two histograms

ρ(Href,Htar) =
B

∑

i=1

√

Hi,refHi,tar. (9)

where two normalised histograms Ĥtar and Ĥref represent
a target region defined in the current frame and a reference
region in the frame at t0. The Bhattacharyya distance [8]

d(Htar,Href) =
√

1 − ρ(Htar,Href), (10)

is a measure of the similarity between these two distribu-
tions. The larger the measure ρ(Href,Htar) is, the more
similar the distributions are. Conversely, for the distance
d, the smaller the value the more similar the distributions
(histograms) are. For two identical normalised histograms
we obtain d = 0 (ρ = 1) indicating a perfect match.

Based on this distance the likelihood function over red,
green, blue (R, G, B) colour space can be defined by [10]

p(yt|x
n
t ) ∝ exp



−
∑

c∈{R,G,B}

d2(Hc
tar,H

c
ref)

2σ2
c



 , (11)

for the n-th particle xn
t . The standard deviation σ specifies

the Gaussian noise in the measurements. Note that small
Bhattacharyya distances correspond to large weights in the
particle filter.

4. GRADIENT INFORMATION

The aim of the gradient descent is to minimise an objective
function, O, with respect to the state vector x,

x̂ = arg min
x
O(x). (12)

If It(xt) = [I(r1, t), . . . , I(rR, t)]′ is the vector of R

pixel intensities from an image region Sxt
, corresponding

to state xt at time t. Furthermore the locations r = [x, y]′

in Sxt
are determined by the model g. It is assumed that g

is differentiable with respect to both r and x.
The objective function can specifically be defined as the

following least squares function [11]

O(x) =
∑

i∈I

(It(xt) − It0(x0))
2, (13)

where x0 is the initial state at time t0. Alternatively the
objective function can be expressed as

O(xt) = ‖It(xt) − It0(x0)‖
2
. (14)

Reposing the problem in terms of iteratively determin-
ing the offset δx such that x̂t = xt + δx then (14) becomes

O(δx) = ‖It(xt + δx) − It0(x0)‖
2
. (15)

If we assume that δx is small then we can apply contin-
uous optimisation procedures to a linearised version of the
problem. The problem can be linearised by performing a
Taylor series expansion of It(xt + δx) about xt

It(xt + δx) ≈ It(xt) + δxMt(xt) + H.O.T., (16)

where H.O.T. refers to higher order terms of the Taylor se-
ries expansion and Mt is the Jacobian matrix of It with re-
spect to xt. Making the substitution of (16) into (15) gives

O(δx) ≈ ‖It(xt) + δxMt(xt) − It0(x0)‖
2
. (17)

Solving for ∂O
∂(δx) = 0 and rearranging gives

δx = −(M ′
tMt)

−1M ′
t [It(xt) − It0(x0)], (18)

and from this x̂t can be defined as

x̂t = xt − (M ′
tMt)

−1M ′
tet, (19)

where
et = It(xt) − It0(x0). (20)

4.1. Efficient Algorithm

Evaluating (19) requires the estimation of the gradient of
each target region in every frame. To allow efficient on-
line implementation it can be shown that Mt can be de-
composed into a time-varying component Σt and a con-
stant M0, which can be determined off-line. The efficiency
comes from removing the need to recalculate the Jacobian
Mt at every iteration. The decomposition of Mt is

Mt(xt) =











∇rI(r1, t0)
′
Γ(r1)

∇rI(r2, t0)
′
Γ(r2)

...
∇rI(rR, t0)

′
Γ(rR)











Σt(x) = M0Σt(x),

(21)
where ∇rI(rℓ, t0)

′, ℓ = 1, . . . , R denotes the gradient,
with respect to the components of r, of pixel rℓ at time t0,
Σt(xt) is dependent upon the motion model used and Γ(r)
depends on both the motion model g used and the pixel loca-
tion r = [x, y]′. Examples of g are given for the translation
model (Section 4.2) and the affine model (Section 4.3).

If Σt is invertible then the state can be moved toward
the minimum of the error vector et by

x̂t = xt − (Σ−1
t )′Λet (22)

where Λ = (M ′
0M0)

−1M0 and is computed during an ini-
tialisation stage based on the model used. Hence, equation
(19) is replaced by the more computationally efficient (22).
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4.2. Translation Motion Model

The motion model described here and in section 4.3 defines
how the pixel locations are related to the state. This first
model is for the case when the object performs a translation
motion

f(r,xt) = r + xt, xt = [ut, vt]
′ (23)

and for this model M0 = [Ix(t0)|Iy(t0)] and Σ is the 2×2
identity matrix. Remembering that Λ = (MT

0 M0)
−1M0

the updated state, x̂t, at time t is given by

x̂t = xt − Λet. (24)

4.3. Affine Motion Model

If the object to be tracked is a planar object a more suit-
able model to capture the transformation is given by the six
component affine transform. The motion model and current
state of the object xt at time t can be described by

f(r,xt) =

[

a c

b d

]

r +

[

u

v

]

= Ar + u. (25)

The state vector is xt = [ut, vt, at, bt, ct, dt]
′. Using the

affine motion model gives

Γ(p) =

[

1 0 x 0 y 0
0 1 0 x 0 y

]

, (26)

and

Σt(x) =





A−1
0 0

0 A−1 0

0 0 A−1



 . (27)

The updated state, x̂t, at time t is given by

x̂t = xt − Σ
′
tΛet. (28)

It is possible to use other models including some non-
linear models. Not all of them are suitable because of the
separability property needed to factorise M .

5. IMPLEMENTATION

Table 2 presents a particle filter that takes into account the
gradient information in the way described in Section 4.

Table 2: Particle Filter with Gradient Step

1. Initialisation
For n = 1, . . . , N set wn

0 = 1
N .

Calculate M0 = [Ix(t0)|Iy(t0)] for the target region
and then evaluate

Λ = (MT
0 M0)

−1M0 (29)

2. Importance Sampling
For n = 1, . . . , N ,

• Sample xn
t+1|t ∼ q(xt+1|x

n
t|t)

• For j = 1, . . . , J (with J iterations)

– Gradient step
xn

t+1|t = xn
t+1|t − ΩΣ

′
tΛen

t+1

• Evaluate the weights

wn
t+1 = wn

t p(yt+1|x
n
t+1)

p(xi
t+1|x

i
t|t)

p(xi
t+1|x

i
t+1|t)

(30)

• Normalise the weights, w̃n
t+1 =

wn

t+1
∑

N

m=1
wm

t+1

Evaluate N̂eff = 1
∑

N

n=1
(w̃n

t+1
)2

3. Output

Estimate the current state

x̄t+1 =
N

∑

n=1

w̃n
t+1x

n
t+1. (31)

4. Resampling

If N̂eff ≤ Nthres

• For n = 1, . . . , N , resample with replacement
N particles xn

t+1 according to their weights

For the purpose of tracking an object in video we ini-
tially choose a region which defines the object. The shape
of this region is fixed a priori and in our case it is a rectan-
gular box characterised by the state vector x = (x, ẋ, y, ẏ)′,
with x and y denoting the pixel location of the top-left cor-
ner of the rectangle, with velocities ẋ and ẏ. Note that the
dimensions of the rectangle are fixed through the sequence.

The transition distribution p(xt+1|xt) used for this work
is a constant velocity dynamic model [12]

xk+1 = Fxk + wk, wk ∽ N (0,Q) (32)
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F =

(

F̃ 0

0 F̃

)

, F̃ =

(

1 T

0 1

)

,

Q =

(

Qx 0

0 Qy

)

, Γ =

(

1
2T 2

T

)

,

with the state vector x = (x, ẋ, y, ẏ)′, the system noise w =
(w′

x,w′
y)′ = (Γ′vx,k,Γ′vy,k)′, vx,k ∽ N (0, σx), vy,k ∽

N (0, σy) being scalar valued zero mean white sequences
with standard deviations σx and σy respectively and T is
the sampling interval.

The covariance matrices of the noise respectively in x

and y coordinates multiplied by the gain, are

Qx = Γσ2
xΓ =

(

1
4T 4 1

2T 3

1
2T 3 T 2

)

σ2
x.

The covariance Qy can be calculated in a similar way. Suit-
able values for σx and σy are ([12], p. 273) in the range
[ 12am, am], with am being the maximum acceleration.

An implementation issue in combining the constant ve-
locity model with the gradient descent is that the gradient
descent only updates the x and y coordinates of the state
and appropriate account needs to be taken to update the ve-
locities. This is done through the use of the following matrix

Ω =

[

1 1
T 0 0

0 0 1 1
T

]′

, (33)

where T is the sampling period and in our implementation
T = 1.

6. RESULTS

The results presented here are from experiments carried out
on rigid objects in a natural sequences (Fig. 1) and a syn-
thetic sequence (Fig. 2). The object in the synthetic se-
quence is quite textured, in the artificial sequence it con-
tains more homogeneous regions. The target regions are
initialised by providing the coordinates of the target region
in the first frame. The state xt = (x̂, ŷ) represents an esti-
mate of the true coordinates (x, y), therefore the root mean
square RMSE is

RMSE =
√

(xt − x̂t)2 + (yt − ŷt)2. (34)

and for a sequence of F frames it is

RMSEseq =

√

√

√

√

1

F

F
∑

t=1

(xt − x̂t)2 + (yt − ŷt)2. (35)

A comparison of the relative performance of the two al-
gorithms over the natural sequence is given in Fig. 1. It can
be seen that for any number of particles more accurate re-
sults are obtained by the particle filter with a gradient step.
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(a) Relative Performance
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(b) Relative Complexity

Fig. 1. Comparison of the generic particle filter and particle
filter with gradient step. All of the results are presented
as relative to the generic particle filter with 50 particles (a)
Relative RMSE of the state estimated by the algorithm. (b)
Relative processing time for the generic particle filter and
the particle filter with gradient step. The results are for a
sequence of 60 frames and are averaged over 100 runs.

It can also be seen that for comparable complexity the gra-
dient particle filter outperforms the generic particle filter.
Tracking results of the two algorithms on the natural se-
quence are shown in Fig. 3.

Results from a synthetic sequence are shown in Fig. 2.
The estimated path from the particle filter is clearly smoother
and more accurate when the gradient information is used.
This can be clearly seen in Fig. 2a by the jittering in the
particle filter path that is not present in when the gradient
step is used. The RMSE can be clearly seen to be lower
when the gradient information is used in Fig. 2b.

7. CONCLUSIONS

We have presented a method of improving the proposal dis-
tribution in the particle filter by taking into account the gra-
dient information available in a frame. The inclusion of
information from the current frame in the proposal distri-
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(a) Tracking Results
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Fig. 2. Comparison of the generic particle filter and particle
filter with gradient step applied to an synthetic sequence.
(a) A section of the true path of the object compared to the
estimates from one run of the particle filter and the particle
filter with the gradient step. (b) The RMSE of the particle
filter and the particle filter with the gradient step, the results
are the mean of 100 run.

bution moves the particles to the high-likelihood regions
which results in improved performance. An efficient imple-
mentation of the gradient step particle filter is given. Re-
sults show that there are two main improvements over a
generic particle filter i) a significant increase in the accuracy
(lower RMSE) and ii) since fewer particles are needed to
represent the posterior there is a reduction in computational
complexity. Future work will extend the method to include
changes to the object appearance.
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