Lancaster EPrints

A theoretical framework for estimation of AUCs in complete and incomplete sampling designs.

Jaki, Thomas and Wolfsegger, Martin J. (2009) A theoretical framework for estimation of AUCs in complete and incomplete sampling designs. Statistics in Biopharmaceutical Research, 1 (2). pp. 176-184.

[img]
Preview
PDF (BatchDesignhomepage.pdf)
Download (200Kb) | Preview

    Abstract

    Nonclinical in vivo animal studies have to be completed before starting clinical studies of the pharmacokinetic behavior of a drug in humans. The drug exposure in animal studies is often measured by the area under the concentration versus time curve (AUC). The classic complete data design, where each animal is sampled for analysis once per time point, is usually only applicable for large animals. In the case of rats and mice, where blood sampling is restricted, the batch design or the serial sampling design needs to be considered. In batch designs samples are taken more than once from each animal, but not at all time points. In serial sampling designs only one sample is taken from each animal. In this paper we present an estimator for the AUC from 0 to the last time point that is applicable to all three designs. The variance and asymptotic distribution of the estimator are derived and confidence intervals based upon the asymptotic results are discussed and evaluated in a simulation study. Further, we define an estimator for linear combinations of AUCs and investigate its asymptotic properties mathematically as well as in simulation.

    Item Type: Article
    Journal or Publication Title: Statistics in Biopharmaceutical Research
    Subjects: Q Science > QA Mathematics
    Departments: Faculty of Science and Technology > Mathematics and Statistics
    ID Code: 10054
    Deposited By: Dr Thomas Jaki
    Deposited On: 07 Jul 2008 12:01
    Refereed?: Yes
    Published?: Published
    Last Modified: 09 Apr 2014 20:17
    Identification Number:
    URI: http://eprints.lancs.ac.uk/id/eprint/10054

    Actions (login required)

    View Item